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Abstract. In the present work, the Harten and Osher TVD/ENO and the Yee TVD symmetric schemes are implemented, 
on a finite volume context and using a structured spatial discretization, to solve the Euler and the laminar Navier-
Stokes equations in the three-dimensional space. The Harten and Osher TVD/ENO schemes are flux difference splitting 
type, whereas the Yee TVD scheme is a symmetric one, which incorporates TVD properties due to the appropriated 
definition of a limited dissipation function. All three schemes are second order accurate in space. An implicit 
formulation is employed to all schemes in the solution of the Euler equations. The flux difference splitting schemes 
employ approximate factorizations in Linearized Nonconservative Implicit LNI form, whereas the symmetric scheme 
employs approximate factorization in ADI form. A spatially variable time step procedure is also implemented aiming to 
accelerate the convergence of the algorithms to the steady solution. The gains in convergence with this procedure were 
demonstrated in Maciel. The schemes are applied to the solution of the physical problems of the transonic flow along a 
convergent-divergent nozzle and of the supersonic flow along a compression corner in the inviscid case, whereas the 
laminar case studies a particular ramp problem. The results have demonstrated that the most accurate results are 
obtained with the Harten and Osher ENO and Yee TVD VL and Min1 schemes. This paper is the first part of this work, 
THEORY, considering the descriptions of the TVD/ENO schemes of Harten and Osher and of the TVD symmetic 
scheme of Yee, as also the employed implicit formulations. 
 
Keywords: Harten and Osher TVD/ENO algorithms, Yee TVD symmetric algorithm, Euler and Navier-Stokes 
equations, Laminar case, Explicit and implicit algorithms. 

 
1. INTRODUCTION  
 

Yee (1989) gives a very extensive survey of the state of the art of second order high resolution schemes for the 
Euler/Navier-Stokes equations of gas dynamics in general coordinates for both ideal and equilibrium real gases. Also, 
excellent reviews on modern upwind conservative shock capturing schemes and upwind shock fitting schemes based on 
wave propagation property have been given by Roe (1986) and Moretti (1987), respectively. 

Recently, a new class of uniformly high order accurate, essentially non-oscillatory (ENO) schemes has been 
developed by Harten et al. (1986) and Harten and Osher (1987). They presented a hierarchy of uniformly high order 
accurate schemes that generalize Godunov (1958) scheme, and its second order accurate extension of monotonic 
upstream schemes for conservation laws (MUSCL) (Van Leer, 1979, and Colella and Woodward, 1984) and total 
variation diminishing (TVD) schemes (Harten, 1983, and Osher and Chakravarthy, 1984) to arbitrary order of accuracy. 

In contrast to the earlier second order TVD schemes, which drop to first order accuracy at local extreme and 
maintain second order accuracy in smooth regions, the new ENO schemes are uniformly high order accurate throughout 
even at critical points. Theoretical results for the scalar conservation law and for the Euler equations of gas dynamics 
have been reported with highly accurate results. Preliminary results for two-dimensional problems were reported in 
Harten (1986). 

Roe (1984) has proposed a very enlightening generalized formulation of TVD Lax and Wendroff (1964) schemes. 
Roe’s result, in turn, is a generalization of Davis (1984) work. Yee (1987) incorporated the results of Roe (1984) and of 
Davis (1984) with minor modification to a one parameter family of explicit and implicit TVD schemes (Harten, 1984, 
and Yee, Warming and Harten, 1983) so that a wider group of limiters could be represented in a general but rather 
simple form which is at the same time suitable for steady-state applications. The final scheme could be interpreted as a 
three-point, spatially central difference explicit or implicit scheme which has a whole variety of more rational numerical 
dissipation terms than the classical way of handling shock-capturing algorithms.  
 In the present work, the Harten and Osher (1987) TVD/ENO and the Yee (1987) TVD symmetric schemes are 
implemented, on a finite volume context and using a structured spatial discretization, to solve the Euler and the laminar 
Navier-Stokes equations in the three-dimensional space. The Harten and Osher (1987) TVD/ENO schemes are flux 
difference splitting type, whereas the Yee (1987) TVD scheme is a symmetric one, which incorporates TVD properties 
due to the appropriated definition of a limited dissipation function. All schemes are second order accurate in space and 
their numerical implementation is based on the concept of Harten’s modified flux function. All three schemes are 
implemented following an implicit formulation to solve the Euler equations. The flux difference splitting schemes 
employ approximate factorizations in Linearized Nonconservative Implicit LNI form, whereas the symmetric scheme 
employs approximate factorization in ADI form. The viscous simulations are treated with the explicit versions of the 
present algorithms, which employ a time splitting method. The schemes are accelerated to the steady state solution 
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using a spatially variable time step, which has demonstrated effective gains in terms of convergence rate (Maciel, 2005 
and 2008). The algorithms are applied to the solution of the physical problems of the transonic flow along a convergent-
divergent nozzle and of the supersonic flow along a compression corner in the inviscid case, whereas the laminar case 
studies a particular ramp problem. The results have demonstrated that the most accurate results are obtained with the 
Harten and Osher (1987) ENO and Yee (1987) TVD VL and Min1 schemes. 

The main contribution of the present work to the CFD (Computational Fluid Dynamics) community is the extension 
of the Harten and Osher (1987) TVD/ENO schemes, as also the Yee (1987) TVD symmetric scheme, to three-
dimensions, following a finite volume context, and their implicit implementation to inviscid problems, which 
characterizes a original contribution in the field of high resolution structured numerical algorithms. 
 
2. NAVIER-STOKES EQUATIONS 
 
 As the Euler equations can be obtained from the Navier-Stokes ones by discarding the viscous vectors, only the 
formulation to the later will be presented. The Navier-Stokes equations in integral conservative form, employing a finite 
volume formulation and using a structured spatial discretization, to three-dimensions, can be written as: 
  

      01  V dVPVtQ


,                                                                                                                                          (1) 

 
where V is the cell volume, which corresponds to an hexahedron in the three-dimensional space; Q is the vector of 

conserved variables; and      kGGjFFiEEP veveve


  represents the complete flux vector in Cartesian 

coordinates, with the subscript “e” related to the Euler contributions and “v” is related to the viscous contributions. 
These components of the complete flux vector, as well the vector of conserved variables, are described below: 
 

 

,   ,   ,   ;                                                                       (2) 
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In these equations, the components of the viscous stress tensor are defined as: 
 

 
 zwyvxuxu MMxx  322 ,  xvyuMxy  ,  xwzuMxz  ;                                       (4) 

 
 zwyvxuyv MMyy  322 ,  ywzvMyz  ;                                                                             (5) 

  zwyvxuzw MMzz   322 .                                                                                                                 (6) 

 
The components of the conductive heat flux vector are defined as follows: 
 

 
  xedq iMx  Pr ,   yedq iMy  Pr    and     zedq iMz  Pr .                                               (7) 

 
The quantities that appear above are described as follows:  is the fluid density, u, v and w are the Cartesian 
components of the flow velocity vector in the x, y and z directions, respectively; e is the total energy per unit volume of 
the fluid; p is the fluid static pressure; ei is the fluid internal energy, defined as: 
 

 
 2225.0 wvueei  ;                                                                                                                                         (8) 

 
the ’s represent the components of the viscous stress tensor; Prd is the laminar Prandtl number, which assumed a value 
of 0.72 in the present simulations; the q’s represent the components of the conductive heat flux; M is the fluid 
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molecular viscosity;  is the ratio of specific heats at constant pressure and volume, respectively, which assumed a value 
1.4 to the atmospheric air; and Re is the Reynolds number of the viscous simulation, defined by: 
 

 MREFlu Re ,                                                                                                                                                        (9) 

 
where uREF is a characteristic flow velocity and l is a configuration characteristic length. The molecular viscosity is 
estimated by the empiric Sutherland formula: 
 

  TSbTM  121 ,                                                                                                                                                (10) 

 
where T is the absolute temperature (K), b = 1.458x10-6 Kg/(m.s.K1/2) and S = 110.4 K, to the atmospheric air in the 
standard atmospheric conditions (Fox and McDonald, 1988). 
 The Navier-Stokes equations were nondimensionalized in relation to the stagnation density, , the critical speed of 
the sound, a*, and the stagnation viscosity, *, for the nozzle problem, whereas in relation to the freestream density, , 
the freestream speed of sound, a, and the freestream molecular viscosity, , for the compression corner and ramp 
problems. To allow the solution of the matrix system of five equations to five unknowns described by Eq. (1), it is 
employed the state equation of perfect gases, in its two versions, presented below: 
 

  )(5.0)1( 222 wvuep     or   RTp  ,                                                                                                    (11) 

 
with R being the specific gas constant, which to atmospheric air assumes the value 287 J/(Kg.K). Finally, the total 
enthalpy can be expressed by: 
 

   peH .                                                                                                                                                           (12) 

 
Details of the geometrical characteristics of the spatial discretization are obtained in Maciel (2002, 2006). 
 
3. NUMERICAL SCHEME OF HARTEN AND OSHER (1987) – TVD AND ENO METHODS 
 
 The Harten and Osher (1987) algorithm, second order accurate in space, is specified by the determination of the 
numerical flux vector at (i+1/2,j,k) interface. The implementation of the other numerical flux vectors at the other 
interfaces is straightforward. 
 Following a finite volume formalism, which is equivalent to a generalized system, the right and left cell volumes, as 
well the interface volume, necessary to coordinate change, are defined by: 
 

 
,     and   kjiR VV ,,1 kjiL VV ,,  LR VVV  5.0int .                                                                                       (13) 

 
The metric terms to this generalized coordinate system are defined as: 
 

 intint_ VSh xx  , intint_ VSh yy  , intint_ VSh zz     and   intVShn  ,                                                           (14) 

 
where , ,  are the Cartesian components of the flux area and S is the flux area, 

calculated as described in Maciel (2002, 2006). 

SnS xx int_ SnS yy int_ SnS zz int_

 The properties calculated at the flux interface are obtained either by arithmetical average or by Roe (1981) average. 
In this work, the Roe (1981) average was used: 
 

   RLint ,    LRLRRL uuu  1int ,    LRLRRL vvv  1int ,    LRLRRL www  1int ; (15) 

 
   LRLRRL HHH  1int  and     2

int
2
int

2
intintint 5.01 wvuHa  .                                       (16) 

 
where aint is the speed of sound at the interface. The eigenvalues of the Euler equations, in the  direction, are given by: 
 

 
, , zyxcont hwhvhuU intintint  ncont haU int1  contU 432 , and ncont haU int5  .                         (17) 

 
 The jumps of the conserved variables, necessary to the construction of the Harten and Osher (1987) dissipation 
function, are given by: 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

 LRV  int ,       LR uuVu  int ,       LR vvVv  int ,       LR wwVw  int , and  LR eeVe  int . 

(18) 
 
 The  vectors at the (i+1/2,j,k) interface are calculated by the following expressions: 
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with: 
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        Tkji ewvuQ  ,,2/1                                                                 (21) 

;                                       

 , defined by Eq. (18);        

 
                                                                                                           (22) 2
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'
int zyx whvhu 

 nxx hhh ' , nyy hhh '    and   nzz hhh ' .                                                                                                             (24) 

 
 The Harten and Osher (1987) dissipation function uses the right-eigenvector matrix of the normal to the flux face 

 

  .                                                                    (25) 

 
To construct the TVD/ENO schemes of Harten and Osher (1987), it is necessary to define the parameter  at the 
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Jacobian matrix in generalized coordinates: 
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in erface (i+1/2,j,k) to calculate the numerical speed of propagation of information, which contributes to the second 
order of the scheme: 
 

    2
,,5.0 ztzz kji ;                                                                                                                                       (26) 
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22 , z and  scalars.                                                                                                 (27) 

 
he nonlinear limited flux function, based on Harten’s idea of a modified flux function, is constructed by: T
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where the limiters m and m  are defined by: 
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nd the forward and backward operators are defined according to: 

   and   .                                                                                                  (31) 

umerical speed of propagation of information is calculated by: 

a
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The dissipation function to the Harten and Osher (1987) TVD/ENO schemes is defined as follows: 
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ith: “l” assuming values from 1 to 5 (three-dimensional space),  assumes v
sher (1987),  is an entropy function to guarantee only physical relevant solutions, and  assumes the value 0.0 to 

ector product: 

 
w alue 0.2 recommended by Harten and 
O
obtain the second order TVD scheme of Harten (1983) and 0.5 to obtain the uniformly second order essentially non-
oscillatory scheme of Harten and Osher (1987). 
 Finally, the Harten and Osher (1987) dissipation operator, to second order of spatial accuracy, in TVD or ENO 
versions, is constructed by the following matrix-v
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The convective numerical flux vector to 
 
 the (i+1/2,j,k) interface is described by: 
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kji DVhGhFhEF  ,                                                                                       (35) 

ith: 

 
 
w
 

 )()()(
int 5.0 l

L
l

R
l FFF     and    )()()(

int 5.0 l
L

l
R

l GGG  .  )()()(
int 5.0 l

L
l

R
l EE  , E                                                           (36) 

he right-hand-side of th Harten and Osher (19 me, necessaries to th
lgorithm, is determined by: 

 
 
T e 87) sche e resolution of the implicit version of this 
a
 

    n
kji

n
kji

n
kji

n
kji

n
kji

n
kjikjikji

n
kji tHORHS ,,,,  FFFFFFV 2/1,,2/1,,,2/1,,2/1,,,2/1,,2/1,,   .                   (37) 

he explicit version of this scheme adopts the time splitting method, first order accurate, which divid
in three steps, each one associated with a specific spatial direction. In the initial step, it is possible to write for the 

  
T es the integration 

 
direction: 
 

   *
,,,,

*
,,,,2/1,,2/1,,,,

*
,, kjiQ ; kji

n
kjikji

n
kji

n
kjikjikji QQQFFVt   ;                                                              (38) 

 the intermediate step,  direction: 
 
in
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  **
,,

*
,,

**
,,

*
,2/1, ; kjikjikjikji QQQF   ;                                                                 (39) 

nd in the end step,  direction: 

*
,2/1,,,,,

**
,, kjikjikjikji FVtQ  

 
a
 

  1
,,

**
,,

1
,,

**
2/1,,2/1 ; 

  n
kjikji

n
kjikji QQQF .                                                                 (40) 

The viscous vectors at the flux interface are obtained by arithmetical 
ft and at the right states of the flux interface, as also arithmetical average of the primitive variable gradients also 

**
,,,,,,

1
,,
  kjikjikji

n
kji FVtQ

 
 average between the primitive variables at the 
le
considering the left and the right states of the flux interface. The gradients of the primitive variables present in the 
viscous flux vectors are calculated employing the Green Theorem which considers that the gradient of a primitive 
variable is constant in the volume and that the volume integral which defines this gradient is replaced by a surface 
integral (Long, Khan and Sharp, 1991); For instance, to xu  : 

 

      



  kji

x

kji xkjikji

S

xkjikji
kji

x

SV

SuuSuu
V

udS
V

Sdnu
V

dV
xVx ,,2/1,2/1, ,,1,,,1,,,

,,

5.05.0
 uu 1111 


 

                 
2/1,,2/1,,,,2/1,2/1, 1,,,,1,,,,,,1,,,1,,, 5.05.05.05.0

  
kjikjikjikji xkjikjixkjikjixkjikjixkjikji SuuSuuSuuSuu . 

(4  

3. NUMERICAL SCHEME OF YEE (1987) – SYMMETRIC TVD METHOD 

 to (25). The next step consists in 
etermining the different limiters which incorporate the TVD properties to the Yee (1987) symmetric scheme. 

1)
 

 
 The second order symmetric TVD scheme of Yee (1987) employs Eqs. (13)
d
According to Yee (1987), five different limiters are implemented. The limited dissipation function Q is defined to the 
five options as: 
 

      1,1modmin,1modin   rrm,  rrQ ;                                                                                                         (42) 
      rrrrQ ,,1modmin, ;                                                                                                                                   (43) 

      rrrrQ 2,2,2modmin,
 

 rr5.0, ;                                                                                                           (44) 
 

 
          m2,min,1,2min,0max,   rrrrQ 12,min,1,2min,0ax rr ;                                                           (45) 

  1
11

, 








 








r

rr

r

rr
rrQ

 
,                                                            

 
here: 

                                                              (46) 

w
 

  l
kji

l
kji

l
kjir ,,2/1,,2/3,,2/1 


   l

kji
l

kji
l

kjir

 ,,2/1,,2/1,,2/1      and   

 
,                                                           (47) 

 
ith the  vectors defined by Eq. ( uations (42) to (44) are referen
inmod2 (Min2) and minmod3 (Min3), respectively. Equation (45) is referred in the CFD literature as the “Superbee” 

w 19). Eq ced by this author as minmod1 (Min1), 
m
(SB) limiter due to Roe (1983) and Eq. (46) is referred as the Van Leer (VL) limiter due to Van Leer (1974). 
 The dissipation function to the symmetric TVD scheme of Yee (1987) is defined as follows: 
 

     l
kji

l
kji

l
kjiYee

l
kji Q ,,2/1,,2/1,,2/1,,2/1 1   ,                                                                                                  (48)

 

ith  entropy function defined by Eq. (27). The Y
llowing matrix-vector product: 

 
 
w ee (1987) TVD dissipation operator is finally constructed by the 
fo
 

      kjie ,,2/1YekjikjiYee RD ,,2/1,,2/1   ,                                                                                                                   (49) 

he convective numerical flux vector to the

 
 
T  (i+1/2,j,k) interface is described by: 
 

  )(
int

)(
int

)(
int

)(
int

)(
,,2/1 5.0 l

Yeez
l

y
l

x
ll

kji DVhGhFhEF  ,                                                                                       (50) 
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with: ation of the viscous terms according to Eq. (41). The right-)(
int
lE , )(

int
lF  and  defined by Eq. (36) and the calcul

and-side of the Yee (1987) symmetric scheme, necessaries to the resolution of the implicit version of this algorithm, is 
ined by: 

)(
int

lG

h
determ
 

    nnnnnnn
ji FFFFFFVtYeeRHS ,,  .                        (51) kjikjikjikjikjikjikjikjik 2/1,,2/1,,,2/1,,2/1,,,2/1,,2/1,,,, 

he explicit version to the viscous simulations is defined by Eqs. (38)-(40). 

this work used backward Euler in time and ADI or LNI approximate 
al system in each direction. 

Implicit (LNI) form is applied that, although the 
nconditionally TVD property. Moreover, the LNI form 

 m

 
T
 
4. IMPLICIT FORMULATION 
  
 All implicit schemes implemented in 
factorization to solve a three-diagon
 
4.1. Implicit formulation to flux difference splitting schemes 
 
 In the flux difference splitting cases, a Linearized Nonconservative 
resulting schemes loss the conservative property, preserve their u
is ainly useful to steady state calculations, since the schemes are only conservative after the solution reaches steady 
state. This LNI form to the solution of the implicit schemes of Harten and Osher (1987) TVD/ENO was proposed by 
Yee, Warming and Harten (1985). The LNI form presents three stages as described below: 
 

 
    n

kjiHOkjikjikjikjikjikjikji RHSQJtJtI
,,

*
,,,,2/1,,2/1,,,,2/1,,2/1,,  





 ;                                                   (52) 

  *
,,

**
,,,2/1,,2/1,,,,2/1,,2/1,,, kjikjikjikjikjikjikjikji QQKtKtI  





 

;                                                               (53) 

 
  **

,,
1
,,2/1,,2/1,,,,2/1,,2/1,,,, kji

n
kjikjikjikjikjikjikji QQLtLtI  







 ,                                                                (54) 

where RHS(HO) is defined by Eq. (37). The difference operators are defined
 

 as: 
 

 kjikjikji ,,,,1,,2/1   ,            kjikjikji ,,1,,,,2/1   ,       kjikji ,,,1,   ;                                  (55) kji ,2/1, 

                  1,,,,2/1,,   kjikjikjikjikjikji ,1,,,,2/1,   , kjikjikji ,,1,,2/1,,   , 
 

.                                  (56) 

e update of the conserved variable vector is proceeded as follows: 
 

.                                                                                                                                             (57) 

his system of 5x5 block three-diagonal linear equations is solved using LU decomposition and the Thomas algorithm 
applied to systems of bloc

The splitting matrices J

 
and th

1
,,,,

1
,,

  n
kji

n
kji

n
kji QQQ

 
 
T

k matrices. 
 +, J-, K+, K-, L+ and L- are defined as: 
 

 
  1





  RDdiagRJ ,   1


  RDdiagRJ ,   1  RDdiagRK ;                                                                       (58)  

  1





  RDdiagRK ,   1





  RDdiagRL    and     1



 RDag

  diRL ,                                                              (59) 

here R, R, R,  and  are defi d by Eqs. (20) and (2

 
 

 diag  w R ne 5), applied to each coordinate direction; 1
R , 1


1

R

represents a diagonal matrix such as:  

 

  and .                                    (60)

  
and the terms D are defined as: 
 

 
























,
5

,
4

,
3

D

D
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







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,
2

,
1

D

D




 ,
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















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






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,
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,
4

,
3
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2
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    llllQD 

  5.0 ,     llllQD 


  5.0 , and     llllQD 


  5.0

 
,                (61) 

 
with: 
 

   









ll

ll
l xifx

xifx
xQ

,5.0

,
22 ,  defined by Eq. (27);                                                                             (62) 

nvalues of the Euler equations, defined by Eq. (17), in each coordinate direction; 
 

l
 , l

  and l
  are the eige

 

         
 










 .0
,, kj

l

ji                  (63) 




 








0.0,0.0

0,

,,2/1

,2/1,,2/1,
'

,,1
'

,,2/1

kji
l

i
l

kji
l

k

l

kji
kji

l

if

ifgg
;                                               

         
   0.0lif

;                                                          (64) 






 



 








,0.0

0.0,

,2/1,

,2/1,,2/1,,,
'

,1,
'

,2/1,

kji

kji
l

kji
ll

kji

l

kji
kji

l
ifgg

 

        
 











  0.0,'' llll

ifgg










0.0,0.0
2/1,,

2/1,,2/1,,,,1,,
2/1,,

kji
l

kjikjikjikji
kji

l

if
;                                                             (65) 

 

        



 





 

 kji
ll

kji
l

kji
ll

kji
ll

kji
signalMINMAXsignalg

,,2/1,,2/1,,2/1,,2/1,,
' ,,0.0 ;                                      (66) 

      




 kji
l

,2/1,
;                                      (67) 

 

  

l
kji

l
kji

ll
kji

ll

kji
signalMINMAXsignalg ,2/1,,2/1,,2/1,,,

' ,,0.0
 

        



 





 

 2/1,,2/1,,2/1,,2/1,,,,
' ,,0.0

kji
ll

kji
l

kji
ll

kji
ll

kji
signalMINMAXsignalg ;                                     (68) 

 lll Q  5.0  to steady state simulations.                                                  

ly,  = 1.0 if 

                                                               (69) 

 

 lsignal   0.0
,,2/1


 kji
l  and -1.0 otherwise;  = 1.0 if lsignal  

1,


 ji
l 0.0

,2/


k
 and -1.0 otherwise Final

and 0 iflsignal  = 1.    0.0
2/1,,


kji
 and -

l 1.0 otherwise. 

This implicit formulation to the LHS of the Harten and Osher (1987) scheme is second
space due to the presence of the numerical characteristic speed  associated to the numerical flux function g’. In this 

 the solution accuracy in space is definitively of second order because both LHS and R
 It is important to emphasize that as the right-hand-side of the implicit flux difference splitting schemes tested in this 

ork presents ste
hemes can affect the steady solutions, as mentioned in Yee, Warming and Harten (1982). This is an initial study with 

cheme ovements of the se sche steady state solu
 a goal to be aimed in future

mplicit formulation to symmetric scheme 

ion;                                                                          (72) 

                                                                                                      (73) 

  order accurate in time and 

case, HS are also of second order. 

w ady state solutions which depends of the time step, the use of large time steps with the implicit 
sc
implicit s s and impr  implementation of the mes with tions independent of 
the time step is  works by this author. 
 
4.2. I
 
 The ADI form of the implicit symmetric TVD scheme of Yee (1987) is represented by: 
 

 
  n

kjiYeekjikjikji RHSQEQEQE
,,

*
,,13

*
,,2

*
,,11   , to the  direction;                                                                (70) 

 
*

,,
**

,1,3
**

,,2
**

,1,1 kjikjikjikji QQFQFQF   , to the  direction;                                                                           (71) 

**
,,

1
1,,3

1
,,2

1
1,,1 kji

n
kji

n
kji

n
kji QQGQGQG  




 , to the  direct
 

 
1
,,,,

1
,,

  n
kji

n
kji

n
kji QQQ ,                                       

 
where: 
 

  ; n
kjikji

kji KA
t

E ,,2/1,,2/1
,,

1 2  


  nkjikji
kj KK ,,2/1,,2/

,
 


;                                                 (74) itIE 1

,
2 2


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  ; n
kjikji

kji KA
t

E ,,2/1,,2/1
,,

3 2  


  nkji JB,,
 


;                                                        (75) kjikji

t
F ,2/1,,2/1,1




2 

 nji
kji J

t
IF 1,

,,
2 2 


  nkjikji

kji JBF ,2/1,,2/1,
,,

3 2   ;                                                      (76) 
t 

kjik J ,2/1,,2/  ; 
 

 nkjikji
kji LC

t
;  nkjikji

kji LL
t

IG 2/1,,2/1,,
,,

2 2  


2/1,,2/1,,
,,

2  


G1  ;                                                   (77) 
 

 nkjikji
kji LC

t
G 2/1,,2/1,,

,,
3 2  


 ;      nin

kji
ln

kji
n

kj RdiagRA 1
,,2/1,,2/1,,2/1 


  kji ,,2/1 ;                                         (78) 

 
     n kji

n

kji
ln

kji
n

kji RdiagRB ,2/1,
1

,2/1,,2/1,,2/1, 


  ;      nnln
kji

n
kji RdiagRC 1

2/1,,2/1,, 


  ;                           (79) 
 

kjikji 2/1,,2/1,, 

 
   n kji

n
kji

n
kji

n
kji RRK ,,2/1

1
,,2/1,,2/1,,2/1 


  ;     kji

n
kji

n
kji

n
kji RRJ ,2/1,

1
,2/1,,2/1,,2/1, 


 

n
;                                          (80) 

   n kji
n

kji
n

kji
n

kji RRL 2/1,,
1

2/1,,2/1,,2/1,, 


  ;   n
kji

ln
kji diag

,,2/1,,2/1   ;                                                         (81) 
 

  n
kji

ln
kji diag

,2/1,,2/1,   ;   n
kji

ln
i diag

2/1,,2/1,  
 

kj,                                                      (82) 

 

.                     

 Equations (78) to (81), the R and R-1 atrixes are defined by Eqs. (20) and (25); in Eq
ssumes values from 1 to 5; the  entropy funct n is defined by Eq. (27); and I is the identity  
perator required in Eq. (70) is defined by Eq. (51

This implementation is first order accura n time due to the definition of , of 
7). The  parameter defines the particular implicit time integration method studied

his parameter results in an explicit method; t ue 0.5 implies the trapezoi
e backward Euler method. In the present exp ments, the backward Euler me

 
. SPATIAL VARIABLE TIME STEP, INITIAL AND BOUNDA

Navier-Stokes equations 
ux difference splitting type, 
rties due to the appropriated 

ef

he flux difference splitting schemes employ approximate 
rized Nonconservative Implicit LNI form, whereas the symmetric scheme employs approximate 

form. The viscous simulations are treated with the explicit versions of the present algorithms, 

In  m s. (78), (79), (81) and (82), “l” 
a io matrix. The RHS(Yee)

o ). 
 te i  and of , as reported in Yee 
(198  in this work. A value of 0.0 to 
t he val dal method; and, the value 1.0 results in 
th eri thod was used. 

5 RY CONDITIONS 
 
 The description of the spatially variable time step procedure, as also the initial and boundary conditions to the three-
dimensional space are described in Maciel (2002, 2006). 
 
6. CONCLUSIONS 
 
 In the present work, the description of the Harten and Osher (1987) TVD/ENO schemes and of Yee (1987) 
symmetric TVD scheme is presented, including the implicit formulation. This scheme is implemented, on a finite 

olume context and using a structured spatial discretization, to solve the Euler and the laminar v
in the three-dimensional space. The Harten and Osher (1987) TVD/ENO schemes are fl

hereas the Yee (1987) TVD scheme is a symmetric one, which incorporates TVD propew
d inition of a limited dissipation function. Both schemes are second order accurate in space and their numerical 
implementation is based on the concept of Harten’s modified flux function. All schemes are implemented following an 
mplicit formulation to solve the Euler equations. Ti

factorizations in Linea
actorization in ADI f

which employ the time splitting method. The schemes are accelerated to the steady state solution using a spatially 
variable time step, which has demonstrated effective gains in terms of convergence rate (Maciel, 2005 and 2008). The 
algorithms are applied to the solution of the physical problems of the transonic flow along a convergent-divergent 
nozzle and of the supersonic flow along a compression corner in the inviscid case, whereas the laminar case studies a 
particular ramp problem. 
 The results have demonstrated that the most accurate results are obtained with the Harten and Osher (1987) ENO 
and Yee (1987) TVD VL and Min1 schemes. This paper is the first part of this work, THEORY, focusing in the 
description of the TVD/ENO Harten and Osher (1987) schemes and of the TVD symmetric Yee (1987) scheme, as also 
the implicit formulation to the inviscid cases. 
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