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Abstract. . The Simulated Annealing (SA) Technique belongs to a Stochastic Optimization class of algorithms. This 

technique has been used as a soft computing technique in hard optimization tasks, such as, electronic components 

allocation, spatial representation of chemical compounds and Travelling Salesman type problems, for a long period. 

This technique is based on the mathematical description of the experimental cooling technique developed to design 

stronger crystals (like glass) and metals. In this paper this technique was implemented on a Matlab environment and 

applied to simple and difficult ones parametric trusses optimization problems with constrains in displacements and 

stresses. The examples were selected in order to compare results with those presented by related literature. SA 

performance is compared with those obtained with other heuristic methods like the Genetic Algorithm (GA) and with 

gradient based Mathematical Programming, such as Sequential Quadratic Programming (SQP). The presented results 

shows some disadvantages regarding computational time cost with the SA Technique, nevertheless the accuracy and 

final results shows better or similar results than the other methods. 
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1. INTRODUCTION                                  

                             

The SA Method is a Technique that has attracted attention due to its application to large optimization problems, 

especially those where global optimum are hidden among several ‘worst’ local optimum. For practical purposes the SA 

has solved the well-known traveler-salesman problem where a traveler salesman has to visit ‘N’ cities at most once in 

an economical way (tracking the small path). Other heuristics methods have been used with success as well. The SA 

method has been applied with success to design complex integrated circuits boards. The set of hundreds of circuit 

components in a board is optimized in such a way that the interference between tracks is minimized. Surprisingly the 

algorithm implementation is relatively simple. Those previously mentioned applications are combinatorial optimization 

problems. In such cases, as usual, there is an objective function to be optimized; however the search space is not an N 

dimensional space of continuum variables. On the contrary, the search space is finite and discrete but very large, as the 

set of the sequence of visited cities or the possibilities of circuit block allocation. The number of possible solutions in 

the search space is exponentially large enough to prevent any exhaustive searches be worth. In addition, as the search 

space is discrete, any definition of derivatives is senseless (as the intuition to use the gradient descent methods). 

The core of the SA Method is the thermodynamic analogy, specifically in the way the liquids frozen and 

crystallized or metals anneal as they get cold. At high temperature, as happens in liquids, the molecules move freely 

between each other. If the liquid is slowly cooled, the thermal mobility is lost. The atoms are often able to align 

theirselves and a pure crystal that is completely aligned at the least energy configuration is formed. Such crystal 

presents a minimal energy level for the material. Surprisingly, minimal energy states are found naturally. In fact, if a 

liquid metal is suddenly cooled and not annealed it does not reach such states, in the opposite it transforms in an 

amorphous polycrystalline with an energy state higher than those slowly cooled. Thus, the essence of the method is the 

slowly cooling, allowing the re-distribution of the atoms and molecules as they loose mobility. This is the technical 

definition for annealing and it is essential to assure that the less energy state will be reach. Although this analogy is not 

perfect, this avoids some problems like those associated to the gradient descent search. In the molecule level, the well-

known Boltzman probability distribution is defined as, 
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and it expresses the idea that a system thermodynamically in equilibrium at temperature T has its own energy 

probabilistically distributed in different energy levels. Even at low temperature, there is a little chance that the system 

was in a high energy state. So, there is a chance that the system could leave from a local minimum, crossing higher 

energy levels in order to find a better solution far from original position. The Boltzman constant k is the constant that in 

nature relates the temperature with energy. 

In other words, the system make ascents as descents, but at low temperature, uphill excursion are less probably that 

at higher temperature. In 1953, Metropolis and co-authors firstly incorporated those principles on numerical estimates. 

 First it was proposed a series of options and a thermodynamically system was assumed to change its energy state 
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configuration from E1 to E2 with a probability
2 1exp( ( ) / )p E E k T= − − . It should be highlighted that if E2 < E1 this 

probability is higher than unity. In this case this change is attributed to the probability p = 1, in this case the system 

always takes this option, i.e., it changes its energy level to a lower one. The whole picture is to take always descent 

steps and sometimes take ascent steps and these rules became known as Metropolis Algorithm. In order to use the 

Metropolis Algorithm to different non-thermodynamic systems, some adjustments should be taken into account. 

a.  It is necessary a precise description of all possible system configurations. 

b. A random generator of feasible “perturbed” system configurations should be available. 

c. It is necessary to define an objective function E, similar to the energy function, which will be minimized by the 

procedure. 

d. A control parameter T, similar to the temperature, and an Annealing Scheme must be chosen in order to indicate 

how temperature decreases with time. Some stop criteria should be elected, such as the maximum allowed number of 

system perturbations, number of iterations with no change in the objective function E, related to a system configuration, 

to be considered as an optimum. 

e. A dimensional parameter k, similar to the Boltzman constant, should be used to adjust the probabilities of 

acceptance for uphill climbs. This parameter will depend on the units of the Energy function as well as the units of the 

Temperature parameter. 

The proof of the SA as a global optimization Algorithm can be found everywhere such as in Delyon (1988), 

Locatelli(2000), Ingber(1989) and Rajasekaran (1990).  It is not intended to develop or to show the proof in this paper, 

but it can be said that most of the proofs are based on Markov Chain models and the Theory of Probability. 
 

1.2. Algorithm scheme for function minimizations 
 

In the following Fig. it is described the way the Annealing Algorithm behaves for function minimizations with a 

single variable. In this case xi is the variable value at iteration i, E is the objective function value and ∆ is a perturbation 

applied on the values of the variable xi. 
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Figure 1. Behavior of the Annealing Algorithm for function minimization with one variable. 

 

The extension for multivariable problems is straightforward. A simplified sketch (pseudo-code) of the algorithm 

implementation is depicted in the following box. 

 

 

 

 

 

Table 1. Pseudo-Code for SA Algorithm. 
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Initialization (Current solution at xi, current temperature Ti) 

Evaluation of the current objective function Ei. 

While stop Criteria is not satisfied 

 Through perturbation of the current solution xi, find a new state xi+1 

 Evaluation of the objective function at new state Ei+1 

 If (Ei-Ei+1) ≤0 then  

  x i = x i+1 

 else 

  If  
1( )

(0,1)

i i

i

E E

T
e radom

+−

>  then 

   this new state is accepted (xi=xi+1) 

  else 

   this state is rejected 

  End of if 

 End of if  

 Evaluation of the Stop Criteria 

 Decrease the Temperature following a cooling schedule 

End of while 

 

 

2.  RESULTS 
 

2.1. Example 1 – Optimization of a four bar truss 

                        

The structure of a simple four bar truss is optimized by the SA algorithm. This example was solved by Haftka 

(1991) with the Linear Programming Technique. The applied load is P=10N, the length is L=2,0 m, the Young Modulus 

of the members is E=1.0x10
4
 N/m

2
. The constraints in the vertical displacement on node 3 is set as y3<3.0x10

-6
L and the 

stress constraint for all member is set as σc<4.833x10
-4

 E (N/m
2
) for the compression members and σt>-7.73x10

-4
 E 

(N/m2) for the tension members. For simplicity the material density is set as ρ=1.0 kg/m3. The sectional areas are treated 

as the design variables and the allowed range of variation is set from 0.1 m
2
 to 10.0 m

2
. Figure 2 shows a sketch for the 

analyzed truss. In this problem, members 1, 2 and 3 have the same cross sectional area and the last one, the 4
th

, has 

another cross sectional area, so the optimization problem simplifies to a two design optimization problem. The solution 

presented in the literature shows a minimal weight of 89.57 kg for the design variables A1=A2= A3= A4=9.464 m2.  In 

this example, the following parameters were used for the simulations (Tab.2): 

 

Table 2. Parameters used in the four member truss example with the SA Algorithm. 

 

Temperature Schedule Exponential 

Initial Temperature 1.0 

Reduction Temperature factor 0.85 

Maximum Number of iterations 100000 

Tolerance for Convergence 1.0E-3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Four member truss sketch. 

 

In the following Fig. 3, it is shown the results obtained with the SA Technique along the iterations. The final 

obtained design variables were 9.4477 m
2
. And the final total weight of the truss was 89.486 kg. Since, in this example, 
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the technique to account for constraints is the penalty technique, only constraints in displacement were slightly violated 

by 0.1%, neither tension nor compression stresses were violated in this example. 

 

 
 

Figure 3. Objective Function Values and Temperature versus iteration for example 1. (a) 

 Objective function (b) Temperature. 

 

The total elapsed time using a Pentium 4 computer with 1 GB RAM and 1.8MHz CPU was about 185 seconds. The 

total number of function evaluations was 3201. Less than a half of the total number of evaluations (1367) was accepted 

(uphill moves). 

The same problem solved with the Genetic Algorithm Toolbox presented a final weight of 89.49 kg with the final 

cross sectional areas of A1=A2=A3=9.399 m
2
 and A4=9.53 m

2
 with a displacement constraint violation about 10

-4
. And 

the same problem solve with the Sequential Quadratic Programming (SQP) technique presented the final weight of 

89.55 kg and the final cross sectional areas of A1=A2=A3=9.462 m
2
 and A4=9.463 m

2
 with a displacement constraint 

violation about 10-5. 

 

2.2. Example 2 – Optimization of a ten member truss 
 

In this example, the weight of a ten member truss is optimized using the SA Algorithm. This example was also 

solved using Sequential Nonlinear Approximate Optimization by Haftka and Gürdal (1991). The applied load at nodes 4 

and 2 is P=4.448x10
5
 N [100 Kips]. Both horizontal and vertical member length is L = 9.144 m (360 in). 

The material Young Modulus is E=6.8958x10
6
 N/m

2
 (1 ksi), for all members there is a tension/compression limit 

constraint of |σc|=|σt|<1.724x10
8 

N/m
2
 (25 ksi), but for the ninth member, those limits are modified to 

|σc|=|σt|<5.171x10
8 

N/m
2
 (75 ksi). The material mass density is set as ρ=2.768x10

3
 kg/m

3
 (0.1 lbm/in

3
). All the cross 

sectional areas are design variables and can range from 6.452x10
-5

 m
2
 to 6.452x10

-3
 m

2
 (0.1 to 10.0 in

2
). So the problem 

is a 10 design variable Optimization Problem. Figure 4 shows a sketch of the truss. 

The same parameters used in Example 1 in the SA Algorithm were used in this example. Haftka and Gürdal (1991) 

indicates the following best solution for this optimization task:  A1=5.097x10
-3

 m
2
(7.90 in

2
), A2= 6.452x10

-5 
m

2
 (0.10 

in
2
), A3=5.226x10

-3
 m

2
 (8.10 in

2
), A4=2.516x10

-3
 m

2
 (3.90 in

2
), A5=6.452x10

-5
 m

2
 (0.10 in

2
), A6=6.452x10

-5 
 m

2
 (0.10 

in2), A7=3.472x10-3 m2 (5.80 in2), A8=3.555x10-3 m2 (5. 51 in2), A9=2.374x10-3 m2 (3.68 in2), A10=9.032x10-5 m2 (0.14 

in
2
), with a minimum weight of 679.028 kg (1.497 lb).  

 

(a)  

(b) 
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Figure 4. Sketch of the ten member truss. 

 

Figure 5 shows the evolution of the weight and temperature values during iteration. The total elapsed time for this 

example last 1264 s on the same computer architecture indicated in example 1. The obtained solution with SA was 

A1=4.759x10
-3

 m
2
(7.37 in

2
), A2= 4.00x10

-4 
m

2
 (0.62 in

2
), A3=5.555x10

-3
 m

2
 (8.61 in

2
), A4=2.183x10

-3
 m

2
 (3.38 in

2
), 

A5=6.458x10
-5

 m
2
 (0.10 in

2
), A6=6.452x10

-5 
 m

2
 (0.10 in

2
), A7=4.21x10

-3
 m

2
 (6.52 in

2
), A8=3.08x10

-3
 m

2
 (4.774 in

2
), 

A9=2.053x10
-3

 m
2
 (3.18 in

2
), A10=5.658x10

-5
 m

2
 (0.87 in

2
), with a minimum weight of 693.2 kg (1.5283 lb).  

 

 
 

Figure 5. Objective Function Values and Temperature versus iteration for example 2. (a) Objective function. (b) 

Temperature. 

 

It can be noticed that the results were slightly worse, since the weight was 2.1% greater than the indicated by the 

literature. The same problem was solved by Teles (2007) using Genetic Algorithm and the results for the cross sectional 

areas were A1= 4.623x10
-3

 m
2
(7,16583 in²), A2= 6.452x10

-4
 m

2
(1,00383 in²), A3= 5.79510

-3
 m

2
 (8,98245 in²), 

A4=2.192x10
-3

 m
2
 (3,39835 in²), A5= 8.903x10

-6
 m

2
 (0,01381 in²), A6= 6.354x10

-4
 m

2
 (0,98495 in²), A7= 4.485x10

-3
 m

2
 

(6,95241 in²), A8= 2.888x10-3 m2 (4,47655 in²) , A9= 2.1543x10-3 m2 (3,33849 in²), A10= 7.872x10-4 m2 (1,22012 in²), 

with a minimum weight of 721.1 kg (1.5897 lb). 

Teles (2007) solved the same problem by the SQP algorithm and the algorithm did not converged due to excessive 

function evaluations (>1000). The obtained solution for the cross sectional areas in the last iteration were A1= 5.096x10
-

3 m2(7,899 in²), A2= 6.452x10-5 m2(0.10 in²), A3= 5.225x10-3 m2 (8,098 in²), A4=2.516x10-3 m2 (3,90 in²), A5= 

(a) 

(b) 
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6.452x10
-5

 m
2
 (0,100 in²), A6= 6.452x10

-5
 m

2
 (0,100 in²), A7= 3.740x10

-3
 m

2
 (5.797 in²), A8= 3.558x10

-3
 m

2
 (5.5151 in²) 

, A9= 2.372x10-3 m2 (3,6763 in²), A10= 9.123x10-5 m2 (0,1414 in²), with a minimum weight of 679.22 kg (1497.43 lb) 

with displacements constraint violation of 10
-6

. This result is better than the previous ones with Annealing and Genetic 

Algorithm. 

 

2.3. Example 3 – Optimization of a Twenty Five Member Truss 

 

This example intends to optimize the weight of the 25 member truss sketched in Fig. 6. This truss has groups of 

members with the same cross sectional area. The 1
st
. group includes just bar No. 1, the 2

nd
. group includes bars  2, 3, 4 

and 5. The 3rd. group includes bars 6, 7, 8 and 9. The 4th. group includes bars  10 and 11, the 5th. group includes bars 

12 and 13, the 6
th

. group includes bars 14, 15, 16 and 17, the 7
th

. group includes bars  18, 19, 20 and 21 and the last 

group includes bars  22, 23, 24 and 25. Each of the group member area is allowed to vary between 3.226x10
-5

 m
2
 to 

2.581x10
-3

 m
2
 (0.05 to 4.0 in

2
), so this example is an 8 design variable Optimization Problem. The mass density is 

assumed as ρ=2.768x10
3
 kg/m

3 
(0.10 lbm/in

3
) and the Young Modulus E= 6.895x10

10
 N/m

2 
(1.0x10

4 
ksi). The loads are 

applied as indicated by Tab. 3. 

 
 

Figure 6.  Sketch of the 25 member truss. 

 

Table 3. Applied loads on nodes for the 25 member truss. 

 
Node Fx Fy Fz 

1 4.448x103 N (1000 lbf) -4.448x103 N (-1000 lbf) -4.448x103 N (-1000 lbf) 

2 0.0 N (    0.0 lbf) -4.448x103 N (-1000 lbf) -4.448x103 N (-1000 lbf) 

3 2.224x103 N(500.0 lbf) 0.0 N (    0.0 lbf) 0.0 N (    0.0 lbf) 

6 2.669x10
3
 N (600.0 lbf) 0.0 N (    0.0 lbf) 0.0 N (    0.0 lbf) 

 

Only constraints on displacements and stresses are set. The values are the following: |x1|<8.89x10
-3

(0.35in) 

|x2|<8.89x10-3 (0.35in) , |y1|<8.89x10-3 (0.35 in), |y2|<8.89x10-3 (0.35 in), |z1|<8.89x10-3(0.35in), |z2|<8.89x10-3(0.35in), 

|σc|<2.758x10
8 
N/m

2
(40.0 ksi), |σt|<2.758x10

8 
N/m

2
 (40.0 ksi).  

Rizz apud Pyrz and Zawidska (2001) presented the following best solution for this optimization task:  

A1=6.452x10
-6

 m
2
(0.01 in

2
), A2= 1.283x10

-3 
m

2
 (1.988 in

2
), A3=1.93x10

-3
 m

2
 (2.991 in

2
), A4=6.452x10

-6
 m

2
 (0.01 in

2
), 
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A5=6.452x10
-6

 m
2
 (0.010 in

2
), A6=4.413x10

-4 
 m

2
 (0.684 in

2
), A7=1.081x10

-3
 m

2
 (1.676 in

2
), A8=1.717x10

-3
 m

2
 (2.662 

in2), with a minimum weight of 247.28 kg (545.16 lb). 

This example took 1127.8 seconds to reach the optimal solution with the proposed SA Algorithm with the same 

previous computer architecture. The obtained solution with SA was A1=3.028x10
-6 

m
2
(4.694x10

-3
 in

2
), A2= 2.888x10

-5 

m
2
 (4.477x10

-2
 in

2
), A3=2.345x10

-3
 m

2
 (3.635 in

2
), A4=6.452x10

-7
 m

2
 (1x10

-3
 in

2
), A5=1.286x10

-3
 m

2
 (1.993 in

2
), 

A6=5.013x10-4  m2 (0.777 in2), A7=1.026x10-4 m2 (0.159 in2), A8=2.527x10-3 m2 (3.917 in2), with a minimum weight of 

210.707 kg (464.53 lb).  The total amount of Function evaluation was 9601 with 3628 uphill acceptances. Only 

displacements constraint violations of about 1% in were noticed for this solution. 

The same problem was solved by Teles (2007) using Genetic Algorithm and the results for the cross sectional areas 

were A1= 3.99x10-5 m2(0.062 in²), A2= 3.74x10-5 m2(0.058 in²), A3= 2.15x10-3 m2 (3.33 in²), A4=6.73x10-5 m2 (0.104 

in²), A5= 1.222x10
-3

 m
2
 (1.894 in²), A6= 4.744x10

-4
 m

2
 ( 0.74 in²), A7= 4.66x10

-5
 m

2
 (0.072 in²), A8= 2.468x10

-3
 m

2
 

(3.825 in²), with a minimum weight of 204.04 kg (449.83lb). 

The same problem was solved by Teles (2007) using SQP and the results for the cross sectional areas were A1= 

3.23x10-5 m2(0.05 in²), A2= 3.23x10-5 m2(0.05 in²), A3= 2.43x10-3 m2 (3.77 in²), A4=3.23x10-5 m2 (0.05 in²), A5= 

1.285x10
-3

 m
2
 (1.992 in²), A6= 5.015x10

-4
 m

2
 (0.777 in²), A7= 1.021x10

-4
 m

2
 (0.158 in²), A8= 2.527x10

-3
 m

2
 (3.917 in²), 

with a minimum weight of 211.22 kg (465.66 lb). 

It is clear that in this case, the results from GA showed better results than SA. This last method (SA) in turn showed 

better results than the SQP algorithm. In the following Fig. it is shown the behavior of the weight and temperature with 

iterations.   

 

 
 

Figure 7. Objective Function Values and Temperature versus iteration for example 3. (a) Objective function. (b) 

Temperature. 

 

2.4. Example 4 – Optimization of a Seventy Two member Truss 

 
In this example, the weight of a seventy two member truss is optimized. This problem was analyzed by Erbatur et 

al.(2000) using GA. Figure 8 shows a sketch of the analyzed truss structure. The mass density is assumed as 

ρ=2.768x10
3
 kg/m

3 
(0.10 lbm/in

3
) and the Young Modulus E= 6.895x10

10
 N/m

2
(1.0x10

4 
ksi). The loads are applied as 

indicated by Tab. 3. 

 

Table 4. Applied loads on nodes for the 72 member truss. 

 
Node Fx Fy Fz 

1 2.224x104 N (5000 lbf) 2.224x104 N (5000 lbf) -2.224x104 N (-5000 lbf) 

 

(b) 

(a) 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

 

 
 

Figure 8. Sketch of the 72 member truss. 

 

Table 5 shows the member groups. There are 16 groups, so this is a 16 design variable optimization problem. 

 

Table 5. Member groups for the 72 member truss. 

 

Group A1 A2 A3 A4 A5 A6 A7 A8 

Member 1-4 5-12 13-16 17-18 19-22 23-30 21-24 35-36 

Group A9 A10 A11 A12 A13 A14 A15 A16 

Member 37-40 42-48 49-52 53-54 55-58 59-66 67-70 71-72 

 

Constraints on displacements and stresses are set such as in x and y directions the displacements on all nodes should 

not exceed 6.35x10
-3

m (0.25 in.). Furthermore |σc| and |σt|<1,7237x10
8
 N/m

2 
(25 ksi). All member groups cross 

sectional areas are allowable to assume values greater than 6.452x10
-5

(0.1 in
2
).  

Erbatur et al.(2000) presented the following best solution for this optimization task:  A1=1.0x10
-4

 m
2
(0.155 in

2
),  

A2= 3.5x10-4 m2 (0.535 in2), A3=3.1x10-3 m2 (0.480 in2), A4=3.4x10-4 m2 (0.52 in2), A5=3.0x10-4 m2 (0.460 in2), 

A6=3.4x10
-4 

 m
2
 (0.53 in

2
), A7=0.81x10

-4
 m

2
 (0.12 in

2
),A8=1.1x10

-4
 m

2
 (0.165 in

2
), A9=7.5x10

-4
 m

2
 (1.155 in

2
), 

A10=3.8x10
-4

 m
2
 (0.585 in

2
),A11=0.6x10

-4
 m

2
 (0.1 in

2
), A12=0.6x10

-4
 m

2
 (0.1 in

2
), A13=11.3x10

-4
 m

2
 (1.755 

in
2
),A14=3.3x10

-4
 m

2
 (0.505 in

2
), A15=0.7x10

-4
 m

2
 (0.105 in

2
), A16=1.0x10

-4
 m

2
 (0.155 in

2
), with a minimum weight of 

174.98 kg (385.76 lb). 
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This example took 1351 seconds to reach the optimal solution with the proposed SA Algorithm with the same 

previous computer architecture. The obtained solution with SA was: A1=6.47x10-5 m2(0.1 in2), A2= 3.72x10-4 m2 (0.576 

in
2
), A3=2.523x10

-4
 m

2
 (0.391 in

2
), A4=3.263x10

-4
 m

2
 (0.5058 in

2
),A5=3.493x10

-4
 m

2
 (0.5414 in

2
), A6=3.408x10

-4 
 m

2
 

(0.5283 in
2
), A7=6.47x10

-5 
m

2
 (0.1 in

2
), A8=6.47x10

-5 
m

2
 (0.1 in

2
), A9=8.31x10

-3
 m

2
 (1.288 in

2
), A10=3.67x10

-4 
m

2
 (0.57 

in
2
), A11=6.581x10

-5
 m

2
 (0.102 in

2
), A12=6.581x10

-5
 m

2
 (0.102 in

2
), A13=9.626x10

-4
 m

2
 (1.492 in

2
), A14=3.074x10

-4
 m

2
 

(0.4764 in2), A15=6.47x10-5 m2 (0.1 in2), A16=6.516x10-5 m2 (0.101 in2), with a minimum weight of 169.621 kg (373.95 

lb).  The total amount of Function evaluation was 8035 with 4021 uphill acceptances. Again, only displacements 

constraint violations less than 1% were noticed for this solution. Figure 9 shows the behavior of the Weight and 

Temperature along iterations. 

 
 

Figure 9. Objective Function Values and Temperature versus iteration for example 4. (a) Objective function. (b) 

Temperature. 

 

The same problem was solved by Teles (2007) using Genetic Algorithm and SQP. The results for the cross sectional 

areas and total weight were listed in the following Tab. 6. 

 

Table 6. GA Solution for the 72 member truss. 

 
Group A1 A2 A3 A4 A5 A6 A7 A8 

Area m2 

(in2) 

0.7x10-4 

(0.109) 

3.7x10-4 

(0.574) 

3.2x10-4 

(0.496) 

3.5x10-4 

(0.543) 

3.5x10-4 

(0.543) 

3.4x10-4 

(0.527) 

0.6x10-4 

(0.093) 

0.7x10-4 

(0.109) 

Group A9 A10 A11 A12 A13 A14 A15 A16 

Area m2 

(in2) 

7.1x10-4 

(1.101) 

3.4x10-4 

(0.527) 

0.9x10-4 

(0.14) 

0.8x10-4 

(0.124) 

10.2x10-4 

(1.581) 

3.2x10-4 

(0.496) 

0.7x10-4 

(0.109) 

0.7x10-4 

(0.109) 

Total Weight=166.37 kg (366.78 lb) 

Table 7. SQP Solution for the 72 member truss. 

 

Group A1 A2 A3 A4 A5 A6 A7 A8 

Area m2 

(in2) 

6.7x10-4 

(1.0) 

3.9x10-4 

(0.61) 

3.9x10-4 

(0.61) 

5.7x10-4 

(0.88) 

6.7x10-4 

(1.0) 

3.9x10-4 

(0.61) 

3.9x10-4 

(0.61) 

3.9x10-4 

(0.61) 

Group A9 A10 A11 A12 A13 A14 A15 A16 

Area m2 

(in2) 

6.7x10-4 

(1.0) 

3.9x10-4 

(0.61) 

3.9x10-4 

(0.61) 

3.9x10-4 

(0.61) 

6.7x10-4 

(1.0) 

4.2x10-4 

(0.65) 

3.9x10-4 

(0.61) 

4.4x10-4 

(0.68) 

Total Weight=260.62 kg (574.57 lb) 

(a) 

(b) 
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In this example the GA performed better that the SA and this last one, in turn, performed better that the SQP 

Method. 

 
3. FINAL REMARKS 

 

This paper described the principles of the SA technique as a Heuristic tool. This algorithm was implemented in a 

Matlab Code and joined with an open source finite element code to perform optimizations. The objective function was 

the total weight of trusses. It was shown that SA may be used as an Optimization tool for weight minimization in trusses 

structures. The main advantage of this class of algorithms relies in the fact that it is not necessary to evaluate functions 

gradients. 

The developed programs were applied to 4 examples that range from simple trusses to complex ones. It was 

intended to highlight the behavior of the algorithm in the optimizations. The same problems were compared with results 

from literature using GA, SQP and LP. One noticed disadvantage in the SA algorithm is the slowly convergence rate. In 

the average, the SA behaved similar to GA and in some cases gave better results than the SQP gradient based method.   
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