
Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

APPLICATION OF AN EXTENDED TIME-DELAYED FEEDBACK CHAOS 

CONTROL METHOD TO A NONLINEAR PENDULUM 

 
Aline Souza de Paula, aline@lavi.coppe.ufrj.br  

Marcelo Amorim Savi, savi@mecanica.ufrj.br 
Universidade Federal do Rio de Janeiro 

COPPE – Department of Mechanical Engineering  

21.941.972 – Rio de Janeiro – RJ, Brazil, P.O. Box 68.503 

 

Abstract. Chaos control is employed for the stabilization of unstable periodic orbits (UPOs) embedded in chaotic 

attractors. The extended time-delayed feedback control uses a continuous feedback loop incorporating information 

from previous states of the system in order to stabilize unstable orbits. This article deals with the chaos control of a 

nonlinear pendulum employing the extended time-delayed feedback control method. The control law leads to delay-

differential equations (DDEs) that contain derivatives that depend on the solution of previous time instants. A fourth-

order Runge-Kutta method with linear interpolation on the delayed variables is employed for numerical simulations of 

the DDEs and its initial function is estimated by a Taylor series expansion. During the learning stage, the UPOs are 

indentified by the close-return method and control parameters are chosen for each desired UPO by defining situations 

where the largest Lyapunov exponent becomes negative. Analyses of a nonlinear pendulum are carried out by 

considering signals that are generated by numerical integration of the mathematical model using experimentally 

identified parameters. Results show the capability of the control procedure to stabilize UPOs of the dynamical system, 

highlighting some difficulties to achieve the stabilization of the desired orbit. 
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1. INTRODUCTION 

 

Inspired by nature, researchers are trying to design dynamical systems that can easily change from different kinds of 

responses. This is of special interest in order to confer flexibility to the system since it may quickly react to distinct 

kinds of response. In this regard, chaotic behavior has a great potential to be interesting in different situations due to its 

rich structure related to a wide range of behaviors. Chaos is a possible response of nonlinear systems that has a dense 

set of unstable periodic orbits (UPOs) and the idea that chaotic behavior may be controlled by small perturbations 

makes this kind of behavior to be desirable in different applications. 

A chaos control method may be understood as a two stage technique. In the first step, the learning stage, the UPOs 

are identified and control parameters are evaluated. After that, there is the control stage where the desired UPOs are 

stabilized. The chaos control stabilization may be classified as discrete or continuous. The OGY (Ott-Grebogi-Yorke) 

method (Ott et al., 1990) is a discrete technique that considers small perturbations promoted in the neighborhood of the 

desired orbit. On the other hand, continuous methods are exemplified by the so called time-delayed feedback control, 

proposed by Pyragas (1992), which states that chaotic systems can be stabilized by a feedback perturbation proportional 

to the difference between the present and a delayed state of the system. The semi-continuous approach lies between the 

continuous and the discrete time control (Hübinger et al., 1994; Korte et al., 1995).  

Numerous research efforts are dedicated to overcome some limitations of these original techniques. Based on OGY 

method, De Paula & Savi (2009), Dressler & Nitsche (1992), Hübinger et al. (1994), Korte et al. (1995), Otani & Jones 

(1997) and So & Ott (1995) suggest some improvements concerning discrete approach. Savi et al. (2006) discusses 

some of these alternatives focused on mechanical systems. Pyragas (1995) presents a review about improvements and 

applications of time-delayed feedback control, while Ahlborn & Parlitz (2004), Fiedler et al. (2007), Kittel et al. (1995), 

Mausbach et al. (1997) and Socolar et al. (1994) present some extensions related to the original method of Pyragas 

(1992).  

This article deals with an application of the extended time-delayed feedback control method to a mechanical system. 

The control law leads to delay-differential equations (DDEs). A nonlinear pendulum is considered as an application of 

the general formulation. This pendulum was previously addressed in De Paula et al. (2006) and its control was treated 

in Pereira-Pinto et al. (2004, 2005), Savi et al. (2006) and De Paula & Savi (2009). All signals are numerically 

generated by the integration of the equations of motion using experimentally identified parameters. Concerning the 

learning stage, the close-return method (Auerbach et al., 1987) is employed to determine the UPOs embedded in the 

chaotic attractor. The control parameters are evaluated for each desired UPO by finding negative values of the largest 

Lyapunov exponent, which is calculated employing the algorithm due to Wolf et al. (1985). This is possible by 

assuming an approximation where the continuous evolution of the infinite-dimension delay-differential equation is 

replaced by a set of ordinary differential equations. Finally, the actuator is perturbed in order to achieve system 

stabilization considering different UPOs. Results confirm the possibility of the use of this approach to deal with chaos 

control in mechanical systems, showing some of the difficulties to achieve the stabilization of desired UPOs. 
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2. EXTENDED TIME-DELAYED FEEDBACK CONTROL 

 

The time-delayed feedback control method (TDFC), also known as time-delay autosynchronization (TDAS), was 

proposed by Pyragas (1992) and is based on continuous-time perturbations to perform chaos control. This control 

technique deals with a dynamical system modeled by a set of ordinary nonlinear differential equations as follows: 
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where x and y are the state variables, Q(x, y) and P(x, y) define the system dynamics, while F(t) is associated with the 

control action. The TDFC is based on a feedback of the difference between the current and a delayed state, and the 

perturbation is given by: 

 

][)( yyKtF −= τ  (2) 

 

where τ  is the time delay, )(tyy = , )( ττ −= tyy  and K is a control parameter. This control method was successfully 

implemented, numerically and experimentally, to different systems including mechanical devices (Hikihara & 

Kawagoshi, 1996; Ramesh & Narayanan, 2001), electronic oscillators (Gauthier et al., 1994; Pyragas & Tamasevicius, 

1993) and laser (Bielawski et al., 1993).  

Despite this good performance, the TDFC fails when applied to orbits with high periodicity. This limitation may be 

overcome by a generalization of the feedback law presented in Eq. (2). Originally proposed by Socolar et al. (1994), the 

extended time-delayed feedback control (ETDFC) is also called extended time-delay autosynchronization (ETDAS). 

Essentially, this new control technique considers not only the information of one time-delayed state but other previous 

states of the system represented by the following equations: 
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where 10 <≤ R , )( ττ −= tSS  and )( ττ mtyym −= . The UPO stabilization can be achieved by a proper choice of R and 

K. Note that when R = 0, the ETDFC turns into the original TDFC feedback control law represented by Eq.(2). 

Moreover, note that for any R, perturbation of Eq.(3) vanishes when the system is on the UPO since )()( tymty =− τ  

for all m if iT=τ , where iT  is the periodicity of the ith UPO.  

The controlled dynamical system, composed by Eqs.(1)-(3), is represented by a delay differential equations (DDEs). 

The solution of this set of DDEs is done by establishing an initial function )(00 tyy =  over the interval )0,( τm− . This 

function can be estimated by a Taylor series expansion as proposed by Cunningham (1954): 
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Under this assumption, the following system is obtained: 
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Note that DDEs contain derivatives that depend on the solution at delayed time instants. Therefore, besides the 

special treatment that must be given for 0)( <− τmt , it is necessary to deal with time-delayed states while integrating 

the system. A fourth-order Runge-Kutta method with linear interpolation on the delayed variables is employed in this 

work for the numerical integration of the controlled dynamical system (Mensour & Longtin, 1997). 
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During the learning stage it is necessary to identify the UPOs embedded in the chaotic attractor, which is done by 

employing the close-return method (Auerbach et al., 1987). Moreover, it is necessary to establish a proper choice of 

control parameters, K and R, for each desired orbits. This choice is done by analyzing Lyapunov exponents of the 

correspondent orbit, as presented in the next section. After this first stage, the control stage is performed, where the 

desired UPOs are stabilized. 

 

3. UPO LYAPUNOV EXPONENTS 

 

The idea behind the time-delayed feedback control is the construction of a continuous-time perturbation, as 

presented in Eqs. (2)-(3) (Kittel et al., 1994; Pyragas, 1993), in such a way that it does not change the desired UPO of 

the system, but only its characteristics. This is achieved by changing the control parameters in order to force Lyapunov 

exponents related to an UPO to become all negatives, which means that the UPO becomes stable (Kittel et al., 1995). In 

this regard, it is enough to determine only the largest Lyapunov exponent, evaluating values of K and R that change the 

sign of the exponents. In other words, it is necessary to look for a situation where the maximum exponent is negative, 

0),( <RKλ , situation where the orbit becomes stable. Besides, Pyragas (1995) states that the minimum of ),( RKλ  

provides a faster convergence rate of nearby orbits to the desired UPO and makes the method more robust with respect 

to noise. 

The calculation of Lyapunov exponent from DDEs is more complicated than ODEs because the terms associated 

with the extended time-delayed feedback, Eq. (3), involves system states delayed in time. By considering three delayed 

states, for example, the second equation of Eq. (5) consists in a delay differential equation as follows:  
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Therefore, the calculation of y = y(t) for time instants greater than t implies that function y(t) must be known over 

the interval (t−3τ, t). This is related to an infinite-dimensional system that presents an infinite number of Lyapunov 

exponents, from which only a finite portion of them can be determined by numerical analysis (Vicente et al., 2005). 

Concerning the stability analysis of the UPO, however, it is enough to determine only the largest Lyapunov exponent 

(Pyragas, 1995).  

In this work, the calculation of Lyapunov exponents is conducted by approximating the continuous evolution of the 

infinite-dimensional system by a finite number of elements where values change at discrete time steps (Farmer, 1982). 

In this regard, the function y(t) over the interval (t−3τ,t) can be approximated by N-1 samples taken at intervals 

)1/(3 −=∆ Nt τ . Therefore, instead of the two variables presented in Eq. (6), N+1 variables are now considered and 

represented by vector z, where components z3,…,zN+1 are related to delayed states of y(t): 

 

)))1((,),(),(),((),,,,,( 1121 tNtyttytytxzzzzz NNN ∆−−∆−== +− KKz  (7) 

 

There are different possibilities to perform this approximation. Here, the DDE is replaced by a set of ODEs 

following the procedure proposed by Sprott (2007). Under this assumption, the continuous infinite-dimensional system, 

Eq.(6), is represented in terms of N+1 finite-dimension ODEs: 
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where 1/3 +∆= tN τ  and τ3=T . This system can be solved by any of the standard integration methods such as the 

fourth-order Runge-Kutta, and Lyapunov exponents can be calculated by using the algorithm proposed by Wolf et al. 

(1985). Moreover, in order to calculate the Lyapunov exponent of a specific UPO, the system follows the desired orbit 

as a fiducial trajectory, which can be done by using a time series. 

 

4. NONLINEAR PENDULUM 

 

As a mechanical application of the ETDFC method, a nonlinear pendulum, shown in Figure 1, is considered. The 

motivation of the proposed pendulum is an experimental set up discussed in De Paula et al. (2006). A mathematical 

model is developed to describe the pendulum dynamical behavior while the corresponding parameters are obtained from 

the experimental apparatus. Numerical simulations are employed in order to obtain time series related to the pendulum 

response assuming the uncontrolled situation, 0== RK . Unstable periodic orbits are indentified from this time series 
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using the close return method. Afterwards, control parameters are estimated for each UPO from the calculation of the 

Lyapunov exponents and their control is then simulated via extended time-delayed feedback control. 

The nonlinear pendulum consists of an aluminum disc (1) with a lumped mass (2) that is connected to a rotary 

motion sensor (4). A magnetic device (3) provides adjustable energy dissipation. A string-spring device (6) provides 

torsional stiffness to the pendulum and an electric motor (7) excites the pendulum via the string-spring device. An 

actuator (5) is considered in order to provide the necessary perturbations to stabilize this system. 

 

  

 

   
 

Figure 1. Nonlinear pendulum. (a) Physical Model. (1) Metallic disc; (2) Lumped mass; (3) Magnetic damping device; 

(4) Rotary Motion Sensor; (5) Actuator; (6) String-spring device; (7) Electric motor. (b) Parameters and forces 

on the metallic disc. (c) Parameters from driving device. (d) Experimental apparatus. (e) Actuator. 

 

The pendulum dynamics is treated from a mathematical model by describing the time evolution of the angular 

position, φ . By assuming that ϖ is the forcing frequency, I is the total inertia of rotating parts, k is the spring stiffness, 

ζ  represents the viscous damping coefficient and µ  the dry friction coefficient, m is the lumped mass, a defines the 

position of the guide of the string with respect to the motor, b is the length of the excitation arm of the motor, D is the 

diameter of the metallic disc and d is the diameter of the driving pulley, the equation of motion is given by (De Paula et 

al., 2006): 
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perturbation provided by the linear actuator representing the length variation in the string (see Figure 1(e) for details). 

Moreover, the length variation may be evaluated by considering the extended time-delayed feedback control law, 

presented in Eq.(3), and the pendulum equations of motion, Eq.(9). Therefore: 
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2
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At this point, it is important to mention that the dry friction is modeled as a continuous function by assuming a 

relation as follows (De Paula et al., 2006): 
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This mathematical model represents the pendulum dynamics and its numerical simulations are in close agreement 

with experimental data as can be observed in De Paula et al. (2006). Here, it is assumed the same parameters used in De 

(d) (e) 
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Paula et al. (2006) for all numerical simulations: a = 1.6×10
−1

 m; b = 6.0×10
−2

 m; d = 4.8×10
−2 

m; D = 9.5×10
−2 

m; m = 

1.47×10
−2 

kg; I = 1.738×10
−4

 kg m
2
; k = 2.47 N/m; 125 smkg10368.2 −−×=ζ ; mN10272.1 4−×=µ ; rad/s61.5=ω .  

 

4.1. Calculation of the Lyapunov Exponent 

 

In order to calculate Lyapunov exponents, it is proposed an alternative representation of the system. By 

assuming φ=1x , φ&=2x  and employing 13 ,, +Nxx K for the approximation of φ&  over the interval ),3( htt −− τ , the set 

of equations associated with Eq.(8) is given by: 
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where 1/3 += hN τ , τ3=T  and h is the integration time step. Note that  
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l NNN −++−=∆ ++−+−  is related to the actuator perturbation. This N+1 first order 

ODE system is then numerically integrated by using the fourth-order Runge-Kutta method and the largest Lyapunov 

exponent is calculated using the algorithm proposed by Wolf et al. (1985). 

The governing equations shown in Eq.(12) together with the system linearization form a set of (N+1)
2
+(N+1) ODEs. 

This system allows one to perform the calculation of the largest Lyapunov exponent by considering a set of (N+1) 

ODEs. Besides this, it is important to be pointed out that the fiducial trajectory associated with the original system (x1, 

x2) is replaced by a time series that represents the desired UPO, which reduces the system to a set of (N−1) ODEs.  

In principle, the stabilization of the desired UPO can be achieved for control parameters that are related to negative 

values of the largest Lyapunov exponent and these parameters need to be chosen for values of the Lyapunov exponents 

near to its minimum. Therefore, in order to verify the capability of the ETDFC method to stabilize the desired UPO, the 

largest Lyapunov exponent of this orbit is calculated for different control parameter values, K and R.  

 

5. NUMERICAL SIMULATIONS 

 

Numerical simulations of the nonlinear pendulum are carried out in order to evaluate the capability of the ETDFC 

method to stabilized desired UPOs. All simulations use experimentally identified parameters obtained in De Paula et al. 

(2006). In the first stage of the control strategy, UPOs embedded in the chaotic attractor are identified using the close 

return method. After this identification, the largest Lyapunov exponent is calculated considering different control 

parameter values for each UPO of interest in order to find regions related to negative exponents. After the learning 

stage, the control stage starts where the actuator is perturbed in order to achieve system stabilization.  

Initially, a period-1 UPO is of concern. Figure 2 shows this orbit and the largest Lyapunov exponent value evaluated 

for different values of the control parameters, R and K. This analysis indicates that stabilization can be achieved for all 

values of analyzed R, including R = 0 that represents the TDFC. System stabilization is now focused on by choosing 

control parameters that correspond to negative Lyapunov exponent. Figure 3 shows phase space, time history response 

and the actuator perturbation for R = 0 and K = 2.1, which is close to the minimum value of the largest Lyapunov 

exponent. The controller is capable to achieve the UPO stabilization and this is due to  the low periodicity of the UPO.  
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Figure 2. Period-1 UPO and the largest Lyapunov exponent for different control parameters. 

 

 
 

Figure 3. Period-1 UPO stabilized for R = 0 and K = 2.1: 

 (a) Phase space; (b) Time response; (c) Perturbation. 

 

Let us now consider a period-2 UPO, presented in Figure 4 together with the largest Lyapunov exponent for 

different values of the control parameters, R and K. In this case, the stabilization of the orbit cannot be achieved for R = 

0 since there is not a negative Lyapunov exponent associated with this parameter. This result shows the difference 

between the TDFC and ETDFC, highlighting the importance of the inclusion of parameter R in the definition of the 

control law. The stabilization of this period-2 UPO is presented in Figure 5 that shows phase space, time history 

response and the actuator perturbation for R = 0.2 and K = 1.1. Under this condition, the maximum Lyapunov exponent 

is close to the minimum value for this orbit, allowing the orbit stabilization. 

 

 
 

Figure 4. Period-2 UPO and the largest Lyapunov exponent for different control parameters. 

 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

 
 

Figure 5. Period-2 UPO stabilized for R = 0.2 and K = 1.1: 

(a) Phase space; (b) Time response; (c) Perturbation. 

 

A period-3 UPO is now focused on. Figure 6 presents the UPO together with the largest Lyapunov exponent for 

different values of R and K. Once again, it is possible to identify regions associated with negative Lyapunov exponent 

which allows the UPO stabilization. Figure 7 shows phase space, time history response and the actuator perturbation for 

the stabilized period-3 UPO with R = 0.2 and K = 0.7. 

 

 
 

Figure 6. Period-3 UPO and the largest Lyapunov exponent for different controller parameters.  

 

 
 

Figure 7. Period-3 UPO stabilized for R=0.2 and K=0.7: 

(a) Phase space; (b) Time response; (c) Perturbation. 

 

6. CONCLUSIONS 

 

The extended time-delayed feedback control (ETDFC) method is applied to a nonlinear pendulum in order to 

stabilize the system trajectory into an UPO embedded in the chaotic attractor. The control law is associated with DDEs 

that contain derivatives that depend on the solution at previous time instants and consist of an infinite-dimensional 

system. A fourth-order Runge-Kutta method with linear interpolation on the delayed variables is used for the numerical 

integration of the DDEs. Delayed terms related to time instants 0)( <−τt  are replaced by a Taylor series expansion. 

During the learning stage, the UPOs are indentified by the close-return method and control parameters are chosen for 

each desired UPO by defining situations where the largest Lyapunov exponent becomes negative. The Lyapunov 

exponent determination uses an alternative representation of the nonlinear pendulum where the continuous evolution of 

the infinite-dimensional system is approximated by a finite number of elements where values change at discrete time 

steps. This approximation allows one to change the DDE by a set of ODEs. Numerical simulations are carried out 
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assuming experimentally identified parameters. Chaos control is applied to different UPOs and results show that the 

ETDFC method is effective in order to stabilize UPO embedded in the chaotic attractor. The TDFC method (R = 0), on 

the other hand, achieves the stabilization only for a period-1 UPO. For orbits with higher periodicity, only the ETDFC 

method (0 < R < 1) is capable to achieve system stabilization. 
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