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Abstract. One of the greatest challenges for the production of petroleum in deepwater is flow assurance. In fact,
knowledge about the transient cool down behavior of the produced fluid is necessary to prevent the formation of
hydrates and solid deposits during shutdown periods, which could result in a pipeline blockage and could result in
large financial losses. In a typical subsea petroleum production system, the information provided by its monitoring
system, regarding the temperature field is limited. One approach to predict the produced fluid temperature field in a
pipeline system is to use Bayesian filters. In this paper, we compare the Kalman filter and the particle filter as applied
to a problem of practical interest for the petroleum industry. Uncertainties in the state evolution and measurement
models are taken into account by assuming that the errors involved are additive, normally distributed and with known
means and covariance matrices.
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1. INTRODUCTION

Flow assurance in petroleum fields has become énibeogreatest challenges on the hydrocarbon ptamum
deepwater environments (Lorimer and Ellison, 200&rdosoet al., 2003, Tebboth, 2003, Su, 2003, Carmaeggal.,
2004, Denniekt al., 2004). This kind of environment presents highrbgthtic pressures and low sea bed temperatures,
which can affect the flow of the produced multiph#lsids (oil, gas, condensate, and water) thraquigklines up to the
processing facilities.

The thermal management of offshore petroleum fisdd@mong other operational requirements, onehefrhain
issues for petroleum exploitation operations. Sadhe case because, when hydrocarbons are prodndetiansported
over long distances, it is crucial for flow asswamo avoid and control solid deposits and hydi@teation (see figure
1) with thermal monitoring. There are different dénof deposits that can be formed in pipelinessafibea equipment.
The physical and chemical characteristics of tloglpced fluids may facilitate the accumulation afunal gas hydrates,
wax, and other substances within the equipmentsrfiss and Ellison, 2000, Cardosbal., 2003, Su, 2003, Carmargo
et al., 2004, Dennielet al., 2004). These accumulations may cause reductiofioaf area and increase the wall
roughness, thus increasing the head loss and regldlce flow capacity, which can eventually blocle thipeline,
resulting in large financial losses.

There are different physical and chemical techricgghat can be applied to manage the potential dspasrimer
and Ellison, 2000, Cardoset al., 2003, Carmargat al., 2004, Dennielet al., 2004). These techniques include
“pigging”, which represents a device to scrapepipe walls, and the continuous injection of cheminhibitors into
the pipeline system to minimize the formation oésl accumulations. One of the main strategies tigate these
undesirable effects is to minimize heat losses fthensystem by using thermal insulation and/orvackieating (Su,
2003). In fact, the accurate knowledge of the temrajure field along the pipeline is one of the keguirements to
maintain the produced fluid temperature above amim critical temperature (Alvest al., 1992, Su and Cerqueira,
2001, Gucet al., 2006, Escobedet al., 2006). Thermal analyses include both steady stadetransient studies for the
different stages of the field’s lifetime and must\v@ as a design tool for the selection of thermsililation and/or
heating systems, in order to avoid the formatiodegfosits.
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(a) Hydrate
Figure 1. Typical deposits that cause pipeline kdge

Recently, new technologies have emerged for detecthonitoring and control of critical parametessaciated
with the flow assurance, followed by the impleméota of combined corrective actions, when anomaloaisditions
are identified (Brower and Prescott, 2004, Broweal., 2005, Zanet al., 2005, Benson and Robins, 2007). For
example, measurements of pressure, temperatuverdke,fluid composition and strain, among other paranseteray
be used to predict the onset of operational progléhus allowing for timely corrective actions.

As one of the most important aspects for the mameagé of deposits is based on the accurate knowletigee
temperature field inside the pipeline and/or subsgaipment, the main objective of this work is faply Bayesian
filters (Maybeck, 1979, Andrieet al., 2004, Kaipio and Somersalo, 2004, Scott and MaCa005, Orlandet al.,
2008) to predict the unsteady temperature field pipeline cross section during shutdown periodse ®mperature
field is predicted from limited temperature dataaidable at the surface of the pipeline. Uncertemtin the state
evolution and measurement models are taken intousmtcby assuming that the errors involved aretaedinormally
distributed and with known means and covarianceiogst The accurate estimation of the temperaiaté &llows for
the prediction of cold regions in the oil-gas-waneixture inside the pipeline. As a result, prevemtactions can be
taken beforehand in order to avoid the formatiodeyosits.

2. STATE ESTIMATION

In state estimation problems (Maybeck, 1979, Kagnid Somersalo, 2004, Scott and McCann, 2005) wétéens
obtained during the evolution of the system, aexlusgether with prior knowledge about the physgtanomena and
the measuring devices, in order to sequentiallydpce estimates of the desired dynamic variableste Sistimation
problems can be solved with the so-called Bayefitears (Maybeck, 1979, Kaipio and Somersalo, 2084ott and
McCann, 2005).

In order to define the state estimation problermsater a model for the evolution of the state \a@edax in the
form:

X, =f, (Xk—lvvk) (1)

wheref is, in the general case, a non-linear functiox ahd of the state noise or uncertainty vector giverv, OR™ .

The vectorx,JR™ is called the state vector and contains the versal be dynamically estimated. This vector

advances in time in accordance with state evolution model (1). The subscrigt =1, 2, 3, ..., denotes a time instapt

in a dynamic problem.
The observation model describes the dependencebetihe state variableto be estimated and the measurements
z through the general, possibly non-linear, functioif his can be represented by

z,=h, (x,,n,) )
wherez, OR" are available at timet , k=1, 2, 3,.... Eq. (2) is referred to as thteservation/measurement model. The

vectorn, OR™ represents the measurement noise or uncertainty.

The evolution and observation models, given by Egs. (1) and (2), respectively, are daea the following
assumptions (Kaipio and Somersalo, 2004, ScotiMatdann, 2005):

(a) The sequence, fork=1, 2, 3, ..., is a Markovian process, that is,

T1(X [ X0 Xoe - Xer) =77(X X ) (3.a)
(b) The sequence, for k=1, 2, 3, ..., is a Markovian process with respedhehistory ofx, , that is,

71(z, X0 Xpo - % ) =712, X, ) (3.b)

(c) The sequence, depends on the past observations only throughwitstastory, that is,
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T(X [ Xie10 220250 24 ) = 70(X X, ) (3.0)

where 77(a|b) denotes the conditional probability @fvhenb is given.

For the state and observation noises, the followisgumptions are made (Kaipio and Somersalo, 28€ztt and
McCann, 2005):

(a) Fori# j , the noise vectors, and v, , as well ag, andn, , are mutually independent and also mutually indelpat

of the initial statex,.
(b) The noise vectors; andn; are mutually independent for atndj.

Different problems can be considered for the evmhibbservation model described above, such asp{&and
Somersalo, 2004, Scott and McCann, 2005):

(i) The prediction problem, when the objectivedsbtain rr(xI< |Zl:|<—1);
(ii) The filtering problem, when the objective & abtain 7T(xk |21;k) ;
(iii) The fixed-lag smoothing problem, when the etfjve is to obtairw(xk |Zl:l<+p)' where p =1 is the fixed lag.

(iv) The whole-domain smoothing problem, when thédjeotive is to obtain 7T(Xk|21;;<), where

z,, ={z,i=1--- K} is the complete set of measurements.

3. BAYESIAN FILTERS

The most widely known Bayesian filter is the Kalmiter, with its application limited to linear mets with
additive Gaussian noises. In such cases where tddelmare non-linear or the errors non-Gaussiamt&l&arlo
methods can be applied to solve state estimatioblgms (Maybeck, 1979, Carpengtral., 1999, Doucett al., 2000,
Arulampalamet al., 2001, Kaipio and Somersalo, 2004, Andratwl., 2004, Scott and McCann, 2005, Del Moeal
al., 2006, Del Morakt al., 2007, Johansen and Doucet, 2008, Orlat@de. 2008). In this work we apply the Kalman
filter and the particle filter to predict the temature field in a pipeline system, as describedwel

3.1. Kalman filter

This method, published in 1960, is a set of mathimalaequations that recursively estimates theestatiables of a
system (Kalman, 1960, Sorenson, 1970, Maybeck, ,1Ri&%ic, 2004, Kaipio and Somersalo, 2004, Scodt BcCann,
2005, Welch and Bishop, 2005, Orlandeal., 2008). The Kalman filter is one of the most walekvn and used
Bayesian filters, but its application is limitedlioear models with additive Gaussian noises.

Considering the classical discrete-time state edton problem in thease of linear models, the evolution equation
that describes the time dependence of the stai@bolex can be writterin the form:

X =R X +S +V, 4
where Fk is the linear evolution matrix of the state varekl and the vectos, is assumed to be known sources for the
problem. The state uncertainty or noigg is assumed to bee Gaussian random variable with zero mean and iz

Q

The linear observation model can be representdteiform:

z, =H,x, +n, ®)

where Z, is the measurement vector ahij is the linear observation matrix. The observatioise N, is assumed to

be a Gaussian random variable with zero-mean aadikitovariancd?. The state and observation noises are assumed
to be mutually independent.

The algorithm of the Kalman filter is presenteddvelin tables 1 and 2, as applied to the state aittm problem
given by equations (4,5) (Maybeck, 1979, Kaipio &minersalo, 2004, Scott and McCann, 2005, WelchBasidop,
2005, Orlandet al., 2008).
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Table 1 — Discrete time evolutiordage equations
X =FXe4 (6.2)
P =F Pk—lF}I +Q, (6.6)

Table 2 — Measurement update egusti

K =R H-IE(HKPK_ HI*'Rk)il (7-2)
xk:x;+Kk(zk—Hkx;) (7.0)
P =(1-K,H,)P; (7.0)

Here,K is known as Kalman’s gain matrix aRds the covariance matrix of the estimated stat@ltes.
3.2. TheParticle Filter

The Particle Filter Method is a Monte Carlo techugdor solution of the state estimation problemeehthe main
idea is to represent the required posterior derfigitgtion by a set of random samples with assodiateights and to
compute the estimates based on these samples agldsv@laybeck, 1979, Carpentaral., 1999, Doucett al., 2000,
Arulampalamet al., 2001, Kaipio and Somersalo, 2004, Andretwl., 2004, Scott and McCann, 2005, Del Moegal
al., 2006, Del Morakt al., 2007, Johansen and Doucet, 2008, Orlatdd. 2008). In this study, we use the so-called
Sequential Importance Resampling (SIR) algorithm for the particle filter, which ilzles a resampling step at each time
instant, as described in (Arulampalatral., 2001, Orlandet al. 2008). The SIR algorithm makes use of an impodanc
density, which is a density proposed to represeotheer one that cannot be exactly computed. Thanpkes are drawn
from the importance density instead of the acteaisity.

Let {xiO:k i1 =0,- ,N} be the particles with associated Weig{rl\miK , 1 =0, ,N} and X, ={xj, j=0,- ,k} be the

N .

set of all states up tg, , whereN is the number of particles. The weights are nozad| so thatZV\fI< =1. Then, the
i=1

posterior density at, can be discretely approximated by:

”(Xo:k |21:|<—1):Z’:‘1‘,W|; 5(Xo1< _Xiok) ®)

where 5() is the Dirac delta function. By taking hypotheé&a-c) into account, the posterior density in 8).can be
written as (Arulampalaret al., 2001):

7T(xk |zl:k_1)=zli:w;< 5(xk —XL) )

A common problem with the SIS particle filter ietdegeneracy phenomenon, where after a few sthiest ane
particle may have negligible weight. The degenelagylies that a large computational effort is dexbto updating
particles whose contribution to the approximatiéthe posterior density function is almost zeroisTfiroblem can be
overcome by increasing the number of particlesnore efficiently by appropriately selecting the onjance density as

the prior densityr(xk |xik,1) . In addition, the use of the resampling techniguecommended to avoid the degeneracy
of the particles.
Resampling involves a mapping of the random mea%xli,{ewik} into a random measw{e{ ,N'l} with uniform

weights. It can be performed if the number of dffec particles with large weights falls below ateér threshold
number. Alternatively, resampling can also be aabindistinctively at every instafjt, as in the Sampling Importance
Resampling (SIR) algorithm described in (Arulampalet al., 2001). This algorithm can be summarized in tlepst
presented in Table 3, as applied to the systenutwnlfromt, ;, to t, (Arulampalamet al., 2001).

Although the resampling step reduces the effecth@fdegeneracy problem, it may lead to a losswarsity and
the resultant sample can contain many repeatedtleart This problem, known as sample impoverishimmeah be
severe in the case of small process noise. Inctgg, all particles collapse to a single partidihiw few instantst,

(Arulampalamet al., 2001, Kaipio and Somersalo, 2004). Another draklt the particle filter is related to the large
computational cost due to the Monte Carlo methdd¢clvmay limit its application only to fast commugiproblems.



Proceedings of COBEM 2009
Copyright © 2009 by ABCM

Table 3 — Sampling Importance Resampling Algorithm

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

Step 1

For i=1,--,N draw new particle, from the prior density/T(xk |x‘H) and then use th

likelihood density to calculate the correspondeeights w, = n(zk |x'k) .

[1°

Step 2

N .
Calculate the total weighTW=ZV\/k and then normalize the particle weights, thafas,
i=1

i=1---,N letw, =T "W, .

Step 3

Resample the particles as follows :
Construct the cumulative sum of weights (CSW) bsnpating ¢ =¢_, +w, for i=1,---,N,

with ¢, =0.
Let i =1 and draw a starting point, from the uniform distributiot [ 0,N ]
For j=1,---,N

Move along the CSW by making =u, + N7 (j -1)

Whileu; >¢ makei=i+1.

Assign samplex) =x;

Assign sampley =N

4. PHYSICAL PROBLEM AND MATHEMATICAL FORMULATION

The physical problem in this work considers a caitioperational condition involving a pipeline sthatvn situation.
The problem consists of a pipeline cross-sectigresented by a circular domain filled with a stagnfuid and
bounded by a constant thickness pipe wall (Jamatuetdal., 1991, Su and Cerqueira, 2001, Escobetdal., 2006).
The fluid is considered as homogeneous, isotropitwith constant thermal properties. The idealipgekline will be
treated here with an unsteady heat conduction enolrh a single medium, thus not taking into accdbatpipe wall.
By considering axial symmetry, the dimensionlessmidation of this heat conduction problem in cylicdl

coordinates

is given by

69(R,r)=629(R,r)+168(R,r) 0<R<1.7>0
or oR> R OR

M+Bi9(R,r)=o R=1,7>0

6(R,0)=1 0<R<1,7=0

where the dimensionless groups were defined as

(RT)=

)
0)

0

T(r,t)-T
r, T,

T(

(10.a)

(10.b)

(10.¢)

(11.a)

(11.b)

(11.c)

(11.d)
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Here, T, is the surrounding environment temperatirés the convective heat transfer coefficidnts the thermal

conductivity coefficient,R" is the external radius ari is the Biot number.
The solution for such a mathematical model canltitained with finite-differences, thus resultingtire following
linear system of algebraic equations (Ozisik, 1993)

"' =FO"+S (12)
where,
[(1-4B) 4B ]
(o, ] (B—Ej (1-2B) (B+Ej
2 2
0= F= ' '
0, B-— D (1-28B) Br—D
- 2(N-1) 2(N-1)
| 2B C |
0 .
s=| BzAARTZ C=[1—ZB—2ARBiB—ARBBlj

Here, N is the number of internal nodes in the finite-glifince solutionE is anN x N coefficient matrix,® is a
temperature vector of orddrx 1 andSis a known vector of ordéy x 1.

5. RESULTS AND DISCUSSIONS

We now present the results obtained for the statémation problem under analysis, by using simalate
experiments. The simulated measurements contaiitivedduncorrelated, Gaussian errors, with conststandard
deviation. Two test cases are examined below, uingl different standard deviations for the measuetrerrors,
namely: (i) Test case 1 with standard deviatiot°af, and (ii) Test case 2 with standard deviatiob°af. It is assumed
that the simulated measurements are taken withsoséocated at the outer boundary surface, thatB= 1.0. Initial
temperature of the oil was uniform at’80and the surrounding temperature Was= 4°C. The state variables to be

estimated are the transient temperatures insidpipiedine cross section at the equidistant finiteecence nodes.

For test case 1, we simulate transient measurepeietures containing Gaussian errors with standaviation of
1°C and compare the exact temperature (obtained avitanalytic solution with separation of variablegyich is
omitted here for the sake of brevity), measured@edicted temperatures at positidhs 0 andR = 1.0. The predicted
temperatures were obtained with the Kalman filtedt with the particle filter (implemented in acconda with the SIR
algorithm described above). Twenty particles wesedufor each state variable in the particle filter.

Figures 2.a,b, and 3.a,b present the results @ataiith the Kalman filter and the patrticle filteespectively, for a
situation involving a standard deviation of the letion model errors of 0%. These figures show an excellent

agreement between predicted and exact temperaages,result of the small errors in the evolutiod abservation
models.

KALMAN FILTER - CPU Time = 0.093601 sec KALMAN FILTER - CPU Time = 0.093601 sec

+  Exact Temperature
& Predicted Temperature
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B A L Y 0 05 1 15 2 25 3 35 4 45 5 55
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v it

(a) Transient temperatures at R=1 (b) Trangemperatures at R=0
Figure 2. - Standard deviation for the evolutiondelcerrors of 0.%C — Kalman filter — Test Case 1
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PARTICLE FILTER with Re-sampling - Number of Particles = 20

PARTICLE FILTER with Re-sampling - Number of Particles = 20
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(a) Transient temperatures at R=1

(b) Trandemperatures at R=0
Figure 3. - Standard deviation for the evolutiondelcerrors of 0.%5C — Particle filter— Test Case 1

We now address the solution for a case involvistpadard deviation of evolution model errors W 5The results
obtained with this case are presented in figurad4and 5.a,b for the Kalman and particle filteespectively. Note in
these figures that the predictions tend to follbe measurements instead of the evolution model=af..0, because of

the large evolution model errors. On the other hahé predictions are in excellent agreement wite exact
temperatures at positions where no measurementalane, such as &= 0.
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Figure 4. - Standard deviation for the evolutiondelcerrors of 8 — Kalman filter - Test Case 1
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Figure 5. - Standard deviation for the evolutiondelcerrors of 8 — Particle filter with re-sampling - Test Case 1

A similar analysis is now made for test case 2, rehbe simulated measured temperatures contaimsewith
standard deviation of’8. Figures 6.a,b and 7.a,b present the resultsngbotavith a standard deviation of the evolution
model errors of %C, for the Kalman and particle filters, respectvelhese figures show that, despite the larger
measurement errors, the two Bayesian solution tqaee examined in this work are capable of acclyr@edicting
the temperatures inside the domain of interesth eae points quite distant from the measurementtiocs. A
comparison of figures 6.a,b and 7.a,b revealstti@particle filter provided more accurate estirmdtean the Kalman
filter for this case, aR = 0 andR = 1.0. Similar results were obtained with largemes in the evolution model, as
illustrated by figures 8.a,b and 9.a,b. These &igwshow the predicted and exact temperatures $taralard deviation
of the evolution model of%&.
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(a) Transient temperatures at R=1
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Figure 6. - Standard deviation for the evolutiond@cerrors of IC — Kalman filter — Test Case 2
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(a) Transient temperatures at R=1

(b) Trandemperatures at R=0
Figure 7. - Standard deviation for the evolutiond@lcerrors of IC — Particle filter — Test Case 2
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(a) Transient temperatures at R=1 (b) Trandemperatures at R=0
Figure 8. - Standard deviation for the evolutiondelcerrors of 8 — Kalman filter - Test Case 2
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Figure 9. - Standard deviation for the evolutiondelcerrors of 8 — Particle filter with re-sampling - Test Case 2

Figures 10.a-c were prepared in order to illustthéecapabilities of the Bayesian filters as a jmtézh tool for the
temperature field in a pipeline cross-section flanited temperature data available at this surfatmse figures show
the exact temperature field, as well as those prediwith the Kalman and particle filters, respeslif, at a specific

dimensionless time. In the case presented in figliBea-c, the standard deviation for the measuresreors and the
standard deviation for the evolution model erraestzoth of 5C.
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DIMENSIONLESS EXACT TEMPERATURE FIELD PREDICTED TEMPERATURE FIELD BY KALMAN FILTER PREDICTED TEMPERATURE FIELD BY PARTICLE FILTER with Re-Sampling
1 1

1

E 1 - F 0
STATE EVOLUTION MODEL WITH GAUSSIAN ERRORS of 50C STATE EVOLUTION MODEL WITH GAUSSIAM ERRORS of S0C

(a) Exact temperature field (b) Predicted tempeedfield by (c) Predicted temperature field by
Kalman filter particle filter
Figure 10. Temperature field inside the pipelinedicted with Bayesian filters

6. CONCLUSIONS

The objective of this work was to apply Bayesidtefs to the estimation of the transient tempegafigld inside a
pipeline, by using limited temperature data avédadt its outer surface. The state estimation groblinder analysis
was solved with the Kalman filter and with the paet filter, for linear evolution and observatiorodels, with additive
and uncorrelated Gaussian noises. The Kalman éifidrthe particle filter provided results of simiéeccuracy for a test
case involving measurement errors of small mageit@h the other hand, the predictions obtained ti¢ghparticle
filter are in much better agreement with the exeotperatures than those obtained with the Kalmiger,fiwvhen the
measurement errors are large.
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