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Abstract. The aim of this paper is to quantify the probability of failure of a cracked rod considering a stochastic dynamic
model for a proposed probabilistic model. Uncertainties must be taken into account for a robust analysis and to increase
the predictability of the model. The cracked rod is modeled with the spectral element method and the flexibility of the crack
is considered uncertain. To model the uncertainties, the parametric probability approach is employed and the Maximum
Entropy Principle is used to derive the probability densityfunction. Then, a reliability analysis is done and the probability
of failure is calculated for different failure surfaces, using Monte Carlo sampling.
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1. INTRODUCTION

The aim of this work is to quantify the probability of failureof a damaged structure for a proposed probabilistic
model. Specifically, a cracked rod is considered. Probability theory is used to model the uncertainties of the problem and
a criterion is established to characterize the failure. Monte Carlo sampling is used as the stochastic solver. In this analysis
only the flexibility of the crack is considered uncertain. The Maximum Entropy Principle (Jaynes, 1957a,b; Shannon,
1948) is used to derive the probability density function of the random variable related to the flexibility of the crack. Using
this principle it is assured that the realizations of the random variable are compatible with the physics of the problem.A
failure happens when the Damage Index (DI) (which is defined in Section 3.) is greater than a prescribedlimit, a failure
surface. A reliability analysis is performed in order to assess the robustness of the given crack model. The prescribed
limit for the DI is increased until no failure occur.

Most of the existing monitoring methods are local and presume that the location of the damage is known and the
damage area is readily accessible. Vibration-based methods and wave propagation methods provide tools for global
structural monitoring including parts that are either inaccessible or difficult to make measurements on (Ostachowicz,
2008). Small defects such as cracks are obscured by modal approaches because such phenomena have a local nature
and only affect significantly the high frequency behavior. Wave propagation-based structural models are well suited for
detecting this kind of defect since they are sensitive to changes in the local dynamic impedance (Palacz and Krawczuk,
2002) and it is known that material discontinuities affect the propagation of elastic waves in solids (Ostachowicz, 2008).
Frequencies that are most sensitive to damage depend on the type of structure, the type of material, and the type of damage
(Ostachowicz, 2008; Palacz and Krawczuk, 2002). Among the wave propagation methods, the Spectral Element Method
(SEM) allows to combine the analytical approach with the matrix approach of the Finite Element Method (FEM), with a
fundamental difference that the element stiffness matrix is established in the frequency domain (Doyle, 1997).

This article is organized as follows. In Section 2.the modelof the cracked rod is presented and aDI is defined in
Section 3.. Then, in Section 4. the probabilistic model for the flexibility of the crack is developed and the reliability
analysis is presented in Section 5.. Numerical results are discussed in Section 6.. Finally, in Section 7.the concluding
remarks are presented.

2. SPECTRAL CRACKED AND NON-CRACKED ROD FINITE ELEMENT

There are different ways of establishing a dynamic stiffness relationship. In fact, the SEM approach does it via
dynamic shape function which use the exact displacement distributions as the interpolation function between the element
ends (Doyle, 1997). The SEM is formulated based on two types of elements: two-noded and throw-off. The latter are
used when the member extends to infinity. The major drawback of SEM is that the elements may only be assembled in one
dimension. The solution along the orthogonal dimensions has to be found analytically and it is only possible for simple
geometries (Arruda et al., 2007).
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2.1 Two-Noded Spectral Rod Finite Element.

It uses the most simple rod theory. A spectral element of length L and the end displacements as boundary conditions,
the following symmetric dynamic stiffness element matrix can be obtained (Doyle, 1997):

[K] =
iEAk

1 − z2

[

1 + z2 −2z
−2z 1 + z2

]

, (1)

wherez = e−ikL, k is the wave number defined byk = 2πfk

√

ρ/E with fk being the discretized frequency,A is the
cross section area,ρ the mass density, andE the Young’s modulus. With the dynamic stiffness matrix of anelement, it
is straightforward to assemble a global stiffness matrix using the direct stiffness method (Craig, 1981). The structural
responses can be found by solving, for each frequency, a linear system of equations of the typeF̂ = [K]Û, where[K] is
the complex dynamic stiffness matrix for the rod element,F̂ is the vector of complex amplitudes of the nodal forces, and
Û is the vector of the complex nodal displacement amplitudes.In order to account for structural damping, an internal loss
factorη can be applied by using a complex Young’s modulusE(1 + iη).

2.2 Spectral Rod Throw-off Element.

The dynamic stiffness for the throw-off element is given by (Doyle, 1997):

Kt = iEAk . (2)

This implies that the system experiences dissipation, since the throw-off element conducts energy out of the system.

2.3 Spectral Cracked Rod Finite Element.

A spectral rod finite element with a transverse open and non-propagating crack was presented by Palacz and Krawczuk
(2002). The length of the element isL, and its area of cross-section isA. The crack, located atL1, is substituted by
a dimensionless spring, whose flexibilityθ is calculated by using Castigliano’s theorem and the laws ofthe fracture
mechanics.

The dynamic stiffness matrix for the spectral cracked rod element is given by :

[Kc] = iEAk

[

[D]−1
11 − [D]−1

21 z1 [D]−1
14 − [D]−1

24 z1

−[D]−1
31 z + [D]−1

41 −[D]−1
34 z + [D]−1

44

]

, (3)

wherez1 = e−ikL1 and[D]−1
ij denotes the elementij of the inverse of matrix[D], which takes into account the nodal

spectral displacements for the left and right part of the rodand the boundary conditions:

[D] =









1 z1 0 0
(ikθ − 1)z1 (−1 − ikθ) z1 zz−1

1

−ikz1 ik ikz1 −ikzz−1
1

0 0 z 1









. (4)

The dimensionless form of the flexibility is expressed as (Ostachowicz, 2008; Palacz and Krawczuk, 2002; Krawczuk
et al., 2006a,b):

θ = 2πh

∫ a

0

αg2(α)dα . (5)

wherea = a/h show the ratio between depth crack and height of cross section heighth, andg is a correction function
defined by

g
(α

h

)

=

√

tan(πα/2h)

πα/2h
×

0.752 + 2.02(α/h) + 0.37(1 − sin(πα/2h))3

cos(πα/2h)
. (6)
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2.4 Clamped Semi-Infinite Rod Modeling.

The assembling of the global dynamic stiffness matrix uses the same procedure as the usual FEM approach but it is
evaluated at each frequency component of the analysis. Assembling the structural stiffness matrix (Doyle, 1997; Craig,
1981), using Eq. 1 and Eq. 2, and applying the clamped constraint, we have:

KG = [K]22 + Kt =
iEAk

1 − z2
(1 + z2) + iEAk =

i2EAk

1 − z2
, (7)

where[K]22 is the element at the second line and second column of[K] (see Eq. 1). With the same procedure, using
the spectral cracked rod element, Eq. 3, together with the throw-off element, Eq. 2, and applying the clamped constraint,
yields:

KGc = [Kc]22 + Kt = iEAk(−[D]−1
34 z + [D]−1

44 ) + iEAk = iEAk(1 − [D]−1
34 z + [D]−1

44 ) . (8)

Figure 2.4shows the clamped semi-infinity cracked rod and the cross-section of the rod element at the crack location.

Figure 1. Dimensions of the cracked rod considered.

3. DAMAGE INDEX

A damage index (DI) is used to compare the difference between the dynamic responses of the cracked and non-cracked
rod. TheDI used is defined as follows (Banerjee et al., 2009):

DI =

∣

∣

∣

∣

∣

1 −

∑fs/2
fk=0 FD2(fk)

∑fs/2
fk=0 FI2(fk)

∣

∣

∣

∣

∣

, (9)

whereFD(fk) and FI(fk) are the magnitudes of the frequency response functions or spectra for the damaged and
undamaged structure, evaluated at frequencyfk, respectively, andfs is the sampling rate. If the structure is undamaged,
DI = 0. Using the dynamic stiffness, defined by Eq. 7 and Eq. 8, with an input excitationF̂ , Eq. 9 becomes:

DI =
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. (10)

Note that theDI is strongly dependent of the input excitationF̂ , what means the thisDI can not be used as an absolute
measure of damage. Using the initial measurements performed on an undamaged structure as baseline, damage indexes
are evaluated from the comparison of the frequency responseof the monitored structure with an unknown damage.

4. PROBABILISTIC MODELING

The probability theory is used to model the uncertainties ofthe problem. For this analysis, it is considered that the
crack location is known, but its severity is unknown. Therefore, we consider the value of the crack flexibilityθ, which
is a measure of the damage severity, uncertain. And it is the only uncertainty taken into account in the present analysis.
Note thatθ depends on the rod heighth and on the crack deptha (see Eq. 5). But instead of constructing a probabilistic
model forh anda, we construct it directly to our variable of interest,θ. This is a new approach for the problem. The
advantage of this approach is that it allows the construction of a general probabilistic model that describes well most
practical problems.

To construct the probability density function (PDF) of the random variable related to the flexibility of the crack,Θ,
the Maximum Entropy Principle is used (Jaynes, 1957a,b; Shannon, 1948). The idea is to use the information we have
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about the random variable, so that the distribution used forthe random variable chosen is compatible with the physics of
the problem.

The first available information we have is that the mean valueof the random variableΘ is known. This is because we
trust the mean model, so (see Eq. 5):

E{Θ} = θ , (11)

whereθ is calculated using the nominal values of the variables in Eq. 5 andE{·} is the mathematical expectation. The
second available information we have is that the value of theflexibility is always positive,i.e.,

Θ ∈ ]0, +∞[ . (12)

The third available information is:

E {ln (Θ)} = |cte| < +∞ . (13)

This is because the probability should go to zero asΘ approaches zero, otherwise there could exist a local stiffness
going to infinity what is not reasonable. The optimization problem is given by:

maximize
fΘ(θ)

S(fΘ(θ)) , (14)

subjected to Eq. 11, Eq. 12, and Eq. 13, where the entropy measure is given by :

S(fΘ(θ)) = −

∫ +∞

0

fΘ(θ) ln (fΘ(θ))dθ . (15)

The probability density function found forΘ is the Gamma density function (Kapur and Kesavan, 1992) given by:

fΘ(θ) = 1]0,+∞[(θ)θ
a0−1 exp (θ/b0)

ba0

0 Γ(a0)
, (16)

where1B(θ) is an indicator function that is equal to 1 forθ ∈ B and0 otherwise, andΓ(z) =
∫ +∞

0
tz−1e−tdt is the

Gamma function defined forz > 0. The parameters of the distributions are given bya0 = 1/δ2
Θ andb0 = θδ2

Θ. The
generation of a random variable that follows a Gamma distribution is implemented in many computer codes.

5. RELIABILITY ANALYSIS

Reliability Analysis aims to evaluate the probability of failure, i.e., the probability that the system response does
not satisfy a performance criterion. In (Schuëller, 2007) arational treatment of uncertainties in structural mechanics
and analysis is presented, in (Schuëller, 2001) some developments of computational stochastic mechanics and analysis
are reviewed. The system under analysis takes into account randomness (see Section 4.) and a performance, or failure,
criterion is defined using aDI (see Section 3.) . It should be noted that if there is more thanone failure criterion, each of
them needs a different reliability analysis.

The functional relationship between the performance criterion and the random variables can be expressed as a perfor-
mance function (Haldar and Mahadevan, 2000), as follows:

Z = g(X) , (17)

whereX is the random vector composed by the random variables of the problem. The failure surface or the limit state is
defined byZ = 0, and the failure occurs whenZ < 0. The probability of failure is given by (Haldar and Mahadevan,
2000; Rackwitz, 1991; Sudret and der Kiureghian, 2000):

PF (X) =

∫

g<0

fX(x)dx , (18)
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in which fX is the PDF of the random variableX, and the domain of integration is defined by the setg < 0 = {x :
g(x) < 0}. To evaluate the integration in Eq. 18 is equivalent to calculate the probability of failure of the system under
analysis. In general, the PDF is almost impossible to obtainand even if it were known, the integration above would not
be easily calculated (Haldar and Mahadevan, 2000). The standard Monte Carlo Method is a non-intrusive and well-suited
method to calculate the failure probability. It is calculated from the sum ofN realizations of the random variableX for
which a failure occurs amongN runs, as follows:

P̂F =
1

N

N
∑

i=1

1g<0(Xi) , (19)

whereP̂F is an unbiased estimator ofPF (X), Eq. 18. Eq. 19 means that the probability of failure can be estimated
as a ratio of the number of runs that lead to failure,nf , and the total number of the runs performed,P̂F = nf/N .
By the Central Limit theorem,P̂F has approximately a normal distributionN(PF, N−1V ar(PF )) for largeN , where
V ar(PF ) can be estimated via the sample variance unbiased estimator, S2 = (1/(N − 1))

∑N
i=1 (PFi − P̂F ), with

which we can estimate a confidence interval (Rubinstein and Kroese, 2008). The disadvantage of the direct Monte Carlo
sampling is that whenPF is small a very big number of simulations may be necessary forconvergence. For instance, if
PF = 10−3 it is necessary an average of1000 simulations for a failure to happen.

6. NUMERICAL RESULTS

6.1 Deterministic response.

For the numerical tests, we consider a semi-infinity clampedrod, as shown in Fig. 2.4in whichL = 4 m, L1 = 2.4 m,
b = 0.02 m,h = 0.02 m, E = 210 GPa, ρ = 7850 kg/m3, andη = 0.001. A pulse is applied atx = L from the clamped
node and the crack is atx = L1. Eq. 7 shows the dynamic stiffness used to model the healthy rod and Eq. 8 was used to
model the dynamic stiffness of the cracked rod. We consider the crack with depth equal toa = 0.15 of the height of the
rod and Eq. 5 is used to calculate the dimensionless form for the local flexibility,θ.

The analysis was carried out for two different bursts, that were constructed using a sine function with frequency80
kHz and100 kHz with 10 N of amplitude. It is important to apply a suitable windowingin order to obtain a narrowband
burst. This is important for the damage detection processes, when the measured data is usually polluted with broadband
noise. The triangular window is built with10 sine periods width, for each excitation frequency, and results are show at
Fig. 2(a) and Fig. 2(b).
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Figure 2. Mean Model. Applied input force for a damage and undamaged rod. (a)80 kHz (b)100 kHz.

Figure 3(a) and Fig. 3(b) show the time response atx = L, the same location of the excitation burst, for the damage
and the undamaged rod. Note that the first0.1 ms the rod response while the burst is being applied , so they are the same
for the damaged and undamaged rod.

The applied excitation creates longitudinal propagation waves. For the healthy rod, this burst travels over the structure
and it is observed again att = (2 × L)/Cv = 1.55 ms, whereCv is the velocity of propagation of the wave, and after
it is dissipated at its infinity side, modeled by the throw-off element, Eq. 2, conducting energy out of the system. Note
that its amplitude is smaller only due to the structural damping, η. Otherwise, for the damaged rod, note that Fig. 3(a)
and Fig. 3(b) show two more bursts, related to the crack. Whenthe propagating wave reaches the crack location, it is
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partly transmitted and partly reflected, due to the abrupt change at the local flexibility. If there is no crack, all the energy
is transmitted over and no wave is reflected. The larger the crack depth the less energy will be transmitted across the crack
location. Then, the crack depth establish the amplitude of the reflected and transmitted wave. Note that the first reflection
is att = 2 × (L − L1)/Cv = 0.6 ms. The wave that was transmitted across the crack reaches the clamped side and then
it is totally reflected. This is observed att = (2×L + 2×L1)/Cv = 2.5 ms. After it is dissipated at its infinity side. Eq.
10 was used to calculate the damage index, fora = 0.15, beingDI = 0.0014 for 100 kHz andDI = 0.0006 for 80 kHz
for the depth crack.
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Figure 3. Mean Model. Time response for the damaged and undamaged rod for the different excitations: (a) 80 kHz and
(b) 100 kHz.

Figure 4 shows the influence of the crack depth atDI for the different frequency excitation, using ten periods.Note
that for the100 kHz excitation the DI has a bigger sensibility to the crack depth, what is reasonable because the bigger
the frequency of the wave traveling over the rod the smaller its wavelength, and the bigger its sensibility to small defects.
For frequency excitations bigger than100 kHz, high order rod theories are required (Doyle, 1997). Spectral Cracked Rod
Finite Element for higher order rod theories can be found at Krawczuk et al. (2006a,b) and Pereira (2009).

6.2 Reliability analysis.

A a = 0.15 crack depth andh = 0.02 m were used in Eq. 5 to computeθ. Fig. 5(a), Fig. 5(b) and Fig. 5(c)
show histograms built using20, 000 MC simulation for three different values of the coefficient of variation,δΘ = 0.05,
δΘ = 0.1 andδΘ = 0.2, respectively, using burst shown at Fig. 2(b).DI for nominal model, Eq. 11, is shown in green
andDI for estimated mean is shown in red. Tab. 1 summarize this results.
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Figure 4. Sensibility ofDI for different crack depth and frequency excitation.

δΘ = 0.05 δΘ = 0.1 δΘ = 0.2 Nominal
DI 1.38 × 10−3 1.40 × 10−3 1.44 × 10−3 1.38 × 10−3

Table 1. Comparison betweenDI obtained for the nominal model and the estimated values for the mean.

There is a correspondence between a crack depth,a, and aDI for a given excitation (Fig. 4). Then a chosena leads
to a value forDI so that three different crack depth were used to establish a threshold for the DI as the failure surface,
Eq. 17:a = 0.16, a = 0.17 anda = 0.18. Excitation shown at Fig. 2(a) and Fig. 2(b) are used leadingto DI = 0.00011,
DI = 0.00016 andDI = 0.00021 for 80 kHz andDI = 0.00186, DI = 0.00245 andDI = 0.00319 for 100 kHz. Note
thatX is reduced toΘ. A coefficient of variationδΘ = 0.1 is chosen arbitrarily to perform the analysis. Convergence
results are summarized in Fig. 6 for the Failure Probability, found after20, 000 Monte Carlo simulations, and results for
both excitation frequencies were the same, so one of them wasomitted.

For aa = 0.18 threshold there were no failure events. The probability of acrack depth being bigger thana = 0.18 is
close to zero. For aa = 0.17 the probability of failure isPF = 0.085% and for aa = 0.16 the probability of failure is
PF = 6.87%. This analysis can be carried out for different dispersion parametersδΘ, meaning better (littleδΘ) or worse
(big δΘ) modeling.

Tab. 2 summarize this results. They can be analyzed in order to assess the robustness of uncertain crack model. The
simulated cases show that, for aa = 0.15 mean crack depth andδΘ = 0.1, the probability of the crack depth being
bigger thana = 0.18 is zero. It means the MC sampling was not able to simulate any trial for the crack depth bigger than
a = 0.18, so the failure probability is less than1/20, 000 (see, Eq. 19), not exactly zero.

a = 0.16 a = 0.17 a = 0.18

P̂F 6.97 × 10−2 8.50 × 10−4 0.00

Table 2. CalculatedP̂F for the different strategies.

7. CONCLUDING REMARKS

In this paper a probabilistic modeling of the flexibility related to a crack in a rod has been presented. In this analysis
only the flexibility of the crack has been considered uncertain. A wave propagation-based method, SEM, has been used
to model the dynamic deterministic problem and the Castigliano’s theorem and fracture mechanics theory have been used
to associate a crack depth to a local flexibility. The uncertainties of the problem have been modeled with the probability
theory together with the Maximum Entropy Principle, which allows to use only the available information to construct a
probability distribution compatible with the physics of the problem.

The modeled flexibility can be considered uncertain due to the uncertainty associated to its parameters, and also to the
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Figure 5. Histograms for DI using20, 000 MC simulation (a)δΘ = 0.05, (b) δΘ = 0.1 and (c)δΘ = 0.2. DI
for nominal model is shown in green andDI mean is shown in red.

uncertainty associated to the own model. The dispersion parameters can be interpreted as better (littleδΘ,) or worse (big
δΘ) modeling. For a given mean crack depth,θ, the influence of different coefficient of variation,δΘ, is analyzed using
histograms forDI and results for estimated mean value ofDI are compared to the value obtained using nominal values
of the model.

An indexDI, that compare the non-cracked structural behavior with thecracked behavior, has been used to quantify
the damage related to the crack at a specific (deterministic)location. A burst is applied at one point of the rod and it is
reflected at the crack location. This phenomenon is used to detect the damage. Better results are obtained to determine
the damage location using the FRF at different points acrossthe structure, as shown at Banerjee et al. (2009).

A reliability analysis was performed in order assess the robustness of the given crack model to predict a crack depth,
increasing the prescribed limit threshold for theDI until no failure occur, given whena = 0.18. For a givenθ andδΘ, this
analysis gives the probability of a measured signal, here obtained by a simulation, be related to a crack depth. Different
frequency of excitations are used to built the bursts and it is noted that the usedDI is very sensitive to this, however it
had no influence at the probability of failure to different thresholds. The simulated cases show that there is no probability
of the crack depth being bigger thana = 0.18 and that there is a little probability of the crack depth being bigger than
a = 0.17.

The direct MC sampling was used as the stochastic solver. It is a very expensive methodology, but the SEM approach
to modeling a cracked rod minimize the computational efforts to perform the simulation. A complex2×2 matrix is able to
represent the problem, with the advantage of using the related analytical solution, well-suited with the wave propagation
approach used at structural health monitoring.
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Figure 6. Probability of Failure convergence for differentfailure surfacea = 0.16 (upper),a = 0.17 (middle) and
a = 0.18 for both frequency excitations.
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