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Abstract. The aim of this paper is to quantify the probability of fadwof a cracked rod considering a stochastic dynamic
model for a proposed probabilistic model. Uncertaintiessirhe taken into account for a robust analysis and to increase
the predictability of the model. The cracked rod is modelid the spectral element method and the flexibility of thekra

is considered uncertain. To model the uncertainties, thampetric probability approach is employed and the Maximum
Entropy Principle is used to derive the probability densitgction. Then, a reliability analysis is done and the proligy

of failure is calculated for different failure surfaces,ing Monte Carlo sampling.
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1. INTRODUCTION

The aim of this work is to quantify the probability of failuf a damaged structure for a proposed probabilistic
model. Specifically, a cracked rod is considered. Proligitiieory is used to model the uncertainties of the probledh an
a criterion is established to characterize the failure. td&@arlo sampling is used as the stochastic solver. In tlailkysis
only the flexibility of the crack is considered uncertain. eTiaximum Entropy Principle (Jaynes, 1957a,b; Shannon,
1948) is used to derive the probability density functionhaf tandom variable related to the flexibility of the crackirds
this principle it is assured that the realizations of thedmn variable are compatible with the physics of the problam.
failure happens when the Damage Indéx| (which is defined in Section 3) is greater than a prescriipeit, a failure
surface. A reliability analysis is performed in order toesssthe robustness of the given crack model. The prescribed
limit for the DI is increased until no failure occur.

Most of the existing monitoring methods are local and presstinat the location of the damage is known and the
damage area is readily accessible. Vibration-based mgtand wave propagation methods provide tools for global
structural monitoring including parts that are either messible or difficult to make measurements on (Ostachowicz,
2008). Small defects such as cracks are obscured by modalaaies because such phenomena have a local nature
and only affect significantly the high frequency behavioaw/ propagation-based structural models are well suited fo
detecting this kind of defect since they are sensitive taigka in the local dynamic impedance (Palacz and Krawczuk,
2002) and it is known that material discontinuities afféa propagation of elastic waves in solids (Ostachowicz8200
Frequencies that are most sensitive to damage depend giptheftstructure, the type of material, and the type of damage
(Ostachowicz, 2008; Palacz and Krawczuk, 2002). Among t#eevpropagation methods, the Spectral Element Method
(SEM) allows to combine the analytical approach with therir@pproach of the Finite Element Method (FEM), with a
fundamental difference that the element stiffness madrestablished in the frequency domain (Doyle, 1997).

This article is organized as follows. In Section 2.the maafehe cracked rod is presented andd is defined in
Section 3. Then, in Section 4. the probabilistic model far flexibility of the crack is developed and the reliability
analysis is presented in Section 5. Numerical results s@uslsed in Section 6.. Finally, in Section 7.the conclgdin
remarks are presented.

2. SPECTRAL CRACKED AND NON-CRACKED ROD FINITE ELEMENT

There are different ways of establishing a dynamic stiffnedationship. In fact, the SEM approach does it via
dynamic shape function which use the exact displacemetnitilisons as the interpolation function between the eleime
ends (Doyle, 1997). The SEM is formulated based on two typetements: two-noded and throw-off. The latter are
used when the member extends to infinity. The major drawbBSEM is that the elements may only be assembled in one
dimension. The solution along the orthogonal dimensiossthde found analytically and it is only possible for simple
geometries (Arruda et al., 2007).
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2.1 Two-Noded Spectral Rod Finite Element.

It uses the most simple rod theory. A spectral element ofttehgand the end displacements as boundary conditions,
the following symmetric dynamic stiffness element mati@xde obtained (Doyle, 1997):

1BAE [ 14+ 22 —22
Kl=17% | —on 1422 | (1)

wherez = e~ L is the wave number defined lby= 27 f,.\/p/E with f; being the discretized frequency,is the
cross section are@,the mass density, anfl the Young’s modulus. With the dynamic stiffness matrix ofedement, it

is straightforward to assemble a global stiffness matrirgishe direct stiffness method (Craig, 1981). The struatur
responses can be found by solving, for each frequency, arlsystem of equations of the type= [K]U, where[K] is

the complex dynamic stiffness matrix for the rod elemé&his the vector of complex amplitudes of the nodal forces, and
U is the vector of the complex nodal displacement amplituttesrder to account for structural damping, an internal loss
factoryn can be applied by using a complex Young’s modulifs + in).

2.2 Spectral Rod Throw-off Element.
The dynamic stiffness for the throw-off element is given [yoyle, 1997):
K, =iFAk. 2
This implies that the system experiences dissipationgdime throw-off element conducts energy out of the system.
2.3 Spectral Cracked Rod Finite Element.

A spectral rod finite element with a transverse open and mopgmating crack was presented by Palacz and Krawczuk
(2002). The length of the element Is and its area of cross-sectionds The crack, located at,, is substituted by
a dimensionless spring, whose flexibilifyis calculated by using Castigliano’s theorem and the lawtheffracture
mechanics.

The dynamic stiffness matrix for the spectral cracked rednent is given by :

[D]l_ll - [D]z_llzl [D]1_41 - [D]2_4121

R = B4R | Jppe v D1y ~Dlte + (Dl ]

®)

wherez; = e~*I1 and [D]fl denotes the elemenf of the inverse of matrixD], which takes into account the nodal
spectral displacements for the left and right part of theanod the boundary conditions:

1 Z1 0 0
| (RO =1z (1 —ik0) = 22yt
D] = —ikz ik ikz —ikzzfl ’ )
0 0 z 1

The dimensionless form of the flexibility is expressed agd€sowicz, 2008; Palacz and Krawczuk, 2002; Krawczuk
et al., 2006a,b):

0 = 2rh /O ’ ag?(a)da. (5)

wherea = a/h show the ratio between depth crack and height of cross selsgmhth, andg is a correction function
defined by

a\  [tan(ma/2h)  0.752+ 2.02(a/h) + 0.37(1 — sin(ra/2h))?
g (E) N o /2h . cos(ma/2h) ' ©
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2.4 Clamped Semi-Infinite Rod Modeling.

The assembling of the global dynamic stiffness matrix usessame procedure as the usual FEM approach but it is
evaluated at each frequency component of the analysis.n#ss®y the structural stiffness matrix (Doyle, 1997; Craig
1981), using Eq. 1 and Eq. 2, and applying the clamped canstvee have:

iEAk o 2B Ak

Kg = [Kloo + Ky = 1

)
where[K]22 is the element at the second line and second colunip{see Eq. 1). With the same procedure, using
the spectral cracked rod element, Eq. 3, together with tleswoff element, Eq. 2, and applying the clamped constraint
yields:

Kae = [K )22 + Ky = iEAK(—[D)3)' 2 + [D]3}') + iEAk = iEAk(1 — D3}z + D)) - (8)

Figure 2.4shows the clamped semi-infinity cracked rod aadthss-section of the rod element at the crack location.

L0, M 0, la .
> F, \]\] L »F
L / b

! > L «—>

Figure 1. Dimensions of the cracked rod considered.

3. DAMAGE INDEX

A damage indexQI) is used to compare the difference between the dynamicnesgmf the cracked and non-cracked
rod. TheDI used is defined as follows (Banerjee et al., 2009):

 SRE FDA(f)

s 2 !
SR FI(fy)

DI = (9)

where F'D(f,) and FI(f) are the magnitudes of the frequency response functionsemtrspfor the damaged and
undamaged structure, evaluated at frequeficyespectively, and’ is the sampling rate. If the structure is undamaged,
DI = 0. Using the dynamic stiffness, defined by Eq. 7 and Eq. 8, witlmput excitation/”, Eq. 9 becomes:
BTN 2 . _ _ 1 o~ 2
oo | ZEA e EG| || S [GEARL - (Dl + (D) F() .
=T A Pl . 2 ‘
S5 [(Kalh) ™ B S5 [G2BAR T B (S|

Note that theD 1 is strongly dependent of the input excitatiBniwhat means the thi® 1 can not be used as an absolute
measure of damage. Using the initial measurements pertbom@&n undamaged structure as baseline, damage indexes
are evaluated from the comparison of the frequency respafrtee monitored structure with an unknown damage.

4. PROBABILISTIC MODELING

The probability theory is used to model the uncertaintieghefproblem. For this analysis, it is considered that the
crack location is known, but its severity is unknown. Theref we consider the value of the crack flexibilitywhich
is a measure of the damage severity, uncertain. And it is thewncertainty taken into account in the present analysis.
Note that? depends on the rod heightand on the crack depth(see Eq. 5). But instead of constructing a probabilistic
model forh anda, we construct it directly to our variable of intere8t, This is a new approach for the problem. The
advantage of this approach is that it allows the constraoatioa general probabilistic model that describes well most
practical problems.

To construct the probability density function (PDF) of tleedom variable related to the flexibility of the craék,
the Maximum Entropy Principle is used (Jaynes, 1957a,bnStm, 1948). The idea is to use the information we have
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about the random variable, so that the distribution useth®random variable chosen is compatible with the physics of
the problem.

The first available information we have is that the mean vafube random variabl® is known. This is because we
trust the mean model, so (see Eq. 5):

E{©} =0, (11)

whered is calculated using the nominal values of the variables inEgndIE{-} is the mathematical expectation. The
second available information we have is that the value ofléxbility is always positivej.e.,

O €10, +o0]. (12)

The third available information is:

E{In (0)} = [cte < +oc. (13)

This is because the probability should go to zer®aapproaches zero, otherwise there could exist a local siffn
going to infinity what is not reasonable. The optimizatioalgem is given by:

m%i(rer;ize S(fe(9)), (14)

subjected to Eq. 11, Eq. 12, and Eq. 13, where the entropyuresgiven by :

“+o0
S(fel6)) = - /0 fo(6)In (fo(8))d8 (15)

The probability density function found f& is the Gamma density function (Kapur and Kesavan, 1992 ndiye

B a0 exp (0/bo)
f@(e) - ]]']0+OO[(9)9 ! bgoF(ao) ) (16)

wherel () is an indicator function that is equal to 1 fére B and0 otherwise, and’(z) = j:m t*=le~tdt is the
Gamma function defined for > 0. The parameters of the distributions are giveragy= 1/62 andb, = 65%. The
generation of a random variable that follows a Gamma digtidin is implemented in many computer codes.

5. RELIABILITY ANALYSIS

Reliability Analysis aims to evaluate the probability ofltae, i.e., the probability that the system response does
not satisfy a performance criterion. In (Schuéller, 200Tational treatment of uncertainties in structural mecbgni
and analysis is presented, in (Schuéller, 2001) some dawelnts of computational stochastic mechanics and analysis
are reviewed. The system under analysis takes into accandomness (see Section 4). and a performance, or failure,
criterion is defined using &1 (see Section 3).. It should be noted that if there is more timanfailure criterion, each of
them needs a different reliability analysis.

The functional relationship between the performancerioiteand the random variables can be expressed as a perfor-
mance function (Haldar and Mahadevan, 2000), as follows:

Z =g(X), (17)

whereX is the random vector composed by the random variables ofrtitdgm. The failure surface or the limit state is
defined byZ = 0, and the failure occurs wherd < 0. The probability of failure is given by (Haldar and Mahadeva
2000; Rackwitz, 1991; Sudret and der Kiureghian, 2000):

PF(X) = / . fx(x)dx, (18)
g
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in which fx is the PDF of the random variabl, and the domain of integration is defined by theget 0 = {x :
g(x) < 0}. To evaluate the integration in Eq. 18 is equivalent to dateuthe probability of failure of the system under
analysis. In general, the PDF is almost impossible to ol@atheven if it were known, the integration above would not
be easily calculated (Haldar and Mahadevan, 2000). Thelatdonte Carlo Method is a non-intrusive and well-suited
method to calculate the failure probability. It is calcelhfrom the sum ofV realizations of the random variah}e for
which a failure occurs amond runs, as follows:

N
. 1
PF = ; Ly<o(X5), (19)

where PF is an unbiased estimator 6TF(X), Eq. 18. Eq. 19 means that the probability of failure can lenesed

as a ratio of the number of runs that lead to failurg, and the total number of the runs performété’ = n;/N.

By the Central Limit theoremP F' has approximately a normal distributidi(PE, N~V ar(PF)) for large N, where
Var(PF) can be estimated via the sample variance unbiased estin$dter (1/(N — 1)) Zﬁvzl (PF, — PF), with
which we can estimate a confidence interval (Rubinstein aioé$€, 2008). The disadvantage of the direct Monte Carlo
sampling is that whe®? I is small a very big number of simulations may be necessargdovergence. For instance, if
PF =103 itis necessary an averageldfo0 simulations for a failure to happen.

6. NUMERICAL RESULTS
6.1 Deterministic response.

For the numerical tests, we consider a semi-infinity clanmpeldas shown in Fig. 2.4n which =4 m, L; = 2.4 m,
b=0.02m,h =0.02m, E = 210 GPa, p = 7850 kg/m?, andn = 0.001. A pulse is applied at = L from the clamped
node and the crack is at= L. Eq. 7 shows the dynamic stiffness used to model the healthand Eq. 8 was used to
model the dynamic stiffness of the cracked rod. We consliectack with depth equal @ = 0.15 of the height of the
rod and Eq. 5 is used to calculate the dimensionless fornhéltacal flexibility,o.

The analysis was carried out for two different bursts, thaterxconstructed using a sine function with frequegey
kHz and100 kHz with 10 N of amplitude. It is important to apply a suitable windowingprder to obtain a narrowband
burst. This is important for the damage detection procesdesn the measured data is usually polluted with broadband
noise. The triangular window is built withO sine periods width, for each excitation frequency, andltesue show at
Fig. 2(a) and Fig. 2(b).
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Figure 2. Mean Model. Applied input force for a damage andamalged rod. (880 kHz (b) 100 kHz.

Figure 3(a) and Fig. 3(b) show the time response at L., the same location of the excitation burst, for the damage
and the undamaged rod. Note that the firdtms the rod response while the burst is being applied , so tieetha same
for the damaged and undamaged rod.

The applied excitation creates longitudinal propagatiames. For the healthy rod, this burst travels over the siract
and it is observed again at= (2 x L)/C, = 1.55 ms, whereC, is the velocity of propagation of the wave, and after
it is dissipated at its infinity side, modeled by the throvi-e@lement, Eq. 2, conducting energy out of the system. Note
that its amplitude is smaller only due to the structural demgp). Otherwise, for the damaged rod, note that Fig. 3(a)
and Fig. 3(b) show two more bursts, related to the crack. Wherpropagating wave reaches the crack location, it is
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partly transmitted and partly reflected, due to the abruphgle at the local flexibility. If there is no crack, all the eme

is transmitted over and no wave is reflected. The larger thekatepth the less energy will be transmitted across thécrac
location. Then, the crack depth establish the amplitudeeféflected and transmitted wave. Note that the first rediecti
isatt =2 x (L — L;)/Cv = 0.6 ms. The wave that was transmitted across the crack reacheathped side and then

it is totally reflected. This is observediat (2 x L+ 2 x L,)/C, = 2.5 ms. Afteritis dissipated at its infinity side. Eq.
10 was used to calculate the damage indexgfer 0.15, beingDI = 0.0014 for 100 kHz and DI = 0.0006 for 80 kHz

for the depth crack.
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Figure 3. Mean Model. Time response for the damaged and usgieairod for the different excitations: (a) 80 kHz and
(b) 100 kHz.

Figure 4 shows the influence of the crack deptidtfor the different frequency excitation, using ten perioste
that for the100 kHz excitation the DI has a bigger sensibility to the crackttiewhat is reasonable because the bigger
the frequency of the wave traveling over the rod the smatawavelength, and the bigger its sensibility to small disfec
For frequency excitations bigger that0 kHz, high order rod theories are required (Doyle, 1997).c8péCracked Rod
Finite Element for higher order rod theories can be foundraini€zuk et al. (2006a,b) and Pereira (2009).

6.2 Reliability analysis.

A @ = 0.15 crack depth andh = 0.02 m were used in Eq. 5 to compufe Fig. 5(a), Fig. 5(b) and Fig. 5(c)
show histograms built using), 000 MC simulation for three different values of the coefficiefvariation,do = 0.05,
0o = 0.1 andde = 0.2, respectively, using burst shown at Fig. 2()I for nominal model, Eq. 11, is shown in green
andDI for estimated mean is shown in red. Tab. 1 summarize thigtsesu
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Figure 4. Sensibility oD for different crack depth and frequency excitation.

| de =0.05 do =0.1 do = 0.2 Nominal
DI | 1.38x 1072 140x 1073 144 x 1072 1.38x 1073

Table 1. Comparison betwedn/ obtained for the nominal model and the estimated valueh®ontean.

There is a correspondence between a crack deptind aD1I for a given excitation (Fig. 4). Then a chosgteads
to a value forDI so that three different crack depth were used to establibhestiold for the DI as the failure surface,
Eq. 17:a = 0.16,a@ = 0.17 anda = 0.18. Excitation shown at Fig. 2(a) and Fig. 2(b) are used leattifg/ = 0.00011,

DI =0.00016 andD1I = 0.00021 for 80 kHz andDI = 0.00186, DI = 0.00245 and D1 = 0.00319 for 100 kHz. Note
that X is reduced t®. A coefficient of variationg = 0.1 is chosen arbitrarily to perform the analysis. Convergence
results are summarized in Fig. 6 for the Failure Probabiiitynd after20, 000 Monte Carlo simulations, and results for
both excitation frequencies were the same, so one of thenomiated.

For aa = 0.18 threshold there were no failure events. The probability ofeeck depth being bigger than= 0.18 is
close to zero. Fora = 0.17 the probability of failure isPF' = 0.085% and for az = 0.16 the probability of failure is
PF = 6.87%. This analysis can be carried out for different dispersiarameterso, meaning better (littléo) or worse
(big 00) modeling.

Tab. 2 summarize this results. They can be analyzed in oodeesgess the robustness of uncertain crack model. The
simulated cases show that, foma= 0.15 mean crack depth ani, = 0.1, the probability of the crack depth being
bigger tharz = 0.18 is zero. It means the MC sampling was not able to simulatergalyfor the crack depth bigger than
a = 0.18, so the failure probability is less thdr20, 000 (see, Eq. 19), not exactly zero.

| a=016  @=0.17 a=0.18
PF | 697x102 850x10~*  0.00

Table 2. Calculated”F for the different strategies.

7. CONCLUDING REMARKS

In this paper a probabilistic modeling of the flexibility atéd to a crack in a rod has been presented. In this analysis
only the flexibility of the crack has been considered undertA wave propagation-based method, SEM, has been used
to model the dynamic deterministic problem and the Castiglis theorem and fracture mechanics theory have been used
to associate a crack depth to a local flexibility. The undetitss of the problem have been modeled with the probability
theory together with the Maximum Entropy Principle, whidlowas to use only the available information to construct a
probability distribution compatible with the physics oethroblem.

The modeled flexibility can be considered uncertain dueeaiticertainty associated to its parameters, and also to the
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Figure 5. Histograms for DI usin2), 000 MC simulation (a)je = 0.05, (b) e = 0.1 and (c)de = 0.2. DI
for nominal model is shown in green afi mean is shown in red.

uncertainty associated to the own model. The dispersicanpeters can be interpreted as better (liith¢) or worse (big

de) modeling. For a given mean crack depihthe influence of different coefficient of variatiofy, is analyzed using
histograms forD I and results for estimated mean value/af are compared to the value obtained using nominal values
of the model.

Anindex DI, that compare the non-cracked structural behavior wittctheked behavior, has been used to quantify
the damage related to the crack at a specific (deterministialion. A burst is applied at one point of the rod and it is
reflected at the crack location. This phenomenon is usedtexine damage. Better results are obtained to determine
the damage location using the FRF at different points ad¢hesstructure, as shown at Banerjee et al. (2009).

A reliability analysis was performed in order assess theisoiess of the given crack model to predict a crack depth,
increasing the prescribed limit threshold for thé until no failure occur, given whem = 0.18. For a giver andde, this
analysis gives the probability of a measured signal, hetailndd by a simulation, be related to a crack depth. Differen
frequency of excitations are used to built the bursts ansliitoted that the useB 1 is very sensitive to this, however it
had no influence at the probability of failure to differemtasholds. The simulated cases show that there is no prdiabil
of the crack depth being bigger than= 0.18 and that there is a little probability of the crack depth lpeiigger than
a=0.17.

The direct MC sampling was used as the stochastic solveralvery expensive methodology, but the SEM approach
to modeling a cracked rod minimize the computational efftotperform the simulation. A compl@« 2 matrix is able to
represent the problem, with the advantage of using theactkalytical solution, well-suited with the wave propamat
approach used at structural health monitoring.
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Figure 6. Probability of Failure convergence for differémiture surfaces = 0.16 (upper),a = 0.17 (middle) and
a = 0.18 for both frequency excitations.
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