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Abstract. The present work deals with the hybrid numerical-analytical solution of the developing turbulent flow within
parallel-plate channels through application of the Generalized Integral Transform Technique (GITT). The turbulent
flow is analyzed using four turbulence models that employ the eddy viscosity as the transported variable and is adopted
the stream-function formulation. The main goals are to make available a hybrid general approach for evaluating all
kinds of one-equation turbulence models, generalizing previous works based on the integral transforms that made use
of simple algebraic and one-equation turbulent kinetic energy-based models, as well as to progress toward future
implementations of more general and more complex turbulence models, as pointed out in the literature on this field of
research. Velocity and friction factor potentials are evaluated for Reynolds number ranging from 35000 to 50000,
illustrating the versatility of the GITT approach in address problems where strong coupling and non-linearities are
inherently present. Analyses of convergence for the evaluated potentials are shown, and critical comparisons between
experimental and theoretical results are performed. Finally, it is concluded that the present methodology could be
employed as an appropriate benchmarking tool in evaluating the abilities of new turbulence models, as the
overshooting velocity phenomen intrinsically present in this type of flow, or in predicting the main characteristics of
turbulent channel flows, due mainly to its hybrid numerical-analytical nature.
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1. INTRODUCTION

Despite the recent and progressive developmenté&réct simulation of turbulent flows, the concefitReynolds
averaging, and the associated turbulent modelinglésure, still remains as a practical tool inieegring simulations.
Furthermore, the development of techniques forisglhthe transport equations governing the convedi¥fusive
problems is a well defined field of research intbebntexts of applied mathematics and physicalnseie. The
literature that addresses this issue (modelingsahation) is in continuous development and sevpuakly numerical
techniques have been employed to solve the hightylinear equations that govern this class of fl§Wslcox, 1994;
Frisch, 2001; Rodi and Fueyo, 2002; Davidson, 20Bifjally, with the successful development of tiybrid method
called Generalized Integral Transform Techniqud FTG(Cotta, 1993; Cotta, 1998; Cotta and Mikhail@®97; Santos
et al., 2001), a new approach has been firmly estaldishibe integral transform method is a spectral-tigmhnique
based on eigenfunction expansions that blends ébeibgredients of both analytical and numericahtéques, being
currently employed in all fields of engineering wheonvective and diffusive effects are presents.

Therefore, following previous successful impleméntes of this methodology on turbulent channel flanalysis
who made use of simple algebraic and one-equatibrtitbulence models (Pimentel, 1993; Lima, 1998n&, 2000;
Pimentel and Lima, 2001), the present work progregeward future application of the GITT by emptayimore
universal and general turbulence models, following trend of literature in this field of researdthen, four one-
equation turbulence models based on a transposgtiequfor the turbulent viscosity were tested ie ffresent work,
namely: the model developed by Sekundov (1971)ntbdel by Baldwin and Barth (1990), the model amohe of its
variations due to Spalart and Allmaras (1992a 2b9B094) and the model developed by Menter (1997).

Although employing the eddy viscosity concept, thewdels are designed to be more general thandh&mown
one-equation K-L turbulence model, since they dbrequire any “a priori” additional explicit lengtécale, as it is
required by the K-L turbulence model, but only drensport equation for the turbulent viscosity or & turbulent
variable directly related to the eddy viscosity.eféfore, since they present computational stabdityilar to the
algebraic ones, and are of easy numerical impleatient this type of turbulence model has recendiingd attention
from the scientific researchers in this field o$earch. Besides the previously cited, others istirg eddy viscosity
transport equation turbulence models can be fonrdeie and Kovasznay (1968), Gulyatal. (1993), Vasiliewt al.
(1997) and Naganet al. (1997).
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Within this context, the aim of the present work tigee-fold: first, investigate the numerical bebavof
convergence rates of the employed eigenfunctioramsipns in representing velocity, turbulent visgosind related
potentials. Second, as explained before, extendppécation of the GITT method by using more coempiurbulence
models, making available a hybrid general apprdackvaluating all kinds of one-equation turbulemeadels. Finally,
verify the main capabilities of the employed tudmde models in representing, with some degreeafracy, the main
features present in a developing turbulent chafiogl, based on a hybrid approach that, throughditect and
automatic control of global error, is presentedms of the best methodologies for benchmarking qaesg.

2. MATHEMATICAL FORMULATION

It is considered here the steady state turbulewmldping flow, of an incompressible fluid, withinparallel-plates
channel of height 2b. Fluid enters the channel ungform and parallel flow conditions, and it issamed that
transition laminar-turbulent occurs straight at tinéet of the channel. Since previous works basedirdegral
transforms had demonstrated its advantages, mj@oyed the streamfunction-only formulation.

So, under the previous assumptions, the goverrnmdary layer equations for the streamfunction thedrelated
turbulent transport variable are written as:

3 3 2
oy oy _a_‘»”a‘//—i{a[(hut)a—wﬂ : O<y<l, x>0 1)

dy gxay? 0x gy dy|dy ay?

awor_owor_a[( 1, % R |
Oy 0x [1)4 ay _ay|:(0'd +0’£]ay:| +PD 0<y<l, x>0 2

These equations are submitted to the inlet anddemyrconditions:

Y@Oy)=y
oy _ . _ ]
szo_o ; x=0, O<y<1 (3-5)
RO,Y)=Re(y)
Y(x0)=0
Yx1n=1

%y oy
Pl 5 =0 — . e - = -

, ¥y=0, x>0 ; =0y, y=1, x>0 (6-11)
ayz y=1 oy y=1
dR -0 R(x,)=0
ayy:O

2.1. Turbulence Models

The variableR used in the previous formulation was employed gsrgeral transport turbulent variable in order to
generalize the present approach for different aneton transport turbulence models. The last tennthe turbulent
model equation, PD, represents the production assipation contributions of each specific turbukenmodel.
Therefore, any one-equation turbulence model canrfiten as Eq. (2).

As previously introduced, the eddy viscosity tramspnodels that were tested are due to Sekundox1(19 SE*
model, who developed the turbulent viscosity défdéral equation on the basis of the kinetic-enebgyance of
turbulence, being mathematically described foptdicases in Vasilieet al. (1997); the model due to Baldwin and
Barth (1990) — BB’ Model, who developed their model from the two-dipraK-¢ model and a number of additional
simplifying assumptions, being easily found in Wic(1994); three versions of the model due to Sp&lemaras
(1992a, 1992b, 1994): SR SA? and SA*, who, by the belief that generating a one-equatimulel as a simplified
version of the Ke model was not the optimal, developed their modeleld on empiricism, arguments of dimensional
analysis and Galilean invariance; and, finally, timedel developed by Menter (1997): RiEModel, who, by
reexamining and establishing a firm connection letwone- and two-equation models of turbulenceeldped his
one-equation transport model in a similar sensgoas by Baldwin and Barth (1990).

The functions and constants characterizing eatfukeince model are described as follows.



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil

a) Sekundov Model (1971) — SE ModelR=v;

g4=0=10, o, =0; =0.5, PD = R{O.Zal’ —3R+250} ,
sz
12)
R)? R
52 (gj +1.4(§)+ 0.2
r=re’? a- , Sw=(1-Y)
oy° RY 14 R)a10
8 B '
b) Baldwin and Barth Model (1990) — BB Model: R= IiT
_ o 1 _(Ce2-Cy)yCy
VT—C/JRDlDz, Jd—a—l.O, 0_—8— Kz s
C, =0.09, k =0.41, Cq=12,
2
_ _ ~ ., 1avroR _ 0%y
C.p =2.0, PD =(Cgp f2 —Cs1)J/RP 2% 5y dy P—R@Vt(ayzj ,
(13)
f —& + (1—&)( 1 +D1D \J \/ﬁ + Y+ &ex —ﬁ +& ex —ﬁ
27 Cp Coo iyt 72 2T /oD, | A A A A
Y* Y*
D1=1—exp{—E], D, =1—ex;{—¥ , Ay =26,
A =10 Y* =Re(l-y Uy = f 1 0%
- 1 - T T = . DA~ o
Re gy? y=0
c) Spalart-Almaras Model (1992a, 1992b, 1994) — SA Mell R= y
Vi =fux g4 =0, —0—2 fu = X Cp=73
t— X d=0s=0=3, V1= , =19,
I 3 )(3+C\:;1
5 Cor [y 2
PD =Cy (1- fio) Sy + 22| X | — ¢ [ ] . C, =0.1355, C,, =0.622,
oy \ 0y d
(14)
. _Cn ,1+Gy - X _|0%y] _
d=@A-vy). CM—K2+ oq S—Sf\,3+K20|2 fyo . S= o7 kK =0.41,
_ | 1+C¥s s _ 6 __ X _ _

Depending on the version adopted, the following:fioms must be chosen:
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fio = ctsexp(—cm)(z) b fe= 1‘% ; fig=11 = SA? . (15)
1 (1+ fvl)()(l‘ fu2)
0 3 SAM
(1+x/C2) d
where,
Cs=1.1, C, =20, C,, =5.0

The two first versions can be found in the origipaper of Spalart and Allmaras (1992), while tst tane can be
found in the work of Deckt al. (2002).

d) Menter Model (1997): R=p

(nY
v, =D,1 , o4=0,=0=1, D2=1—e(A‘K] , At =13, k=0.41,
PD=C, D;7S- C,E,, C, =0.144, C,=1.71, D, = Dé’zril, (16)
o]0 c eb i e ) e, =7 c (MT e . 10S3s
=l— , = an — , =7, = =1 , - —
ayz 1e 3-BB c% EBB BB ay k e 82 ay ay

The following dimensionless groups were employetheabove problem formulation:

X1 _y _d _u
*“ b Re’ =% d=% T
_V* _ P* _K* _Uob
v=—Re, P=—ro, K==, e=—, (17
Uo pus ug 4
Vv K 3( T 2 v 7
e _Kee _3( 1 -V 7
e Kec 0 2(100} ’ A=y d

2.2. Turbulent Inlet Condition

To close the system, the turbulent variable prdadiidhe channel inleRg(y), has to be specified. The ideal inlet
condition would be that one experimentally obtainddwever, since no experimental information isikmde, it is
employed a procedure where the turbulent viscgsitfile described by the K-L turbulence model (Wgbtein, 1969)
is made equal to the turbulent viscosity of eachulence model used in the present work. The ikpytparameter in
this procedure is the inlet turbulence level atdhannel centerline,., ranging from 0.1% to 0.8% (Lima Neto, 2006).

For the turbulence models used, the following hioear equations are obtained, which were numédyicailved
through subroutine DZBREN (IMSL, 1991) with a pnélsed relative error target of @

Vi
C,RD;D K’ 3. 2
u " D1Da _ _ o

= Vi s Vik. —ReC i« 1, Ké2 K, =—&=g=2| e |
fax tKL tKL uKL £ u =2 2(100j
Y

(18)
C=(a-y)|1-ehR ] R =Re(1-y)K[2 , A, =0.016, Cu =0.22
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3. SOLUTION METHODOLOGY

According to GITT approach, in order to improve eergence rates, it is employed a filtering procediar the
streamfunction expansion, which homogenizes thetbaty condition at the wall:

WX y)=@Xy) + e (y) (20)

Here, ¢x(y) is the fully developed turbulent flow profile, tained through application of a simple algebraic
turbulence model, as that one developed by EmeahyGassner (1976) and used by Lima (2000).

After that, it must be chosen auxiliar eigenvaluebtems, which form the basis for the integral sfanmation
process. Such eigenvalue problems are homogeneawsisns of the original problems, and can be faardma Neto
(2006). These eigenvalue problems permit defingtiohthe following inverse/integral transform pairs

[o0] B _ _ l~
AxY) =D N NAK) | a0 = [ ¥ axyay (21, 22)
i=1
0 5 _ _ l B
RO, =D GRM | R09= | GIRKY)dy (23, 24)
2

Finally, accounting for the eigenfunctions orthoglity properties, integration of Eqgs. (1-5), acdngdto integral
transforms formulae, Egs. (22) and (24), yieldsftiewing coupled infinity ordinary differentialguations system:

ZAKZ—% =B, i=1,2, 3, ... ¢ (25)

o0

drR dg .
Zeﬁk dxk - Z i g = Br . i=1, 2,3, .. (26)

Submitted to the initial conditions:
_ 1.
4= [ Y[y-vev]dy . 1=1,2,3 .5 (27)
_ 1.
R (0) =joci R.(y)dy . i=1,2,3, .9 (28)

The above coefficients, resulting from the integrahsformation process, are defined as:

Ak =[Cie _DikF]"'Z[Ajk - 3jk]€_01 ; Gk =Gikr +ZGijk(7'] ; Hjj :ZHijk Re
k=1 = k=1
(29)
Bp= 4%+ Er * Bue i Br=-, KR - B+ PD
[ i iF VF R o4 i o, VR
1. 1 1. ..
A = . YiYiYdy ; Bijk = . YiYjYidy ; Cikr =_[ Y YkWe dy
1. . 1.
Dixr =_[ YiY @ dy; Er =_[0Yi Yedy ; Bur -J Yi Vt ‘H//F (30)
1. .., ~ o~
Gij —J. C YGedy ; Hijk :J.o GY;Cedy ; Gikr :J.OCiGK‘//de

- 0R — 1.
EﬁvR=IOCithdy: PDi =[G PD dy
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4. RESULTS

To solve the coupled system given by Eqgs. (25)2®),(a program was written in Fortran 90 languagd a
implemented on a two-processor 3.0 GHz Intel Xeompmuter. In order to obtain numerical results, ¢lxpansions
were truncated to finite ordefdg and NR, and a relative error criterion target of ®.vas imposed to subroutine
DIVPAG from IMSL (1991), which is appropriate tolge stiff ordinary differential equation systems.

Results for the main potentials, as longitudindbegity component and friction factor, are illustgdtfor different
Reynolds number. Where not explicitly cited, abulks are showed by consideriNg= N¢g= NR = 225. Also, for all
but Menter turbulence model, it was consideredrafotm profile for the turbulent eddy viscosity debed by the K-L
turbulence model at the channel inlet, that isap, £xpressions faf, andR; in Eq. (18) are evaluated at the channel
centerline and, unless specified, for turbuleneell&. = 0.8%.

The first behavior to be analyzed in a turbulencelehis its ability to reproduce the universal lafathe wall in the
fully developed flow region. Therefore, Figs. (la)d (1b) illustrate some comparisons for the lamjital velocity
component, in wall coordinates, among the resuttdyced with the present approach employing théerdifit
turbulence models and the universal law of the walicribed by Arpaci and Larsen (1984) for Reyn@84.0° and
48<10°, respectively.

30 3C

Re = 4&10°
1=0,8%

] Re = 3510}
25 1=0,8% o 25

O O O Universal Law - Arpaci & Larsen (1984)
Present work - BB® Model ( = 0,15%)

——————— Present work - SA%4, SA%> & SA% Models
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Figure 1. Longitudinal velocity profiles, in walbordinates, for different one-equation turbuleneelets
at the fully developed flow region: (& = 3%10® and, (b)Re = 4810°

As one can see from these figures, despite the eMembdel overestimates (underestimates), for loighfh
Reynolds numbers, the longitudinal velocity on teatral (outer) region of the channel and on tigatithm layer, all
other models satisfactorily agree with the univelsa of the wall. For this field, these resultsifgoout the models of
Baldwin and Barth (1990) and Spalart and Allmaf9@, 1994) as the best available choices.

The previous results suggest that a convergencavimhshould be done in order to better charactetiz
turbulence model and better qualify the hybrid rodthdopted in the present work. Since the hybridreaof the GITT
approach allow for the filtering process, the fullgveloped region is almost automatically satistisdthe algebraic
turbulence model used in that region brings mosiydical features present in a turbulent chanmaif{lEmery and
Gessner, 1976). So, unless the one-equation mddpted does not have good predictive capabilitab; a few terms
will be required for a full convergence of the @ifimction expansions in the fully developed region.

Therefore, Tab. (1) shows the convergence behafithre longitudinal velocity component for diffetaransversal
positionsyy, at axial positiong /D, = 5. The following values were employed for theneneersal coordinateg, 0.0, 0.7,
0.97, 0.995 and 0.997, which approximately corraedpto dimensionless distance to wall, or turbulBetynolds
number,y’, of 1700, 500, 50, 8.5 and 5.0, respectively, peypical values used in a wall-bounded turbulemirigary
layer analysis as can be visualized in Figs. (hd)(ab).

From this table, one can see that, although th@ergence rates are lower in the near the wall rethan in the
outer region, it can be considered that, at lethsge significant digits are already converged tfee longitudinal
velocity. Then, any deficiency that would be attitéd to the numerical methodology is avoided.

The great efficiency of the GITT approach is easdyified by the low order eigenfunction expansiequirement
to represent the main behavior of the flow, sindi yust N = 50 this is easily attained. However, in ordeptoduce
results that could be considered benchmarks, arbethvergence analysis should be done. This stiitiype done in
future works, when more consistent results wilhtede available.
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Table 1. Convergence behavior of the velocity comemo,u(x,y), at different transversal coordinate fofD, = 5

u(x' / D, =5,y)

Y 0.0 0.7 0.97 0.995 | 0.997 0.0 0.7 0.97 0.995  0.997
(y*) (~1700) (~500) (~50) (~8.5) (~5) (~1700) (~500) (~50) (~8.5) (~5)

N SE" Model BB Model (7 = 0.15%)

50 | 1.095 | 0.9993 05904 0.2940 0.1913  1.066 1.005 7020. | 0.3560  0.2330
100| 1.071 1.011  0.6588 0.3458 0.22]17 1.066 1.006 7008. 0.3524  0.2303
150 | 1.067 1.013 0.6692 0.3678 0.2440 1.066 1.006 6998. 0.3486  0.2267
200 | 1.067 1.013 0.6700 0.3669 0.24]14  1.066 1.006 6990. 0.3476  0.2257
225| 1.067 1.014 0.6706 0.3663 0.2386  1.066 1.006 6987. 0.3476  0.2260
N SA’* Model SA™ Model

50 | 1.065 1.013 0.6884 0.3578 0.2344  1.065 1.013 8836 0.3578 0.2344
100| 1.062 1.015 0.6931 0.3680 0.24]17  1.062 1.015 6920. 0.3680  0.2417
150 | 1.063 1.015 0.6919 0.3628 0.23%9  1.063 1.015 6918. 0.3627 0.2359
200| 1.063 1.015 0.6917 0.3606 0.2305  1.063 1.015 691G0. 0.3606  0.2304
225| 1.063 1.015 0.6915 0.3610 0.2293  1.063 1.015 691@.  0.3609  0.2293
N SA™ Model ME®’ Model

50 | 1.064 1.014  0.6879 0.3576 0.2343  1.055 1.049 553.6 0.3329 0.2224
100| 1.061 1.016  0.6938 0.3682 0.24]19  1.059 1.048 6498. 0.3394  0.2227
150 | 1.062 1.016  0.6935 0.3627 0.23%8  1.062 1.048 6378. 0.3382  0.2232
200| 1.062 1.016 0.6939 0.3603 0.2299  1.064 1.057 613@. 0.3062  0.2042
225| 1.062 1.016  0.6938 0.3607 0.2288  1.065 1.060 6018.  0.2939  0.1978

Also, from Tab. (1), it is clearly observed thatiedo the simplicity of the flow analyzed, there aot any explicit
advantages in using either version of the SA moffgmlart and Allmaras, 1992a, 1992b, 1994). Qdtathe main
differences could be felt in complex flows to whitie modifications were initially thought. For exale, the functions
f.» and fg in the SA* version were introduced to avoid poor convergasfdae residual turbulence near reattachments,
and the functioris in the SA?° version should be employed when making Navier-Siehased predictions with aim in
laminar/turbulent transitions study. In generdlnabdels predict similar results for the longitualinelocity at this axial
position. However, it seems that Menter model dlagtthe mean velocity profile more than the othmerso

Then, to better see this behavior and, additionaliydy the predictive capability of each turbulemsodel, Figs.
(2a) and (2b) show transversal profiles of the itutinal velocity component at some axial positicaeng the
channel. These positions characterize the typin&laece and interaction zones in a developing oblaftow. The
results are illustrated only fé&te = 3510° and are plotted against the experimental datayofié®t al. (1969-1970).

u(x.y)
u(x.y)

Re = 3510° Re = 3510°

1=0,8%

Experimental - Byrne et al. (1969-1970)
Present work - BB Model (t = 0,15%)
Present work - SA%23, SA92 & SA% Models
Present work - SE™* Model

Present work - MES” Model

-
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Yp= 1y

g
o

1=0,8%

Experimental - Byme et al. (1969-1970)
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Yp=1y

I
o

Figure 2. Transversal profiles of the longitudimalocity component for different one-equation tudmee models
andRe = 3510 at different axial positions along the channe):Hatrance region and, (b) Interaction region
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Figure (2a) shows the flatness of the Menter maslelot so important, since this behavior is onlyified in
regions very near the entrance, being smearedeafiotiv develops along the channel. According tcs¢éhégures, all
turbulence models agree satisfactorily with theegxpental data of Byrnet al. (1969-1970), on both entrance and
interaction regions, indeed validating the presgmroach. However, as the interaction and fullyettaped regions are
reached, it can be seen from Fig. (2b) that théeckme velocity is somewhat underestimated byatlMenter model.

Therefore, to have a better insight on this behavigs. (3a) and (3b) bring the developing behawab the
centerline velocity foRe = 35(10° andRe = 4&10°, respectively, making a comparison among therdisturbulence
models. Comparisons with the experimental datayeBt al. (1969-1970) and Dean (1972) and with the numkrica
results of Stephenson (1976), who used the twotenu-€ model and the finite difference method, are alsalen

< -
4 Re = 35%10° S 4 Re = 4&10°
1.00-4 1=0,8% 1.00 1=0,8%
L . Experimental - Byrme et al. (1969-1970) L . Experimental - Dean (1972)
] Finite Diference - Stephenson (1976): k-€ Model ] Finite Diference - Stephenson (1976): k-€ Model
0.90 Present work - BB Model (t = 0,15%) 0.90 Present work - BB% Model (t = 0,15%)
] —————- Present work - SA%4, SA% & SA% Models =+ Present work - SA%2, SAY & SA% Models
E - == Presentwork - SE™ Model L Present work - SE” Model
E [, Present work - MES” Model E -+ Present work - MEY Model
Oy o o L R L MR RN R AR RARENRERRE RRRR O o o N N R R R R R R AR ERRRRERRRE
0 5 10 15 20 25 30 35 40 45 50 55 60 0 5 10 15 20 25 30 35 40 45 50 55 60
XpH XoH

Figure 3. Non-asymptotic behavior of the centerliatocity development along the channel for différe
one-equation turbulence models: Re)= 3510° and, (b)Re = 4810°

At the region near the entrance of the channelmaliiels agree well with the experimental results.t@e other
hand, as the interaction and fully developed flegions are reached, the Menter model over pretlesresults
produced by another ones, confirming the tenderlisexved from Figs. (2a) and (2b). However, when intala
comparison with the experimental results, the aéngevelocity is well-represented by this modeting considered
the best model. In general, it could be concluded the ME’ model yields the best predictions for this potnti
although BB® and SA models offer better predictions in posgimear the entrance region. The value of the pedk a
its position at the longitudinal axis are correghedicted by the BB model, but the fully developed flow prediction is
the worst. It seems that MEmodel tends to shift right the position of the teeline velocity peak.

To make a deeper investigation on the turbulenceleingroperties, Figures (4a) and (4b) illustratailsir
comparisons for the longitudinal velocity componahtransversal positions near the channel wat 0.8 andy = 0.9,
respectively, foRe = 3510°.

1.1¢ 1.1¢
] Re = 3%10°
Re = 3510°
= v
1=0.8% 1.05 1=08%
- L] Experimental - Byrne et al. (1969-1970]
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1 f - : k-
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Figure 4. Non-asymptotic behavior of the longitudirvelocity component along the channel for défer
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From these figures, near the channel wall, the’'Miiodel loses adherence to the experiments at theairtions
region. The shifting behavior is still verified #s fully developed region is attained. For the’BBiodel, the fully
developed region is not so well represented, lsubverall prediction characteristics is maintainEde best turbulence
model seems to be the SA model. The results forSAemodels were obtained imposing a null profile the
turbulence viscosity at the inlet. This is an ebes@lproperty a turbulence model would have, sexq@erimental data is
not normally available. Now, the good predictiongperties of the K& model begin to appear.

Figures (4a) and (4b) bring a comparison betweemenical and experimental results for the fricticactbr
development along the channel. This potential ésrtiost difficult to converge, as it has in its difon the gradient
velocity at the wall. Experimental data are exedcrom Marriot (1967), foRe = 3510°, and from Dean (1972), for
Re = 4&10°. Purely numerical results were found out from Sesson (1976).
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Figure 4. Non-asymptotic behavior of the fricti@ettor development along the channel for different
one-equation turbulence models: Re)= 3510° and, (b)Re = 4810°

The same intrinsic non-asymptotic behavior viewadttie longitudinal velocity is also verified anaidied for the
friction factor. Again, differently of Figs. (2and (2b), and similarly as Figs. (3a) and (3b), F{gs) and (4b) show
that BB and SA turbulence models yield results that afeeiter agreement than those of ¥Eodel.

5. CONCLUSIONS

Under the previous panorama, it can be concludatitie non-asymptotic flow behavior, present inaleping
turbulent channel flows, is extremely difficult be reproduced, even the two-equatior Krodel used by Stephenson
(1976), which would be more general, was not ableotrectly predict this phenomenon with deep aamcyrin relation
to the present one-equation eddy viscosity turtndenodels, overall, the Baldwin and Barth (199@) toe Spalart and
Allmaras (1992a, 1992b, 1994) models present adh#se choices to develop a study on numerical ptiggeof a
developing channel flow, and their properties vl used as base for future implementations of nashkeanced
turbulence models. The best predictive propertiethese models are the no requirement of any ekpdingth scale
and the incorporation, in their formulation, of iarfant terms that could be necessary in more cotffoes. For the
Sekundov (1971) model, in spite of being an oneaqo turbulence model of simpler implementatidrd@es not use
so many functions and constants), it does requipeeacription of an explicit length scal§,, and therefore, loses
universality. Related to the bad predictive capidsl of the Menter (1997) model, at its favor densaid that it was
not developed to be a true turbulence model, ksittpubetter explain the close relation between and two-equation
turbulence models. Indeed, Tab. (1) indicates thizdel requires more terms on the expansions foretterb
convergence.

To close this theme, it should be pointed out timatloing simulations of turbulent flows, it is aramon practice
by numerical codes to limit functions in productiand dissipation terms of almost all turbulence et®dFluent,
2003). This practice was not adopted in the presenk, since we are interested in demonstrateuatierical behaviors
present in each turbulence model.

Finally, turning to the GITT approach, althougheger study of convergence behavior has to be madég face
of the results presented, it can be re-affirmed itheonstitutes as a good methodology to be usetlirbulent flow
simulations due mainly to its analytical charaeted easy of numerical implementation.
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