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Abstract. The study of the magnetohydrodynamic (MHD) flow and heat transfer has important applications in such 
devices as MHD generators, nuclear reactors, and in metallurgic and aluminium industries as well. Therefore, a 
hybrid solution is obtained through the so-called Generalized Integral Transform Technique (GITT) for the MHD flow 
with heat transfer of a Newtonian electrically conducting fluid in the entrance region of a parallel-plate channel. The 
flow, modeled through the boundary layer formulation, is sustained by a constant gradient pressure and the magnetic 
field is applied in a direction normal to flow. The magnetic Reynolds number is assumed to be small, thus permitting 
the normal magnetic field to be kept uniform and to remain much larger than any fields in the others coordinate 
directions. Hall and ion-slip effects are neglected. To evaluate the effects of the applied magnetic field on both 
entrance regions (flow and heat transfer), two types of inlet conditions are used: uniform and non-MHD fully-
developed parabolic velocity profiles. Results for the velocity, temperature and related fields are computed within the 
main governing parameters, namely, Reynolds number, Hartmann number and electric field parameter, for typical 
situations. A convergence analysis is also performed showing the consistency of the results. In addition, the present 
results are confronted with those previously reported in the literature showing excellent agreements. Finally, due to its 
hybrid numerical-analytical nature, it is expected that the present methodology could be employed as an appropriate 
benchmarking tool in this kind of physics.  
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1. INTRODUCTION  
 

Starting on the early twenty century, studies on magnetohydrodynamics (MHD), either experimentally or 
numerically,  reappeared on sixties of the past century and, recently, has gained strong attention due main to energy 
needs and environmental issues. MHD pumps and generators, nuclear reactors cooling and reduction cells in aluminium 
industries are some examples of its applications (Shercliff, 1965; Davidson, 2001 and Sutton and Sherman, 2006). Just 
to mention the importance of the theme here studied, recently, important structural and CFD commercial packages, like 
ANSYS/CFX, are introducing in their numerical kernels some Maxwell equation solvers as beta versions that are 
automatically coupled to the structural and/or CFD solvers (ANSYS/CFX, 2009). 

Normally, flow of an electrically conducting fluid inside channels is present in those applications and, therefore, has 
been considered by several researchers for typical situations. Initially, the interest was focused only on flow dynamics 
(Tao, 1960; Malashetty and Leela, 1992). Later, thermal effects were taken into account by studying the thermally 
developing flow under Hartman fully developed velocity profile and constant thermal properties (Nigam and Singh, 
1960; Alpher, 1961). Finally, since some MHD devices (such as those in nuclear reactors) generally operate at high 
temperatures, the main focus on thermally developing flow moved to the study of the effects of variable transport 
properties on flow (Heywood, 1965; Rosa, 1971; Attia and Kob, 1996; Attia, 1999 and Lima et al., 2007).  

Although a substantial improvement had been done in the understanding of the governing physics in a MHD heat 
and fluid flow channel problem through those previous works, it is known that flow within such MHD devices is 
seldom fully developed over its entire length, and large heat fluxes may occur at their entrance regions, quite apart from 
the variable thermal properties influence. Consequently, studies on hydrodynamic developing and imultaneously 
developing of MHD flows became the subject of many investigations for many years. 

Shohet (1961) and Shohet et al. (1962) obtained numerical solutions of the hydrodynamic and thermal entry 
problems on a parallel-plate channel based on the finite difference scheme developed by Bodoia and Osterle (1961). 
Later, Hwang (1962) applied a similar numerical procedure (Hwang and Fan, 1963) and solved the simultaneously 
entry problem by considering a uniform velocity profile at the inlet channel. 
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Manohar (1966) developed an “exact” analysis of the same problem, based on a modified numerical method 
originally developed by Hartree (1949), where derivatives in the x-direction are replaced by finite-differences, while the 
other quantities are replaced by their averages. According to the author, the method employed is more accurate than the 
previous ones as they roughly correspond to the first iteration of its scheme. 

Taking accounting of a parabolic velocity profile at the entry of the channel, Hwang et al. (1966) studied the 
hydrodynamic entry problem and compared their results with those of Maciulaitis and Loeffler Jr. (1964) that employed 
the approximate Karman-Pohlhausen integral method. 

So far, all previous works on entry problem were effectuated by considering constant transport properties. Recently, 
Setayesh and Sahai (1990) extended the simultaneously developing flow and heat transfer problems, showing that, 
under certain circumstances, variation on transport properties with temperature have a significant influence on the 
development of both velocity and temperature profiles. 

As a result of the necessity of analytical analysis on this theme, the main goal of the present work is to develop 
hybrid solutions, through application of the so-called Generalized Integral Transform Technique - GITT (Cotta, 1993; 
Cotta and Mikhailov, 1997; Cotta, 1998 and Santos et al., 2001), for the simultaneously developing MHD flow and heat 
transfer in a channel of plane-parallel plates. At light of its hybrid nature, it is expected the GITT approach is going to 
be a proper benchmarking methodology in this field of research, as will be clear later in the results discussion. 
 
2. MATHEMATICAL FORMULATION 
 

It is considered here the steady-state simultaneously developing of the MHD flow and heat transfer, of a Newtonian, 
electrically conducting, incompressible fluid, within a parallel-plate channel of height h = 2b. Fluid, at uniform inlet 
temperature, Te, enters the channel under uniform and parallel flow condition or under a parabolic profile, which is the 
velocity profile of a non-MHD fully developed laminar flow. The two semi-infinite plates could be at different 
temperatures, Tw1 and Tw2 (this is not done in this work, i.e., Tw1 = Tw2). By considering viscous dissipation, and 
analyzing the problem from wall to wall, the governing boundary layer equations are written as: 
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In the above formulation, the following dimensionless groups were employed: 

 

1 *
2

0

wx x
h u

µ
ρ

=  , 
*y

y
h

=  ,  
*

0

uu
u

= , *

1w

h
v v

ρ
µ=  , 

*
0

2
0

p p
p

uρ
−

=  , 

 
*

1w

µµ µ=  , 
*

1w

σσ σ=  , 
*

1w

kk
k

= , 
*

1

1

w

e w

T T
T

T T
−

=
−

 , 2 1
2

1

w w
w

e w

T T
T T

θ −
=

−
 (13) 

 
*

0 0

z
z

E
E

u B
=  , 

1

1
Pr

w p

w

c

k

µ
=  , ( )

2
0

1
c

p e w

u
E

c T T
=

−
 ,  

1/2
1

0
1

w

w
Ha B h

σ
µ

 =  
 

 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

3. SOLUTION METHODOLOGY 
 
3.1. Streamfunction-only Formulation 

 
For two-dimensional channels, and following orientation of previous works that employed the GITT approach 

(Santos et al., 2001), it is numerically more advantageous use the streamfunction as the solution variable. Therefore, 
from its definition, Eqs. (1) to (12) are re-written in the streamfunction-only formulation as: 

 
3 3 4 2

2
2 3 4 2

Ha
y xx y y y y

ψ ψ ψ ψ ψ ψ∂ ∂ ∂ ∂ ∂ ∂− = −
∂ ∂∂ ∂ ∂ ∂ ∂

   ; 0 1y< < ,     0x >  (14) 

 
2 222

2
2 2

1
Pr c c

T T T E E Ha Ez
y x x y yy y

ψ ψ ψ ψ ∂ ∂ ∂ ∂ ∂ ∂ ∂− = + + +   ∂ ∂ ∂ ∂ ∂∂ ∂   
   ; 0 1y< < ,     0x >   (15)  

 
These equations are submitted to the inlet and boundary conditions: 
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To improve the GITT performance further, the boundary condition at the upper plate, Eq. (22), should be made 

homogeneous. This is done through a filtering process, where the original potential, ψ(x,y), is splited up in a filtered 
potential, φ(x,y), plus a filtering potential, ψF(y), which could be any fully developed profile related to the original 
problem. In this work, it was employed the exact fully developed flow profile. These can be written as: 
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3.2. Eigenvalue Problems 

 
Now, after establishing a proper formulation, it must be chosen auxiliar eigenvalue problems that form the basis for 

the integral transformation process. Such eigenvalue problems are obtained from homogeneous versions of the original 
problems (Perez-Guerrero, 1993; Santos et al., 2001). The following eigenvalue problems were chosen, 
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The solution of the eigenproblem, Eqs. (27) to (31) is specified as: 
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b) For temperature field: 
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Finally, by considering the filtering process and the eigenfunctions orthogonality properties, integration of Eqs. (14) 

and (15), according to integral transform and inverse formulae, yields the following coupled system of infinity ordinary 
differential equations, in x direction: 
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This coupled system is submitted to the following integral transformed initial conditions: 
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The above coefficients, resulting from the integral transformation process, are straightforward defined as: 
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As a first attempt to progress towards a full numerical resolution approach, and in this way, looking for a hybrid 

methodology in a generalized and unified way (for unified code purposes), none of the above integral coefficients, 
which could be in the present problem, were analytically obtained. Those coefficients are obtained through subroutine 
DFEJER from IMSL (1991), which uses Fejer quadratures for numerical integration. 

The main aim is to make available a unified GITT approach that can be employed for all kinds of problems in a 
straightforward way. The robustness of this procedure will be verified in problems where non-linearities are going 
increasing more and more. Depending on the non-linearity degree, the number of points of quadratures, NQR, should be 
further verified. 
 
4. RESULTS 

 
To solve the coupled system given by Eqs. (45) to (48), a Fortran 90 program was written and implemented on a 

two-processor 3.0 GHz Intel Xeon computer. In order to obtain numerical results, the expansions were truncated to 
finite orders Nφ and NT, and a relative error criterion target of 10-8 was imposed to subroutine DIVPAG from IMSL 
(1991), which is appropriate to solve stiff systems of ordinary differential equations like that. Otherwise explicitly 
specified, all results are computed by using N = Nφ = NT = 300. Also, for the present problem, it was adopted a large 
number of quadrature points, NQR = 1000, to guarantee a full convergence of the integral coefficients for all cases 
simulated, independently of the main governing parameter, the Hartman number, although with just NQR = 300 all 
results were already sufficiently converged. 

Results for the main potentials, as longitudinal velocity component, wall velocity gradient (friction factor), bulk 
temperature and Nusselt number are illustrated in graphical and tabulated forms, for different entry conditions and 
different governing parameters, namely Hartman, Prandtl, Eckert and electric field numbers. 

First of all, a convergence study should be done for some difficult to converge case, in order to qualify the hybrid 
methodology adopted as a benchmarking tool. Consequently, Tabs. (1) and (2) bring convergence rate behaviors for the 
centerline velocity, wall velocity gradient, bulk temperature, and mean Nusselt number, at different axial positions, 
considering uniform and parabolic hydrodynamic inlet conditions, respectively. For Fig. (1), results are illustrated by 
considering a case where Ha = 50, Pr = 1.0, Ec = 0.0 and Ez = 0.0 (no viscous dissipation and open-circuited channel), 
while for Fig. (2), it was employed Ha = 20, Pr = 0.75, Ec = 0.1 and Ez = - 0.5 (with viscous dissipation, short-circuited 
channel). These values are taken according to Wang et al. (1966) and Setayesh and Sahai (1990), respectively. Though 
only hydrodynamic simulations were done by Wang et al. (1966), the thermal results are included since the present 
code was developed in a coupled form. 
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Table 1. Convergence behavior of the main flow and heat transfer potentials, for different axial positions. 
(Ha = 8, Pr = 1.0, Ec = 0.0, Ez = 0.0 and non-MHD parabolic inlet velocity profile) 

 

N 10 100 200 250 300 10 100 200 250 300 

x xDH ( )cu x  
0

( , )

y

u x y
y =

∂
∂

 

0.001 0.0375 1.4648 1.4649 1.4649 1.4649 1.4649 8.09824 8.12571 8.12506 8.12497 8.12492 
0.01 0.3750 1.3368 1.3368 1.3368 1.3368 1.3368 10.2582 10.2531 10.2530 10.2530 10.2530 
0.02 0.7500 1.2977 1.2977 1.2977 1.2977 1.2977 10.5696 10.5684 10.5684 10.5684 10.5684 
0.025 0.9375 1.2910 1.2910 1.2910 1.2910 1.2910 10.6144 10.6138 10.6138 10.6138 10.6138 
0.05 1.8750 1.2844 1.2844 1.2844 1.2844 1.2844 10.6558 10.6558 10.6558 10.6558 10.6558 
0.075 2.8125 1.2842 1.2842 1.2842 1.2842 1.2842 10.6571 10.6571 10.6571 10.6571 10.6571 
0.1 3.7500 1.2842 1.2842 1.2842 1.2842 1.2842 10.6571 10.6571 10.6571 10.6571 10.6571 
2.0 75.000 1.2842 1.2842 1.2842 1.2842 1.2842a 10.6571 10.6571 10.6571 10.6571 10.6571b 
x xDH ( )bT x  ( )mNu x  

0.001 0.0375 0.97241 0.96977 0.96977 0.96977 0.96977 31.349 31.763 33.246 34.006 34.766 
0.01 0.3750 0.85745 0.85685 0.85685 0.85685 0.85685 16.064 15.563 15.721 15.802 15.882 
0.02 0.7500 0.77484 0.77437 0.77437 0.77437 0.77437 13.134 12.846 12.929 12.971 13.014 
0.025 0.9375 0.73990 0.73948 0.73948 0.73948 0.73948 12.363 12.122 12.190 12.224 12.259 
0.05 1.8750 0.59727 0.59695 0.59695 0.59695 0.59695 10.488 10.347 10.384 10.403 10.423 
0.075 2.8125 0.48614 0.48589 0.48589 0.48589 0.48589 9.7515 9.6451 9.6724 9.6864 9.7004 
0.1 3.7500 0.39619 0.39598 0.39598 0.39598 0.39598 9.3714 9.2822 9.3046 9.3160 9.3275 
2.0 75.000 0.00000 0.00000 0.00000 0.00000 0.00000 8.2998 8.2286 8.5035 8.1654 8.3541 

a Exact values from fully developed velocity equation: ( ) 1.2842cu x = , 
0

( , )
2 *5.32855 10.6571

y

u x y
y =

∂ = =
∂

 

b  Hwang et al. (1960), ( ) 1.2862cu x = , 
0

( , )
2 *5.2563 10.5126

y

u x y
y =

∂ = =
∂

 

 
 
 
 

Table 2. Convergence behavior of the main flow and heat transfer potentials, for different axial positions. 
(Ha = 20, Pr = 0.75, Ec = 0.1 and Ez = - 0.5 and uniform inlet velocity profile) 

 

N 10 100 200 250 300 10 100 200 250 300 

x xDH ( )cu x  
0

( , )

y

u x y
y =

∂
∂

 

0.001 0.0375 1.0568 1.0784 1.0789 1.0790 1.0790 27.4783 24.0650 24.0224 24.0163 24.0127 
0.01 0.3750 1.1103 1.1106 1.1106 1.1106 1.1106 22.2267 22.2251 22.2251 22.2251 22.2251 
0.02 0.7500 1.1110 1.1110 1.1110 1.1110 1.1110 22.2223 22.2222 22.2222 22.2222 22.2222 
0.025 0.9375 1.1110 1.1110 1.1110 1.1110 1.1110 22.2222 22.2222 22.2222 22.2222 22.2222 
0.05 1.8750 1.1110 1.1110 1.1110 1.1110 1.1110 22.2222 22.2222 22.2222 22.2222 22.2222 
0.075 2.8125 1.1110 1.1110 1.1110 1.1110 1.1110 22.2222 22.2222 22.2222 22.2222 22.2222 
0.1 3.7500 1.1110 1.1110 1.1110 1.1110 1.1110 22.2222 22.2222 22.2222 22.2222 22.2222 
2.0 75.000 1.1110 1.1110 1.1110 1.1110 1.1110a 22.2222 22.2222 22.2222 22.2222 22.2222b 
x xDH ( )bT x  ( )mNu x  

0.001 0.0375 0.95430 0.95585 0.95600 0.95604 0.95606 32.207 46.599 47.011 47.757 48.481 
0.01 0.3750 0.90047 0.90214 0.90224 0.90226 0.90227 16.985 19.129 19.260 19.355 19.442 
0.02 0.7500 0.89358 0.89515 0.89522 0.89524 0.89525 13.947 15.507 15.620 15.678 15.728 
0.025 0.9375 0.89458 0.89608 0.89615 0.89617 0.89617 13.174 14.619 14.729 14.778 14.821 
0.05 1.8750 0.90822 0.90936 0.90941 0.90942 0.90943 11.421 12.633 12.734 12.769 12.796 
0.075 2.8125 0.92105 0.92191 0.92195 0.92195 0.92196 10.801 11.933 12.031 12.060 12.082 
0.1 3.7500 0.93073 0.93138 0.93140 0.93141 0.93141 10.501 11.590 11.687 11.713 11.732 
2.0 75.000 0.95857 0.95862 0.95862 0.95862 0.95862 9.9333 10.898 10.989 11.007 11.020 

a Exact values from fully developed velocity equation: ( ) 1.1110cu x = , 
0

( , )
2 *11.1111 22.2222

y

u x y
y =

∂ = =
∂

 

b  Hwang et al. (1960), ( ) 1.1123cu x = , 
0

( , )
2 *10.3810 20.7620

y

u x y
y =

∂ = =
∂
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As one can easily see, from the lowest truncation order columns on Tabs. (1) and (2), the filtering process is an 
extremely efficient and interesting analytical tool, as the limiting fully developed velocity and gradient velocity profiles 
are automatically recovered for axial position far from the entry channel. Clearly, at least three significant digits are 
already converged for N = 10, even for the parabolic velocity profile at axial positions very near the channel inlet. The 
worst convergence rates are those of Nusselt number, since it does depend on velocity potential, which should be 
already fully converged. 

At first glance, it appears that, at least for the range of parameters illustrated, the velocity inlet condition exerts little 
influence on convergence rates. However, it could exert some influence on heat transfer behavior. Consequently, to 
make a proper comparison, the same situation illustrated at Tab. (1) is re-evaluated by considering an uniform velocity 
profile at the channel inlet. Figures (1a) and (1b) bring comparisons for the bulk temperature and mean Nusselt number, 
respectively, for both uniform and parabolic inlet profiles. 
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Figure 1. Effect of inlet velocity profile on: (a) Bulk mean temperature and (b) Average Nusselt number, for Ha = 8 
 
 
 
As it was expected, one of the effects of a magnetic field (Hartman number) on flow is to flatten the velocity profile. 

Therefore, flow with a non-MHD fully developed profile (parabolic) at the entry, in general, requires a few longer 
entrance regions than flow with uniform velocity profile at the entry, so, the inlet condition exert some influence on heat 
transfer. 

Figure (2a) and (2b) bring the development of the longitudinal velocity component, for various values of the 
transversal coordinate y, illustrating comparisons with numerical finite difference results due to Wang et al. (1966), for 
Hartman numbers Ha = 8 and 20, respectively. A parabolic velocity profile is employed in these cases. 
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Figure 2. Effect of magnetic field on flow development: comparison with numerical results for 
different transversal positions: (a) Ha = 8, (b) Ha = 20 
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To give a better insight on this behavior, Fig. (3) illustrates the development of the longitudinal velocity component 
profile, for various values of the longitudinal x, bringing comparisons with numerical finite difference results due to 
Hwang et al. (1966), for Hartman numbers Ha = 0, 8, 20 and 100. Results for Ha = 0 are showed to verify the stability 
of the hybrid approach even in situations where no numerical evaluation needs to be performed. 
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Figure 3. Effect of magnetic field on longitudinal velocity profile development: 

comparisons with numerical results for Ha = 0, 8, 20 and 100 
 
 
 

Results illustrated in Figs. (2) and (3) confirm the flatness effect of the magnetic field (Hartman number) on flow 
development. Also, the present results are in excellent agreement with those of Hwang et al. (1966). As Ha is increased, 
the velocity in the center portion of the channel (y = 0.5) decreases. Also, as commented before, the entrance length 
becomes shorter. This is due to the overall retarding effect of the Lorentz force (J × B). 

Similar numerical computations, now accounting for the simultaneously hydrodynamic and thermal development, 
were developed by Shohet et al. (1962) and Setayesh and Sahai (1990). 

After redefining the dimensionless groups of Shohet et al. (1962), mainly those related to the temperature field, the 
longitudinal velocity and temperature developments are illustrated, and additionally compared, on the following Figs. 
(4a) and (4b) for Ha = 8, Pr = 0.1, Ec = 1.0 and Ez = 0. The hydrodynamic results are also the same as those presented 
by Manohar (1966). 

These figures show an excellent agreement between numerical and hybrid results. A closer look at these figures 
also shows a slightly better agreement of the present results with the numerical results of Manohar (1966), who used a 
higher order finite difference scheme in the x-coordinate than those of Shohet et al. (1962). 

Figures (5a) and (5b) make a comparison between the present results and the most recent numerical results of 
Setayesh and Sahai (1990. Different field parameter and Eckert number are considered, and their influence on flow and 
heat transfer developments is analyzed. 

Figure (5a) brings a comparison for the bulk mean temperature and the average Nusselt number, considering a 
situation where, Ha = 20, Pr = 0.75, Ec = 1 and Ez = - 0.5. To make a deeper study, Fig. (5b) illustrates the average 
Nusselt number behavior development for two different electric field parameters, (Ez = 0.0 and -1,0) and Eckert number 
(Ec = 0.1 and 1.0), maintaining constant the Hartmann, Ha = 20, and Prantl, Pr = 1.0, numbers. 
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Figure 4. Development behavior of the (a) Longitudinal velocity and (b) Temperature, for different transversal 

coordinates. Comparisons with other numerical results for Ha = 8, Pr = 0.1, Ec = 1.0 and Ez = 0. 
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Figure 5. Development behaviors of the mean bulk temperature and average Nusselt number for Ha = 20. 
(a) Pr = 0.75, Ec = 1.0 and Ez = - 0.5, (b) Pr = 1.0, Ec = (1.0, 0.1) and Ez = (0.0, - 0.5). 

 
 

Observe the non-asymptotic developing of the bulk mean temperature along channel. Viscous dissipation, electric 
and magnetic fields interfere strongly altogether on flow and heat transfer rates. 

Numerically, some small discrepancies are observed for the average Nusselt number on Fig. (5b), when 
comparisons are effectuated with the numerical findings of Hwang (1962) and Shohet et al. (1962). Certainly, some 
kinds of numerical errors were carried in those works, since a good agreement is observed when the present results are 
compared with those obtained with a higher order finite difference method by Manohar (1966) and with those more 
recent numerical results of Setayesh and Sahai (1990). 

Finally, according to the accurate results presented in tabular and graphical forms, the GITT approach can be used 
as an efficient numerical tool for benchmarking purposes on developing MHD flow with constant properties, due 
mainly to its analytical character and the automatic global error control, provided by the IMSL (1990) routines. Indeed, 
as one can see from the transformed system, its numerical implementation is an extremely easy task. 

Following the trends in this field of research, analysis with temperature-dependent properties will be analyzed in 
future works, as well as problems with variable magnetic field. 
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