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Abstract. The current work provides a comparison between two different methodologies for solving convection-diffusion
problems: the Generalized Integral Transform Technique (GITT) and the Finite Volumes Method (FVM). The problem
of thermally developing laminar flow between parallel plates is selected for illustrating purposes. Different solution
strategies can be employed for both methods; consequently, several different comparisons can be performed. This study
focuses on evaluating the effect of varying the Péclet number (based on a transversal length) on the convergence of
both methodologies for thermal developing flow. Hydrodynamic development is considered, such that a Hagen-Poiseuile
velocity profile is used; in addition, the results of a simplified slug-flow situation are also presented. Once comparisons
are performed, advantages and disadvantages of each methodology are discussed. The results indicate that, in general,
the Integral Transform Technique presents a better convergence rate.
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NOMENCLATURE

DH hydraulic diameter
H distance between plates
I number of volumes in the axial direction
J number of volumes in the transversal direction
L characteristic dimension in x-direction
N norm of eigenfunctions
NuH Nusselt Number
PeH Péclet Number
Ts surface temperature
T0 entrance temperature
Tm bulk or average mixing temperature
u velocity component in x-direction
ū average velocity in x-direction
x, y cartesian coordinates
Yn eigenfunctions

Greek Symbols
α thermal diffusivity
ξ, η dimensionless coordinates
φ arbitrary function
λn eigenvalues
µ dynamic viscosity
θ dimensionless temperature
θ̄n transformed dimensionless temperature
θ̂i discretized dimensionless temperature
ξmax dimensionless channel length
Superscripts and overscripts
∗ dimensionless value
ˆ associated to the FVM solution

1. INTRODUCTION

Numerical methods based on domain discretization have been employed for the solution of convection-diffusion prob-
lems for about half century. On a smaller time scale meshless techniques have been gradually emerging as competitive
alternatives to traditional discretization-based methods. One such approach is the so called Generalized Integral Trans-
form Technique (GITT) (Cotta, 1993), which has been successfully applied to a variety of convection-diffusion problems.
In the realm of discrete methods, the Finite Volume Method (FVM) (Patankar, 1980) appears as widely used option to a
variety of convection-diffusion problems, due to its conservative nature and ease of application. Nevertheless, as with any
discrete method, approximations to integrals derivatives in terms of nodal points on a computational domain are necessary.
This results in a solution error, which gradually decays with grid refinement. Integral Transform solutions are sought by
expanding the unknown potentials in terms of infinite series of orthogonal functions that arise from eigenvalue problems.
Naturally, a truncation error is introduced since the infinite series representation must be made finite for computational
implementation. Then again, this error decreases as the number of terms are increased and the solution converges to a
final value. Due to the nature of the series representation, error estimates can be easily obtained from this method, which
results in a better control of the global solution error. The usual drawback associated with this approach is the elaborate
mathematical manipulation; however, this effort can be considerably minimized with the employment of symbolical com-
putation (Wolfram, 2003). Because of the inherent characteristics between the two type of approaches mentioned above,
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one can expect that a different numerical behavior will be seen for the GITT and FVM when different kind of problems
are considered.

For convective heat transfer in duct flow, different investigations were carried out employing integral transforms.
Among recent advancements, one should mention (Macêdo, Maneschy et al., 2000; Nacimento, Quaresma et al., 2006,
2002), which deals with non-Newtonian flows in circular-shaped ducts, (Maia, Aparecido et al., 2006), which presents a
solution for non-Newtonian flows in elliptical cross-section ducts, and (Lima, Quaresma et al., 2007), which investigates
the MHD flow and heat transfer within parallel-plates channels. For flow in ducts of arbitrary geometry, some particular
solutions have been developed (Aparecido and Cotta, 1990; Barbuto and Cotta, 1997; Ding and Manglik, 1996; Guerrero,
Quaresma et al., 2000); nonetheless, a general methodology was described in (Sphaier and Cotta, 2000, 2002), being
potentially promising for these types of geometries.

Although there are several studies that separately deal with FVM or GITT solutions to convection-diffusion problems,
there is a relative lack of comparative studies. A recent investigation compared the performance of GITT and FVM
solutions for steady thermally developing laminar channel flow (Chalhub, Dias et al., 2008). however, only results of the
simplified cases with large Péclet values were examined. This paper extends these comparison to a broader number of
cases, by examining the numerical performance of GITT and FVM if the Péclet number is allowed to assume smaller
values. Numerical results are calculated using the Mathematica system.

2. MATHEMATICAL FORMULATION

2.1 Problem presentation

The studied problem is that of heat transfer in steady incompressible laminar flow between two parallel plates. The
flow is considered hydrodynamically developed, but thermally developing. The problem is given by the following dimen-
sionless equations:

1
2
u∗

∂θ

∂ξ
= Pe−2

H

∂2θ

∂ξ2
+

∂2θ

∂η2
, for 0 ≤ ξ <∞ and 0 ≤ η ≤ 1, (1)

θ(ξ, 1) = 0,
(
∂θ

∂η

)
η=0

= 0, θ(0, η) = 1,
(
∂θ

∂ξ

)
ξ→∞

= 0, (2)

where the dimensionless quantities are given by

θ =
T − T0

Tin − T0
, η =

y

H/2
, ξ =

x

L
, (3)

and the value of L is chosen from a scale analysis of the thermal entry length:

L =
H

2
PeH , with PeH =

ūH

α
. (4)

The dimensionless velocity is given by the Hagen-Poiseuille profile:

u∗ =
u

ū
=

3
2

(1− η2). (5)

However, a if simplified slug-flow case is considered, u∗ = 1 and the previous equations are modified.
The Nusselt number in terms of the dimensionless variables is given by:

NuDH
=
−4 (∂θ/∂η)η=1∫ 1

0
u∗θdη

. (6)

2.2 Finite Volumes Method

The solution of the studied problem via finite volumes is accomplished by integrating eq. (1) within a finite volume
of height ∆η = 1/J and employing second-order approximations for integration and interpolation, which leads to the
following discretized system:

−Pe−2
H

d2θ̂j
dξ2

+
1
2
û∗j

dθ̂j
dξ

= Fj(ξ), θ̂j(0) = 1,

(
dθ̂j
dξ

)
ξ=ξmax

= 0, (7)
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for j = 1, 2, . . . , J . The F -functions, which carry all the η-discretization information, are given by:

Fj(ξ) =
θ̂j+1 − θ̂j

∆η2 , for j = 1, (8)

Fj(ξ) =
θ̂j+1 − 2 θ̂j + θ̂j−1

∆η2 , for 1 < j < J, (9)

Fj(ξ) =
θ̂j−1 − 3 θ̂j

∆η2 , for j = J. (10)

For cases with small to moderate Péclet numbers, this system is solved numerically using the NDSolve function available
in the Mathematica software. Simpified solutions for slug flow are also obtained by setting u∗ = 1. Using the obtained
solutions, the Nusselt number is then calculated from eq. (6), by numerically computing the derivative and integral.

2.2.1 Multidimensional discretized solutions

Although the previous solutions – involving explicit discretization in a single spatial variable – are simple to im-
plement, there are some numerical problems. When the large Péclet approximation is considered, the resulting system
comprises an initial-value problem, which is easily handled by the ODE solver (NDSolve); however, if other Péclet values
are considered, the axial diffusion terms must be maintained, and a coupled boundary-value system needs to be solved.
Aside from small Péclet values, this system is very stiff and its numerical integration (as previously described) becomes
unfeasible. Nevertheless, for these cases a solution involving FVM discretization in both variables can be employed.
Considering that I and J are, respectively, is the number of volumes in the ξ and η directions, and using centered, second
order approximations, the resulting discretized system is written in the following form:

M̂ θ̂ + b̂ = 0, (11)

where the coefficients of M̂ and b̂ are given by:

• for k = 1:

M̂k,k = −
û∗j
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• for k = (j + 1) I and 1 < j < J :

M̂k,k = −
û∗j

4 ∆ξ
− 1

∆ξ2Pe2
H
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∆η2

, M̂k,k−1 =
û∗j
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1
∆η2

, b̂k = 0, (22)

• for k = (J − 1) I + 1:
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• for k = (J − 1) I + i and 1 < I < I:
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• for k = I J :
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• for all other k = i+ j I combination:

M̂k,k = − 2
∆ξ2Pe2

H

− 2
∆η2

, M̂k,k−1 =
û∗j
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+

1
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4 ∆ξ
+

1
∆ξ2 Pe2

H
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1

∆η2
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1
∆η2
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where ∆ξ = ξmax/I and the remaining M̂k,l coefficients are zero. The solution to this system is performed by defining
M̂ as a sparse array and using the Mathematica LinearSolve function. The Nusselt number is calculated using numerical
integration and differentiation.

2.3 Generalized Integral Transform Technique

The Integral Transform solution of the considered problem is accomplished employing the Generalized Integral Trans-
form Technique (Cotta, 1993). The solution of the problem is started by defining the transformation pair

Transform =⇒ θ̄n(ξ) =
∫ 1

0

θ(ξ, η)Yn(η) dη, (31)

Inversion =⇒ θ(ξ, η) =
∞∑
n=1

θ̄n(ξ)Yn(η)
N(λn)

, (32)

where Yn’s are orthogonal solutions to a Sturm-Liouville eigenvalue problem. For the convection-diffusion problem
considered in this work, the following eigenvalue problem is selected:

Y ′′n (η) + λ2
nYn(η) = 0, for 0 ≤ η ≤ 1, Y ′(0) = 0, Y (1) = 0. (33)

The previous problem leads to infinite nontrivial solutions in the form:

Yn(η) = cos(λn η), with λn =
(
n− 1

2

)
π, for n = 1, 2, 3, . . . (34)
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The norm of the Yn eigenfunctions are given by:

N(λn) =
∫ 1

0

Y 2
n (η) dη =

1
2
. (35)

The transformation of the given problem is accomplished by multiplying eq. (1) by Yn, integrating within 0 ≤ η ≤ 1,
and applying the inversion formula (32) to the non-transformable terms. This process yields

Pe−2
H θ̄′′n(ξ) − 1

2

∞∑
m=1

An,m θ̄
′
m(ξ) − λ2

nθ̄n(ξ) = 0, (36)

with the boundary conditions

θ̄n(0) = bn =
∫ 1

0

Yn(η) dη and lim
ξ→∞

θ̄′n(ξ) = 0, (37)

where the An,m coefficients are given by:

An,m =
1

N(λm)

∫ 1

0

u∗(η)Yn(η)Ym(η) dη. (38)

For a general case of small to moderate Péclet numbers with Hagen-Poiseiulle flow, this boundary value problem is
solved numerically using the Mathematica function NDSolve and the dimensionless temperature is calculated using the
inversion formula (32). For simpler cases, as described below, fully analytical solutions can be obtained. Regardless of
the simplification considered, the Nusselt number is computed from the following expression:

NuDH
=
−4

∞∑
n=1

θ̄n/N(λn)Y ′n(1)

∞∑
n=1

θ̄n/N(λn)
∫ 1

0
u∗Yndη

. (39)

2.3.1 Slug-flow

If slug flow is considered, the ODE system (36) is decoupled, since An,m = δn,m, thereby resulting in the following
equation for the transformed potentials:

Pe−2
H θ̄′′n(ξ) − 1

2
θ̄′n(ξ) − λ2

nθ̄n(ξ) = 0, (40)

which yields

θ̄n(ξ) = bn exp
(

Pe2
H ξ

4

)
4βn cosh(βn(ξmax− ξ)) + Pe2

H sinh(βn(ξmax− ξ))
4βn cosh(βn ξmax) + Pe2

H sinh(βn ξmax)
, (41)

where the βn coefficients are given by

βn =
PeH

4

√
Pe2

H + 16λ2
n, (42)

and the temperature profile is obtained using the inversion formula (32).

2.3.2 Hagen-Poiseuille flow: analytical integration

Equations (36) and (37) can be written in the following matrix form:

θ̄
′′(ξ) − B θ̄′(ξ) − D θ̄(ξ) = 0, θ̄(0) = b, θ̄′(ξmax) = 0, (43)

in which the coefficients of b are given by eq. (37) and matricesB andD are given by

Bn,m =
1
2

Pe2
H An,m, Dn,n = Pe2

H λ
2
n δn,m, (44)

where δn,m is the Kronecker delta. This system can be converted to a first order initial-value problem if the boundary
condition at ξmax is replaced by an initial condition and a new variable is introduced:

θ̄′(0) = p, θ̄′(ξ) = φ̄(ξ), (45)
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yielding

d
dξ

{
φ̄

θ̄

}
=

(
B D

I 0

){
φ̄

θ̄

}
, (46)

where I is the identity matrix, and 0 is a zero matrix. With this consideration, an analytical solution to the transformed
potentials can be obtained in terms of a matrix exponential:{

φ̄

θ̄

}
= C

{
p

b

}
, with C = exp

((
B D

I 0

)
ξ

)
. (47)

With the previous analytical form, a shooting scheme using a Newton-Raphson routine (performed by the Mathematica
FindRoot function) is used to iteratively calculate the appropriate value of p that satisfies the boundary condition at
ξ = ξmax, given by eq. (43).

3. RESULTS AND DISCUSSION

Following the previous sections, the Nusselt number is calculated for four different positions (ξ = 0.001, 0.01, 0.1
and 1) and different values of the Péclet number, using both methodologies. Results for two types of flow are presented:
slug flow and Hagen-Poiseuille flow. Table 1 shows Nusselt values obtained with the Integral Transform Method for slug
flow with PeH = 1 and PeH = 10. As can be seen, the convergence rate is much worse for positions near the channel
entrance (smaller values of ξ). Also, as Péclet is decreased the convergence rate is also diminished.

Table 1. Nusselt numbers for slug-flow (GITT).
PeH = 10 PeH = 1

nmax ξ = 0.001 ξ = 0.01 ξ = 0.1 ξ = 1 nmax ξ = 0.001 ξ = 0.01 ξ = 0.1 ξ = 1
5 39.7501 27.5023 10.7213 9.86960 5 41.4542 39.4699 25.8967 10.3237

10 72.6080 33.4499 10.7213 9.86960 10 80.6022 71.9542 31.1657 10.3237
20 124.937 34.9693 10.7213 9.86960 20 157.153 123.655 32.5019 10.3237
40 191.300 35.0384 10.7213 9.86960 30 231.370 161.511 32.5598 10.3237
80 245.711 35.0385 10.7213 9.86960 40 303.309 189.197 32.5623 10.3237
100 255.819 35.0385 10.7213 9.86960 50 373.033 209.435 32.5625 10.3237
120 261.213 35.0385 10.7213 9.86960 100 690.706 252.906 32.5625 10.3237
140 264.091 35.0385 10.7213 9.86960 200 1194.41 263.830 32.5625 10.3237
160 265.627 35.0385 10.7213 9.86960 300 1562.40 264.302 32.5625 10.3237
180 266.446 35.0385 10.7213 9.86960 400 1831.21 264.322 32.5625 10.3237
200 266.883 35.0385 10.7213 9.86960 500 2027.57 264.323 32.5625 10.3237
250 267.279 35.0385 10.7213 9.86960 1000 2449.00 264.323 32.5625 10.3237
300 267.361 35.0385 10.7213 9.86960 2000 2554.83 264.323 32.5625 10.3237
350 267.378 35.0385 10.7213 9.86960 3000 2559.40 264.323 32.5625 10.3237
400 267.382 35.0385 10.7213 9.86960 4000 2559.60 264.323 32.5625 10.3237
500 267.383 35.0385 10.7213 9.86960 5000 2559.61 264.323 32.5625 10.3237

Next, table 2 shows the Nusselt values calculated with the GITT for Hagen-Poiseuille flow, for the same values of
Péclect and axial positions. As observed, a similar behavior occurs, with the convergence rate being better for positions
far from the inlet and for lager values of Péclet. Comparing the results for the two types of flow, one notes that the
convergence is better for ξ = 0.1 and ξ = 1 for slug-flow, in which 5 terms are sufficient for obtaining a six-digit
converged solution for ξ = 1 (PeH = 1 and PeH = 10) and ξ = 0.1 (PeH = 10). For Hagen-Poiseuille flow, at least 20
terms are necessary for obtaining the same precision at these positions. Nevertheless, for positions closer to the channel
entrance, the superior convergence seen in the slug flow case cannot be observed.

The following tables present the results calculated using the Finite Volumes Method for a variety of grids. Table 3
displays the results for slug flow while table 4 shows the results for Hagen-Poiseuille flow. Since for slug flow the Integral
Transform methodology provided a closed form, simple, analytical solution a fully converged solution was calculated
and included as the exact result for comparisons. As one can observe, similar trends seen with the Integral Transform
solution are repeated here. The convergence rate is better for large Péclet values and for positions away from the channel
entrance. For those cases, six converged digits were obtained for the more refined grids. Nevertheless, for most cases
a much lower number of converged digits were obtained for any of the presented grids. Comparing the results of the
different methodologies by examining the number of equations necessary for obtaining the same precision, it is seen that
the Integral Transform solution yields a much superior convergence rate when compared to the finite volumes one. This
result is in agreement with the observations done in (Chalhub, Dias et al., 2008), for a simpler version of the problem.
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Table 2. Nusselt numbers for Hagen-Poiseuille flow (GITT).
PeH = 10 PeH = 1

nmax WP ξ = 0.001 ξ = 0.01 ξ = 0.1 ξ = 1 nmax WP ξ = 0.001 ξ = 0.01 ξ = 0.1 ξ = 1
5 100 37.6242 23.5100 8.15700 7.74044 5 100 39.7508 37.5555 23.1993 8.45041
10 200 69.5288 27.7774 8.14983 7.73986 10 100 78.8666 69.6035 27.9173 8.45012
20 300 120.003 28.7805 8.14897 7.73982 20 100 155.286 120.397 29.0950 8.45011
30 500 156.839 28.8167 8.14889 7.73982 30 100 229.341 157.494 29.1452 8.45010
40 600 183.733 28.8168 8.14887 7.73982 40 100 301.107 184.589 29.1472 8.45010
50 700 203.372 28.8164 8.14886 — 50 100 370.653 204.379 29.1472 8.45010
60 800 217.714 28.8162 8.14886 — 60 100 438.048 218.833 29.1472 8.45010
70 1000 228.188 28.8161 — — 70 100 503.358 229.390 29.1472 8.45010
80 1100 235.837 28.8160 — — 80 200 566.649 237.101 29.1472 8.45010
90 1300 241.424 28.8160 — — 90 200 627.982 242.733 29.1472 8.45010

100 1400 245.504 28.8160 — — 100 200 687.418 246.847 29.1472 8.45010
110 1500 248.483 — — — 110 200 745.016 249.851 29.1472 8.45010
120 1700 250.660 — — — 120 200 800.833 252.046 — —
130 1800 252.249 — — — 130 200 854.923 253.649 — —
140 1900 253.410 — — — 140 200 907.341 254.820 — —
150 2100 254.258 — — — 150 300 958.137 255.675 — —
160 2200 254.877 — — — 200 300 1189.50 257.510 — —
170 2300 255.329 — — — 250 400 1387.24 257.891 — —
180 2500 255.659 — — — 300 500 1556.23 257.970 — —

It should be mentioned that the solution strategy of discretizing in the η-direction and solving the resulting coupled
system (7) using an ODE solver was unsuccessful. With this strategy, the ODE solver could not handle grids with over
50 divisions. Hence, the discretization in both directions became necessary. The same problem was seen with the GITT
solution, if system (43) was tried to be solved numerically using and ODE solver. However, in that case, a matrix
exponential analytical solution combined with a numerical shooting routine was used to avoid numerical integration.
This idea was also tried for the FVM solutions. However, due to the much higher number of equations required by the
FVM, evaluating matrix exponentials became unfeasible, such that the only possible solution was the two-dimensional
discretization used in system (11). The stiffness of systems (7) and (43) is reduced for smaller Péclet numbers; however,
the convergence of those cases is worse, requiring a greater number of terms (GITT) and more grid divisions (FVM) for
obtaining the same precision seen for higher Péclet values.

In table 2, besides presenting the convergence evolution with the truncation order (nmax), the required working preci-
sion (WP) for evaluating the matrix exponential in the Integral Transform solution is also shown. This quantity consists
of the number of decimal digits needed for the calculations. As seen, this value is clearly higher for larger Péclet values,
due to the increased stiffness of the transformed system. In addition WP increases with the truncation order, such that for
nmax lager than 100 a significant computational effort is required, especially for high Péclet values. Although this may
seem as a problem solely associated with the GITT solution, the same strategy was attempted with the FVM; nevertheless,
due a much higher required number of equations, this approach becomes inviable for the FVM.

4. SUMMARY AND CONCLUSIONS

The solution for thermal developing flow in a parallel-plates channel was carried out using two very different method-
ologies: the Finite Volumes Method and the Generalized Integral Transform Technique. Initially, both solutions were
aimed at transforming the transversal direction, either by discretization (FVM) or integral transformation (GITT), result-
ing in linear coupled ODE systems. Due to the boundary conditions involved of theses systems, its numerical integration
was only feasible to a limited number of equations, allowing only coarse grids (FVM) and low truncation orders (GITT)
to be used. For the simple slug flow situation, the Integral Transform solution resulted in a decoupled ODE system,
which allowed a simple analytical solution to be obtained. For other cases, an alternative route was sought. The coupled
GITT system was handled using an analytical matrix exponential solution to an associated initial value problem, and the
unknown additional initial (inlet) conditions to this problem were calculated using a numerical shooting scheme. This
strategy was shown to be feasible for systems not much larger than 150 equations, especially for larger Péclet values. For
the GITT solution this limit still allowed yielded reasonable convergence rates; nevertheless, for the FVM solution, the
elevated number of equations required for obtaining a similar precision made this strategy inapplicable to this method.
Because of this, the discretization in the axial direction was also required. A comparison of the results obtained with
both methods showed that, in general, better convergence rates are seen for positions upstream (away from the channel
entrance) and for higher Péclet values. Analyzing the number of equations needed for obtaining the same precision, it
was seen that the FVM requires a greater amount for obtaining the same results.

This work extends the analysis performed in (Chalhub, Dias et al., 2008) for a wider number of cases. The results are
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Table 3. Nusselt numbers for slug-flow (FVM).
PeH = 10 PeH = 1

I J ξ = 0.001 ξ = 0.01 ξ = 0.1 ξ = 1 I J ξ = 0.001 ξ = 0.01 ξ = 0.1 ξ = 1
12 12 144.614 113.466 -23.2099 9.83306 12 12 145.868 126.595 35.106 10.3237
12 25 299.720 229.898 -70.0798 9.85179 12 25 300.286 238.568 6.00708 10.3083
12 50 598.030 454.055 -159.489 9.86067 12 50 596.65 448.451 -52.9306 10.3053
12 100 1194.67 902.511 -337.928 9.86513 12 100 1189.43 868.72 -167.625 10.3046
12 200 2387.08 1799.00 -694.682 9.86960 12 200 2375.14 1710.78 -394.107 10.3045
12 400 4773.64 3593.01 -1407.94 9.86960 12 400 4746.74 3396.01 -845.314 10.3044
25 12 140.616 79.3671 11.0194 9.85949 25 12 145.627 125.128 42.9731 10.3399
25 25 289.916 146.083 10.9712 9.86455 25 25 297.025 213.950 36.6179 10.3238
25 50 577.146 275.382 10.9624 9.86706 25 50 582.802 341.543 33.4288 10.3205
25 100 1151.69 534.677 10.9603 9.86834 25 100 1151.79 576.749 32.7729 10.3197
25 200 2300.00 1053.50 10.9598 9.86960 25 200 2289.91 1048.73 32.6544 10.3196
25 400 4598.28 2091.69 10.9597 9.86960 25 400 4566.93 1998.52 32.6289 10.3195
50 12 134.770 44.5090 10.8198 9.86677 50 12 145.715 126.447 43.3002 10.3433
50 25 272.773 42.8670 10.7881 9.86806 50 25 296.023 211.825 36.3833 10.3270
50 50 538.332 41.0815 10.7817 9.86882 50 50 570.839 282.865 33.1725 10.3237
50 100 1069.81 39.9545 10.7802 9.86924 50 100 1100.19 305.040 32.6639 10.3229
50 200 2132.99 39.3385 10.7798 9.86960 50 200 2148.96 295.649 32.5736 10.3227
50 400 4258.85 39.0187 10.7797 9.86960 50 400 4247.24 282.969 32.5527 10.3227
100 12 128.980 37.5839 10.7749 9.86909 100 12 145.832 127.653 43.4034 10.3442
100 25 246.909 1.62527 10.7453 9.86918 100 25 296.423 218.791 36.3752 10.3278
100 50 470.410 -72.1648 10.7392 9.86938 100 50 567.219 299.010 33.1692 10.3245
100 100 918.199 -216.200 10.7378 9.86949 100 100 1055.20 274.021 32.6809 10.3237
100 200 1814.98 -500.757 10.7374 9.86960 100 200 1954.31 39.1622 32.5918 10.3235
100 400 3609.37 -1067.70 10.7373 9.86960 100 400 3715.45 -489.800 32.5712 10.3234
200 12 126.856 46.5914 10.7623 9.86979 200 12 145.909 128.121 43.4276 10.3444
200 25 221.883 38.4751 10.7332 9.86951 200 25 296.974 222.296 36.3634 10.3280
200 50 375.093 33.5345 10.7273 9.86954 200 50 569.074 317.830 33.1587 10.3247
200 100 672.631 32.4336 10.7258 9.86957 200 100 1043.83 351.482 32.6787 10.3239
200 200 1270.65 32.4396 10.7255 9.86960 200 200 1798.21 301.340 32.5905 10.3237
200 400 2470.75 32.5771 10.7254 9.86960 200 400 3032.83 253.257 32.5700 10.3236
400 12 127.669 47.1367 10.7591 9.86998 400 12 145.951 128.207 43.4336 10.3444
400 25 214.309 39.4662 10.7302 9.86961 400 25 297.332 222.898 36.3598 10.3281
400 50 298.072 35.7842 10.7242 9.86959 400 50 571.365 320.542 33.1555 10.3247
400 100 382.843 35.1938 10.7228 9.86959 400 100 1052.75 358.556 32.6778 10.3239
400 200 528.749 35.0944 10.7224 9.86960 400 200 1775.45 312.456 32.5898 10.3237
400 400 830.244 35.0712 10.7223 9.86960 400 400 2585.90 273.140 32.5694 10.3237
800 12 128.793 47.2297 10.7582 9.87003 800 12 145.972 128.229 43.4351 10.3444
800 25 219.733 39.3946 10.7294 9.86963 800 25 297.520 223.048 36.3589 10.3281
800 50 294.869 35.7538 10.7235 9.86960 800 50 572.771 321.210 33.1547 10.3248
800 100 259.234 35.1931 10.7220 9.86961 800 100 1061.96 360.085 32.6776 10.3239
800 200 26.8611 35.0915 10.7217 9.86960 800 200 1818.64 313.304 32.5897 10.3237
800 400 -473.831 35.0680 10.7216 9.86960 800 400 2637.25 273.517 32.5692 10.3237

1600 12 129.372 47.2498 10.7580 9.87005 1600 12 145.980 128.234 43.4354 10.3444
1600 25 224.467 39.3541 10.7292 9.86964 1600 25 297.600 223.086 36.3586 10.3281
1600 50 320.136 35.7211 10.7233 9.86961 1600 50 573.388 321.376 33.1545 10.3248
1600 100 353.901 35.1755 10.7218 9.86961 1600 100 1066.49 360.451 32.6775 10.3239
1600 200 311.740 35.0756 10.7215 9.86960 1600 200 1848.64 313.380 32.5896 10.3237
1600 400 273.757 35.0524 10.7214 9.86960 1600 400 2800.77 273.375 32.5692 10.3237

exact 267.383 35.0385 10.7213 9.86960 exact 2559.61 264.323 32.5625 10.3237

in accordance with the observations made in that study; however different solution strategies were needed for this inves-
tigation, due to the more complex nature of the problem. In spite of the superior convergence rates seen for the Integral
Transform solution, numerical hindrances were seen. This indicates that there is a clear need for further developments.
One alternative to handle the encountered obstacles would be to apply ideas traditionally used in discrete approaches to
GITT solutions, or even use a hybrid discrete-spectral methodology.
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Table 4. Nusselt numbers for Hagen-Poiseuille flow (FVM).

PeH = 10 PeH = 1
I J ξ = 0.001 ξ = 0.01 ξ = 0.1 ξ = 1 I J ξ = 0.001 ξ = 0.01 ξ = 0.1 ξ = 1
12 12 142.762 107.173 -20.8444 7.73673 12 12 144.438 123.545 30.9689 8.45042
12 25 297.397 219.275 -57.1762 7.75869 12 25 298.694 233.484 4.57372 8.43917
12 50 594.589 434.854 -126.822 7.76699 12 50 594.554 439.571 -48.4931 8.43693
12 100 1188.88 866.008 -266.010 7.77077 12 100 1186.24 852.247 -151.747 8.43643
12 200 2377.44 1728.32 -544.336 7.77431 12 200 2369.72 1679.08 -355.683 8.43637
12 400 4754.48 3452.93 -1100.96 7.77433 12 400 4736.78 3333.82 -762.009 8.43634
25 12 138.154 70.5440 8.25530 7.77968 25 12 144.190 122.079 38.4667 8.46242
25 25 286.594 133.459 8.25791 7.79041 25 25 295.355 208.840 32.7172 8.45054
25 50 571.951 255.049 8.25796 7.79382 25 50 580.491 333.474 29.8808 8.44809
25 100 1142.62 498.577 8.25787 7.79521 25 100 1148.14 563.546 29.2981 8.44750
25 200 2283.95 985.823 8.25783 7.79638 25 200 2283.56 1025.35 29.1925 8.44737
25 400 4566.56 1960.41 8.25782 7.79640 25 400 4555.12 1954.67 29.1697 8.44734
50 12 131.320 33.5192 8.16864 7.77186 50 12 144.287 123.483 38.7984 8.46474
50 25 268.013 32.1138 8.17273 7.77924 50 25 294.343 206.831 32.5424 8.45274
50 50 530.943 30.9288 8.17298 7.78115 50 50 568.416 275.704 29.6815 8.45025
50 100 1056.99 30.2176 8.17295 7.78184 50 100 1096.25 296.966 29.2280 8.44964
50 200 2109.23 29.8355 8.17293 7.78225 50 200 2142.07 287.711 29.1471 8.44949
50 400 4213.78 29.6383 8.17293 7.78226 50 400 4234.42 275.353 29.1283 8.44946
100 12 124.318 26.3604 8.15113 7.75112 100 12 144.413 124.753 38.9017 8.46529
100 25 240.174 -7.20932 8.15516 7.75768 100 25 294.764 213.912 32.5456 8.45326
100 50 460.594 -74.3350 8.15541 7.75912 100 50 564.791 291.872 29.6871 8.45076
100 100 902.173 -205.750 8.15538 7.75952 100 100 1051.16 266.854 29.2510 8.45015
100 200 1786.32 -465.961 8.15536 7.75971 100 200 1947.31 37.1027 29.1711 8.44999
100 400 3555.26 -984.789 8.15535 7.75973 100 400 3702.74 -479.736 29.1525 8.44996
200 12 121.577 37.0201 8.14622 7.73862 200 12 144.495 125.246 38.9261 8.46542
200 25 213.013 30.6256 8.15028 7.74506 200 25 295.336 217.470 32.5376 8.45338
200 50 362.802 26.9930 8.15054 7.74637 200 50 566.692 310.593 29.6798 8.45088
200 100 655.213 26.2346 8.15051 7.74670 200 100 1039.82 343.126 29.2509 8.45027
200 200 1242.91 26.2734 8.15049 7.74680 200 200 1791.34 294.025 29.1718 8.45012
200 400 2421.90 26.3936 8.15049 7.74682 200 400 3021.41 247.072 29.1533 8.45008
400 12 122.538 37.7968 8.14498 7.73378 400 12 144.540 125.338 38.9321 8.46545
400 25 204.593 31.9331 8.14906 7.74022 400 25 295.707 218.081 32.5350 8.45341
400 50 283.688 29.2716 8.14932 7.74150 400 50 569.023 313.298 29.6775 8.45091
400 100 365.713 28.8534 8.14929 7.74181 400 100 1048.82 350.119 29.2505 8.45030
400 200 508.964 28.7825 8.14927 7.74189 400 200 1768.74 304.978 29.1716 8.45015
400 400 804.824 28.7659 8.14926 7.74191 400 400 2575.70 266.582 29.1532 8.45011
800 12 123.951 37.9440 8.14467 7.73227 800 12 144.562 125.361 38.9336 8.46546
800 25 210.603 31.9672 8.14875 7.73872 800 25 295.902 218.234 32.5343 8.45342
800 50 280.516 29.3177 8.14901 7.73999 800 50 570.452 313.963 29.6769 8.45092
800 100 242.552 28.9124 8.14898 7.74029 800 100 1058.09 351.632 29.2504 8.45030
800 200 14.2330 28.8384 8.14897 7.74037 800 200 1812.00 305.826 29.1716 8.45015
800 400 -475.662 28.8212 8.14896 7.74039 800 400 2627.15 266.967 29.1532 8.45011

1600 12 124.687 37.9775 8.14459 7.73185 1600 12 144.572 125.366 38.9340 8.46546
1600 25 215.905 31.9558 8.14868 7.73829 1600 25 295.984 218.272 32.5342 8.45342
1600 50 307.048 29.3076 8.14894 7.73957 1600 50 571.079 314.129 29.6767 8.45092
1600 100 338.681 28.9122 8.14891 7.73987 1600 100 1062.65 351.995 29.2504 8.45031
1600 200 298.107 28.8392 8.14889 7.73995 1600 200 1842.04 305.906 29.1716 8.45015
1600 400 261.858 28.8221 8.14888 7.73996 1600 400 2790.44 266.832 29.1532 8.45012
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