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Abstract. The problem of steady state incompressible fluid flows in pipe networks has been studied by several authors 

but still represents a challenge in computational mechanics. In the present moment, two main approaches for solving 

this problem prevail: using the Newton method; or using the specific purpose Gradient Method. The first approach 

may be difficult to translate into computational routines, and may present poor convergence rates in some cases. The 

second approach may hide from the engineer physical insight of the problem, but is accepted as the most efficient 

method currently available for solving this problem. This work presents two alternative approaches for the analysis of 

steady state flows in pipe networks, which main goal is to simplify both computational routines and physical 

comprehension of the phenomenon. The first alternative approach was already studied by other authors and uses 

similarities between flow in pipe networks and structural analysis of bar structures. This method is based on solving 

the problem iteratively, using the Fixed Point Method. The second alternative approach is also based in the analogy 

between the flow in pipe networks and structural analysis, but this time the equations are solved incrementally. This 

leads to an algorithm similar to the ones used in incremental analysis for structural problems. Both methods are 

simple to translate into computational routines and give physical insight of the phenomenon. However, these two 

alternative approaches present significant differences between then. The description of these methods, its properties, 

advantages and draw-backs are the subject of this work. Besides, numerical examples are presented in order to 

validate the methods and comparisson is made to the Gradient Method. 

 

Keywords: pipe network,water distribution, matrix analysis, fixed point method, incremental analysis 

 

1. INTRODUCTION 
 

The analysis of steady state incompressible flows in pipe networks is a common problem in engineering practice. 

The solution of this problem gives the nodal pressures and internal pipes discharges of a given network, when subjected 

to prescribed nodal pressures and discharges. In order to build a mathematical model of this problem, it is necessary to 

use some formula for the pressure loss in a pipe, like the ones given by Darcy-Weisbach, for example. However, since 

these equations are non linear, the analysis of a network composed of several pipes leads to a system of nonlinear 

equations (Larock et al., 2000). 

The system of nonlinear equations representing the flow in a pipe network can be solved by the Newton method, 

which is a general purpose method (Larock et al., 2000). However, the efficiency of the Newton method depends, in 

some cases, on a good initial estimative for the solution (Formiga and Chaudhry, 2008). Unfortunately, good estimative 

for an initial solution of the problem may be difficult to obtain, since such networks may be large and complex. 

Consequently, specific purpose methods for this analysis were developed. Formiga and Chaudhry (2008) present a 

general comparison of some commonly used methods for the analysis of pipe networks and conclude that, in most 

cases, the Gradient Method (Todini and Pilati, 1987) presents better convergence than other methods. Besides, the 

Gradient Method is implemented in most analysis packages currently available, which further encourage its use. 

However, the Gradient Method may hide from the engineer physical insight of the problem, since the equations used for 

solving the problem do not have a clear physical meaning. 

The purpose of this paper is to present two alternative methods for the analysis of steady state incompressible flows 

in pipe networks with a clear physical meaning. The first is called here Fixed Point Method, since the problem is solved 

iteratively according to a general fixed point iteration. This method is also described by Kutas and Čiupailaitë (1997), 

but some important aspects are missing and no comparison is made with other methods. Besides, this method is also 

called sometimes Finite Element Approach for the analysis of pipe networks, because of its clear resemblance with the 

Finite Elements Methods commonly used for other problems. This name is not used here since according to the authors 

no reference is made to the Finite Elements Method when developing the equations. The second method described in 

this paper uses concepts from incremental analysis in order to solve the problem, an approach commonly used in 

nonlinear structural mechanics (Simo and Hughes, 1998). In this method, a relation between increments in nodal 

discharges and nodal pressures is written, and the problem is solved by applying small increments of nodal discharges. 

Results from these two methods are compared with results given by the Gradient Method (GM), which is implemented 

in the analysis package EPANET. 
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2. FIXED POINT METHOD 

 
2.1. Matrix equations 
 

According to Larock et al. (2000), the head loss in a pipe can be written as 

 
n

f qkh .= , 

 

where hf  is the head loss; q is the internal discharge in the pipe; and k and n are parameters which depend on the head 

loss formula used. 

In this paper the previous equation will be rewritten as 

 
1

..
−

=
n

f qqkh , (1) 

 

since a negative sign of q will represent a discharge in the opposite direction as defined in the problem, which leads 

to a head loss in the opposite direction. Note that a negative hf  does not mean that a head gain occurred, only that the 

head loss is in the opposite direction. 

 

Table 1. Parameters for the Laminar and Darcy-Weisbach equations used in Eq. (1). 

Equation k n Used when 

Laminar 4..

..128

D

L

ρπ

µ
 1 Re < 2100 

Darcy-Weisbach 52 ..

..8

Dg
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π
 2 Re ≥ 2100 

 

 

The parameters k and n for the Darcy-Weisbach and Laminar formulas are presented in Tab. 1, where , µ is the fluid 

viscosity, ρ is the fluid density, L is the length of the pipe, D is the diameter of the pipe, g is the gravity acceleration and 

f is the friction factor, which according to White (2006) can be approximated by 
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where ks is the material relative roughness and Re is the Reynolds number, which depends on the internal discharge q 

and is 
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In order to solve the problem iteratively for internal discharges, Eq. (1) can be rewritten as 
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where i represents the present iteration and i-1 the last one. 

Equation (4) can be simplified as 
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where K
(i)

 is called here the permeability coefficient in the present iteration and is given by 
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Note the distinction between k and K, since the first is the parameter as defined in Tab. 1 for different flow models, 

while the later is the permeability coefficient for each iteration, which takes into account both the contributions from k 

and |q
(i-1)

|
n-1

. 

The fixed point method is an interesting approach for solving Eq. (5) iteratively, since it does not need the 

evaluation of the gradient of the function. Equation (5) can be solved for a given head loss by taking an initial solution 

for the flow q
(0)

 in order to obtain the flows q
(1)

, q
(2)

,…, q
(n)

 until convergence of the solution is achieved. Even if this 

approach may not be useful when dealing with a single pipe, it may simplify the analysis of systems composed of 

several pipes. 

According to Eq. (5), the following relations can be written for nodes 1 and 2 from the pipe shown in Fig. 1.a: 
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where Q1 is the discharge at node 1, Q2 is the discharge at node 2, p1 is the pressure at node 1, p2 is the pressure at node 

2. Note that from now on the uppercase Q is used for nodal discharges, while the lowercase q is used for internal pipe 

discharges. Besides, in the previous system of equations, the second equation is negative since Q2 leads to a head loss in 

the opposite direction of that obtained when applying Q1. 

The previous relations can be written in matrix form as 
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It is important to note that since several pipes can be linked to a given node, the flows Q1 and Q2 are not necessarily 

equal in magnitude. These flows actually represent the boundary conditions of the problem. Besides, Eq. (7) is similar 

to the equations used for the analysis of trusses or bars by matrix methods. The global matrix of the entire pipe network 

can be assembled by the superposition of the matrix of each pipe, as described in texts on the Finite Elements Method 

(Bathe, 1996). Then, it is necessary to apply the boundary conditions of the problem, by specifying the nodal discharges 

and at least one nodal pressure. The nodal pressures are then given by solving the resulting system of linear equations. 

 

a) b) 

Figure 1. Pipe between nodes 1 and 2, with a) permeability coefficient K
(i)

, nodal discharges Q1 and Q2, and nodal 

pressures p1 and p2.b) Increment in nodal discharges ∆Q1 and ∆Q2, and increment in pressures ∆p1 and ∆p2. 

 

The assemblage procedure leads to the following global equation, which holds for the entire network: 

 

Q.pK −=)()( ii
, (8) 

 

where K(i)
 is the permeability matrix of the entire network at the current iteration, p(i)

 is the vector of nodal pressures to 

be obtained and Q is the vector of applied nodal discharges. Note that the permeability matrix is analogue to the 

stiffness matrix; the vector of nodal pressures is analogue to the vector of nodal displacements; and the vector of nodal 

discharges is analogue to the vector of applied forces from structural analysis (Bathe, 1996). 

The matrix K(i)
 must be updated at each iteration since it depends on the pipes internal discharges q(i)

, by means of 

the permeability coefficient from Eq. (6). The internal discharge on a pipe can be obtained once the pressures at its 

nodes are found, by the use of Eq. (5). Besides, since the matrix K(i)
 changes continually during the analysis procedure, 

it is necessary to apply the pressure boundary conditions at each iteration. Note that applying pressure boundary 

conditions is analogue to applying displacements boundary conditions on structural problems (Bathe, 1996). 
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2.2. General algorithm 
 

Considering the previous paragraphs, the following steps can be used for the analysis of a pipe network by the 

Fixed Point Method (FPM): 

1. Start the algorithm with: pipe discharges vector q0
 = 0 and a counter i = 0; 

2. Build the vector Q from the nodal discharges boundary conditions; 

3. Update the counter i = i+1; 

4. Check if the flow in each pipe is laminar or turbulent and use the appropriate coefficient k and n as defined 

in Tab. 1 for each pipe; 

5. Assemble the permeability matrix for the entire network K(i)
, using Eq. (7) for each pipe; 

6. Apply the pressure boundary conditions by assigning at least one nodal pressure; 

7. Solve the system of linear equations defined by Eq. (8) thus finding the vector of nodal pressures p(i)
; 

8. Obtain the vector of internal flows q(i)
 by applying Eq. (5) for each pipe (See next section for 

improvement); 

9. Check the convergence of the problem. If it converges stop the procedure and take as solution the vector of 

nodal pressures p(i)
 and the vector of pipe discharges q(i)

. If the problem does not converge return to step 3. 

 

In the previous algorithm, the convergence check of step 9 can be made on the difference between successive nodal 

pressures p(i)
 and p(i-1)

, on the pipe flows q(i)
 and q(i-1)

, or both vectors. Besides, on step 4 the flow can be considered 

laminar if the Reynolds Number is less than 2100, for example (White, 2006). Note that when the flow in a pipe is 

considered laminar, its permeability coefficient K as defined by Eq. (6) does not depend on the pipe discharge q, since 

for laminar flows n is equal to unity and thus q disappears from Eq. (6). This leads to the conclusion that pipes with 

discharges close or equal to zero will still have a defined value K. However, if only the expression for turbulent flows is 

considered, pipes with internal discharges equal to zero lead to an infinite value of K, since there will appear a division 

by zero in Eq. (6). Thus, in order to guarantee stability of the procedure it is necessary to use expressions for both 

turbulent and laminar flows. 

Note also that the vector of nodal discharges Q will remain constant for the entire analysis procedure. However, the 

nodal pressures boundary conditions must be applied at each iteration since the permeability matrix K(i)
 changes 

continually. 

 

2.3. Improvement of the Fixed Point Method 
 

Using the algorithm described in the last section may lead to a non monotonic convergence for the values of nodal 

pressures and internal discharges. The analysis of the network from Fig. 2.a, with the algorithm described in the 

previous section, gives the sequence of values for internal discharge and nodal pressure denoted as original in Fig. 3. 

Note that the values of internal discharges in Fig. 3.a approach the solution by alternating values above and below it. 

This type of convergence must be avoided, since this may lead to an algorithm which iterative solutions oscillates 

around the solution, but takes time to effectively approach it. 
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b) 

Figure 2. a) First example of a pipe network with its nodes and pipes numbered. All pipes have a length of 50m, 

except pipe 12 which has length of 100m. Node 1 has a prescribed pressure of 15m, while all other nodes have a 

demand of 5.10
-3

m
3
/s (5 L/s). b) Second example of a pipe network with its nodes and pipes numbered. All pipes have a 

length of 50m. Node 1 has a prescribed pressure of 15m, while nodes 8, 12 and 16 have a demand of 10.10
-3

m
3
/s (10 

L/s). For both examples all pipe diameters are of 0.1m, the constant ks is 0.046mm and the fluid is water at 15°C. 

 

From Fig. 3, it seems that the major oscillation problem is caused by the internal discharges, since this variable 

presents more drastic changes. Thus, in order to avoid this type of convergence, the rule for the update of internal 

discharges must be reformulated. In order to achieve this, a relaxation technique is used. When updating the internal 

discharges, the values of the next iteration can be taken as the mean value between the values found in the current 

iteration, and the values from the previous iteration. Thus, step 8 from the algorithm of the FPM described in the 

previous section is substituted by: 
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8 Obtain a preliminary vector qp
(i)

 by applying Eq. (5) for each pipe. If i >1 make q(i)
 = ½.qp

(i)
 + ½.q(i-1)

. Else 

if i = 1 make q(i)
 = qp

(i)
; 

 

Note that the new update rule for the internal discharges is not applied for the first iteration since q(0)
 is usually 

taken equal to a zero vector. This modification leads to an algorithm here called Improved Fixed Point Method (IFPM), 

which’s sequence of values is also shown in Fig. 3. Note, that for the improved algorithm the values present monotonic 

convergence, as desired. Besides, it leads to a better convergence rate as shown by Fig. 3 and the examples presented in 

a following section. 

 

 
a) 

 
b) 

Figure 3. Evolution of the a) internal discharge at pipe 17 and b) pressure at node 17 for the network from Fig. 2.a; 

using the original and the improved Fixed Point Method. 

 

3. INCREMENTAL METHOD 
 

3.1. Incremental equations 

 
Expanding Eq. (1) by a Taylor series and neglecting the second order terms gives 

 

fff hqqhqqh '.)()( ∆+≈∆+ , 

 

which leads to 

 

ff hqh '.∆≈∆ , (9) 

 

considering hf(q+∆q)- hf(q) = ∆hf. 

Eq. (9) can be used to obtain the head loss in a pipe incrementally, since an increment in the pipe internal discharge 

leads to an increment in the head loss. When studying a single pipe, this approach does not present advantages in 

relation with the use of Eq. (1). However, in the case of a pipe network with several pipes, the use of Eq. (1) leads to a 

system of nonlinear equations, since n can be different from unity for turbulent flow regimes. The use of Eq. (9), 

instead, leads to a series of system of linear equations, since the relation between the increments of head losses and 

internal discharge is linear. 

Before applying Eq. (9) to a given pipe it is necessary to obtain an expression which relates the increment of the 

head loss ∆hf in a pipe with the increment of its nodal pressures ∆p1 and ∆p2. From Fig. 1.a it can be noted that the head 

loss is 
 

12 pph f −= . 

 

In order to obtain ∆hf it is necessary to compare this head loss with the head loss at an previous iteration t = 0, for 

example, which is given by 
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The change of the head loss in a pipe can then be written as 
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which gives 

 

12 pph f ∆−∆=∆ . (10) 

 

According to Eq. (9) and Eq. (10), the following relations can be written for an arbitrary pipe as shown in Fig. 1.b: 
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which can be written in matrix form as 
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Eq. (11) holds for a pipe with initial node 1 and final node 2. Thus, in order to obtain the matrix for the entire pipe 

network it is necessary to assemble the matrix as discussed previously and as shown in Bathe (1996). This assemblage 

leads to the following equations for the entire network: 

 
)()()( . iii QpH ∆−=∆ , (12) 

 

where the matrix H is assembled from each pipe, ∆p is the vector of pressure increments related to a given nodal 

discharge increment vector ∆Q. Besides, note that in Eq. (12) the index (i) has been introduced to express the fact that 

the equation must be solved for each incremental step. 

The solution of Eq. (12) gives the nodal pressures increments to be applied. Thus, the nodal pressures can be 

updated as 

 
)()1()( iii ppp ∆+= −
, (13) 

 

where p(i)
 is the updated nodal pressure vector and p(i-1) 

is the same vector in the previous iteration. 

The internal pipes discharges can be updated using Eq. (9) locally by writing 

 

f

e

f
e

e

h

h
q

'

∆
=∆ , (14) 

 

where e represents the pipe to which Eq. (14) is applied. 

Note that Eq. (14) is evaluated locally, with ∆hf being evaluated with Eq. (10), and the derivative h'f of the head loss 

equations, which can be evaluated analytically. Once the increment in each pipe discharge is found, the vector of 

increments in pipe discharges ∆q(i)
 can be assembled. The internal discharges can then be update according to 

 
)()1()( iii qqq ∆+= −
. (15) 

 

In order to obtain the vector of the nodal discharges increment ∆Q which is used in Eq. (12), it is necessary to 

divide the vector of the total applied nodal discharges by the number of incremental steps to be used N, which gives 

 

N

Q
Q =∆ . (16) 

 

Note that since the error of the approximated Taylor series used in Eq. (9) decreases for lower values of ∆q, the 

analysis will be more accurate when a higher number of incremental steps N is used.  
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3.2 Head loss formulas and its derivatives 

 
In order to apply the incremental analysis it is necessary to define the head loss equation hf(q) and its first derivative 

h'f(q), since these two expressions are used in Eq. (11) and Eq.(14). As stated previously, the head loss equation is 

different for laminar and turbulent flow regimes. Starting by the case of a laminar flow, Tab. 1 gives the following 

expression for Eq. (1): 
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which derivative is 
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For turbulent flow regimes, substituting Eq. (3) in Eq. (2) and then in Eq. (1), the Darcy-Weisbach takes the form 
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which’s first derivative can be found using a symbolic mathematical software and is 
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3.3 Improvement of the Incremental Method 
 

Figure 4 shows the evolution of a nodal pressure and an internal discharge when using the original Incremental 

Method, as described in the previous section. Note that the value found for the internal discharge agrees with the value 

given by the GM. However, the value found for the nodal pressure is significantly different. Thus, the algorithm must 

be improved in order to enhance its accuracy for nodal pressure evaluations. 

One approach commonly used when solving nonlinear equation by incremental methods is that of dividing each 

incremental step in two stages (Simo and Hughes, 1998). The first is identical to the step described in the previous 

section, here called IM, and is used to predict the values of the variables. Thus, it is called the predictor stage. The 

second stage, however, corrects the predicted values, and is called the corrector stage. The incremental procedure 

previously presented uses only the predictor stage and this can lead to error accumulation during the analysis. 

Consequently, it is expected that the implementation of a corrector stage may improve the results given by the analysis. 

Since the predictor-corrector approach is used for many different types of problems, several types of corrector 

procedures can be found in literature. However, as can be seen from Fig. 4 and some following examples, the IM is not 

accurate for the nodal pressure calculations, while it presents good convergence rate for internal discharges. Thus, the 

corrector stage must act mainly in the evaluation of nodal pressures. Since the FPM presents good convergence rate for 

nodal pressures (as shown in following examples), this method can be used as the corrector stage for the analysis. Note 

that if the internal discharges are know (which is the case when the FPM is used as pressure corrector), one iteration of 

the FPM is sufficient to give the correct nodal pressures, since more iterations of the method are needed only when the 

internal discharges have to be updated. 

The incremental method with pressure corrector, here called Improved Incremental Method (IIM) can then be 

summarized by the following algorithm: 

1. Start the algorithm with: pipes discharges q0
=0, nodal pressures p0

=0 and a counter i = 0; 
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2. Define the vector of nodal discharges Q, the number of incremental steps N to be used, find the vector of 

nodal discharges increment ∆Q with Eq. (16); 

3. Update the counter i = i+1; 

4. Start the predictor stage: 

a. Check if the flow in each pipe is laminar or turbulent and use Eq. (17) and Eq. (18) for pipes in 

laminar flow regime and Eq. (19) and Eq. (20) for pipes in turbulent flow regime; 

b. Assemble the matrix of the inverse derivatives H(i)
 using Eq. (11) for each pipe; 

c. Apply the pressure boundary conditions by assigning one nodal pressure equal to zero; 

d. Solve the system of linear equations defined by Eq. (12) thus finding the vector of nodal pressure 

increments ∆p(i)
; 

e. Update the vector of nodal pressures p(i)
 using Eq. (13); 

f. Evaluate the vector of increment in internal flows ∆q(i)
 applying Eq. (14) locally for each pipe; 

g. Update the vector of internal flows q(i)
 using Eq. (15); 

5. Start the corrector stage: 

a. Assemble the permeability matrix for the entire network K(i)
, using Eq. (7) for each pipe; 

b. Apply the pressure boundary conditions by assigning one nodal pressure equal to zero; 

c. Solve the system of linear equations defined by Eq. (8) using q(i)
 as the vector of independent 

variables, thus correcting the vector of nodal pressures p(i)
; 

6. Repeat steps 3 to 5 until reaching the total number of incremental steps N. 

 

Results of the IIM are shown in Fig. 4 and in some folowing examples. From Fig. 4, it can be seen that the internal 

discharges from both original and improved methods are the same, since the corrector stage acts only in the nodal 

pressures. However, note that the nodal pressure evolution during the incremental steps are different, being the values 

given by the improved algorithm much closer to the one found using the GM. 

 

 
a) 

 
b) 

Figure 4. Evolution of the a) internal discharge at pipe 17 and b) pressure at node 17 from the network from Fig. 3; 

using the original and the improved  Incremental Method. The values given by EPANET are shown asthe constant line. 

In a) the values of the original and improved algorithms are the same. 

 

4. NUMERICAL EXAMPLES 
 

The first example is the analysis of the pipe network from Fig. 2.a. This network was solved by the two alternative 

methods proposed, both for its original and improved versions as previously described. Besides, the example was also 

solved using the GM, in order to allow comparison of the methods. The results of each analysis are show in Tab. 2. 

Note that the dimensions used are meters (m) for head pressures and liters per second (L/s) for discharges, in order to 

allow an easy reading of the results. The analysis using the GM was made in the software EPANET, with an accuracy 

of 10
-6

 for both pressures and internal discharges. Note that this accuracy was achieved in 6 iterations, and the GM is 

known in literature for its high convergence rate (Formiga and Chaudhry, 2008). The analysis with the FPM, the IFPM 

and the IM were made using 10 iterations or incremental steps, while the analysis with the IIM was made using 5 

incremental steps, since this method solves two systems of linear equations per incremental step (one for the predictor 

stage and another for the corrector stage). 

Errors on pressures were evaluated by taking the modulus of the maximum difference between the pressures 

obtained with the GM and the pressures obtained with the method for which the error is evaluated. This is the same as 

taking the infinity norm of the difference between the vector of pressures given by the GM and the vector of pressures 

given by the method being compared. Consequently, the error e is, here, given by 
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pppp −=−=
∞ GMGMe max , (21) 

 

where pGM is the vector of pressure given by the GM and p is the vector of pressures given by the method for which the 

error is evaluated. Errors on internal discharges are evaluated in the same way. 

From the results shown in Tab. 2 and Tab. 4 it can be seen that the FPM presented good results for the evaluation of 

nodal pressures, but poor results for the evaluation of internal discharges. The IM, instead, presented poor results for the 

evaluation of nodal pressures, but good results for the evaluation of internal discharges. Consequently, the IIM, which 

combines characteristics of both methods, presents good results for both pressures and internal discharges, as expected. 

The IFPM presents a better convergence rate than the FPM, for the reasons explained previously. 

 

Table 2. Pressures and internal discharges for the example of Fig. 2.a.
1
 

Pressures 

node EPANET FPM IFPM IM IIM 

1 15.0000 15.0000 15.0000 15.0000 15.0000 

2 11.0280 11.0364 11.0295 11.4655 11.0308 

3 9.3294 9.3372 9.3320 9.9547 9.3339 

4 6.3949 6.246 6.3989 7.3451 6.4019 

5 8.5449 8.5609 8.5477 9.2567 8.5499 

6 8.6733 8.6854 8.6758 9.3712 8.6779 

7 5.4670 5.4823 5.4720 6.5200 5.4752 

8 4.6337 4.6526 4.6404 5.7792 4.6440 

9 5.3004 5.3231 5.3054 6.3721 5.3087 

10 4.9148 4.9408 4.9203 6.0291 4.9237 

11 5.4620 5.4797 5.4666 6.5157 5.4698 

12 4.9863 5.0045 4.9917 6.0921 4.9951 

13 4.1314 4.1559 4.1377 5.3319 4.124 

14 3.9234 3.9467 3.9300 5.1459 3.9338 

15 4.1637 4.1839 4.1697 5.3601 4.1733 

16 4.1639 4.1865 4.1723 5.3604 4.1760 

17 3.6996 3.7233 3.7066 4.9461 3.7104 
 

Internal discharges 

pipe EPANET FPM IFPM IM IIM 

1 23.0171 24.302 23.0190 23.0202 23.0102 

2 27.6850 27.3255 27.6839 27.6838 27.6850 

3 18.0171 19.302 18.0190 18.0202 18.0102 

4 29.2979 28.2543 29.2971 29.2960 29.3049 

5 22.6850 22.3255 22.6839 22.6838 22.6850 

6 -16.7088 -17.7040 -16.7105 -16.7070 -16.6974 

7 -3.6916 -3.2838 -3.6914 -3.6868 -3.6873 

8 10.1322 10.1293 10.1280 10.1281 10.1210 

9 11.7088 12.7040 11.7105 11.7070 11.6974 

10 20.6063 19.9705 20.6057 20.6093 20.6176 

11 7.5528 7.1962 7.5558 7.5557 7.5640 

12 5.1322 5.1293 5.1280 5.1281 5.1210 

13 6.7088 7.7040 6.7105 6.7070 6.6974 

14 -8.0958 -7.3436 -8.0955 -8.0992 -8.1110 

15 7.5105 7.6269 7.5102 7.5100 7.5066 

16 9.8046 10.0476 9.8060 9.8062 9.8085 

17 10.0632 9.8230 10.0660 10.0657 10.0705 

18 4.8046 5.0476 4.8060 4.8062 4.8085 

19 -5.1954 -4.9524 -5.1940 -5.1938 -5.1915 

20 -0.1322 -0.1293 -0.1280 -0.1281 -0.1210 

21 5.0000 5.0000 5.0000 5.0000 5.0000 
 

 

Table 3. Pressures and internal discharges for the example of Fig. 2.b. 

Pressures 

node EPANET FPM IFPM IM IIM 

1 15.0000 15.0000 15.0000 15.0000 15.0000 

2 6.6261 6.6297 6.6297 7.5479 6.6326 

3 8.3767 8.3788 8.3788 9.1043 8.3810 

4 6.6261 6.6297 6.6297 7.5479 6.6326 

5 4.8755 4.8807 4.8807 5.9915 4.883 

6 4.7459 4.7513 4.7514 5.8755 4.7548 

7 4.8755 4.8807 4.8807 5.9915 4.883 

8 3.020 3.0486 3.0486 4.3595 3.0526 

9 3.8540 3.8605 3.8605 5.0828 3.8643 

10 4.2805 4.2871 4.2866 5.4615 4.2903 

11 3.8540 3.8605 3.8605 5.0828 3.8643 

12 3.020 3.0486 3.0486 4.3595 3.0526 

13 3.8346 3.827 3.822 5.0652 3.8450 

14 3.8152 3.8230 3.8219 5.0475 3.8257 

15 3.8346 3.827 3.822 5.0652 3.8450 

16 3.0022 3.0110 3.0099 4.3243 3.0140 
 

Internal discharges 

pipes EPANET FPM IFPM IM IIM 

1 30.0000 30.0000 30.0000 30.0000 30.0000 

2 -15.0000 -15.0000 -15.0000 -15.0000 -15.0000 

3 15.0000 15.0000 15.0000 15.0000 15.0000 

4 15.0000 15.0000 15.0000 15.0000 15.0000 

5 15.0000 15.0000 15.0000 15.0000 15.0000 

6 3.7114 3.8698 3.7120 3.7087 3.7035 

7 -3.7114 -3.8698 -3.7120 -3.7087 -3.7035 

8 11.2887 11.1302 11.2880 11.2913 11.2965 

9 7.327 7.7397 7.339 7.275 7.4070 

10 11.2887 11.1302 11.2880 11.2913 11.2965 

11 -10.0000 -10.0000 -10.0000 -10.0000 -10.0000 

12 1.2886 1.1302 1.2880 1.2913 1.2965 

13 7.327 7.7397 7.339 7.275 7.4070 

14 1.2886 1.1302 1.2880 1.2913 1.2965 

15 10.0000 10.0000 10.0000 10.0000 10.0000 

16 1.2886 1.1302 1.2880 1.2913 1.2965 

17 -1.2886 -1.1302 -1.2880 -1.2913 -1.2965 

18 10.0000 10.0000 10.0000 10.0000 10.0000 
 

  

 

                                                           
1
 EPANET: Gradient Methods implemented in EPANET; FPM: Fixed Point Method; IFPM: Improved Fixed Point Method; IM: Incremental Method; 

IIM: Improved Incremental Method. 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

 

Table 4. Errors on pressures and internal discharges according to the GM. 

Errors on pressures 

FM IFPM IM IIM 

Figure 2.a 0.0260 0.0083 1.2465 0.0121 

Figure 2.b 0.0089 0.0077 1.3221 0.0118 
 

Errors on internal discharges 

FPM IFPM IM IIM 

Figure 2.a 1.4031 0.0030 0.0049 0.0152 

Figure 2.b 0.3169 0.0012 0.0052 0.0157 
 

 

The second example is that from Fig. 2.b, which results are shown in Tab. 3; and the same general conclusions can 

be draw about the performance of the methods. However, in this case the GM converged after 4 iterations, considering 

again and accuracy of 10
-6

. 

Note that the errors presented Tab. 4 does not necessarily mean that the alternative methods here presented are less 

accurate than the GM. These errors can result from small changes in the parameters used in the analysis, like water 

density, water viscosity or material relative roughness. In fact, the IFPM (which can be considered the most efficient 

method proposed in this paper) converged after 7 iterations for the example of Fig. 2.a and after 6 iterations for the 

example of Fig. 2.b, considering an accuracy of 10
-6

. These values are close to the ones obtained by the GM, which 

converged after 6 and 4 iterations for the examples from Fig. 2.a and Fig. 2.b respectively. 

 

5. CONCLUSIONS 

 
For the examples presented in this paper, the IFPM and the IIM presented good agreement with the results obtained 

with the GM. However, the IFPM is currently more adequate for practical use than the IIM, since it can be used for 

networks with and arbitrary number of prescribed pressures. The IIM, instead, allows only the definition of one 

prescribed pressure. Besides, the IFPM presented a better convergence rate than the IIM, and is easier to translate into 

computational routines. However, this picture may change if more effort is applied to the development of the IIM, 

mainly to the corrector stage. Note that the incremental approach is successfully applied to many structural problems. 

Some important features are not discussed in this paper, as the inclusion of pumps and valves. The inclusion of 

these devices can be accomplished by defining “pipe” elements with appropriate head loss coefficients. Pumps, for 

example, may be included by defining a “pipe” which gives a head gain, instead of a head loss. However, the inclusion 

of these and other features (i.e. leakages and nodal discharges dependent on nodal pressures) remain as open questions 

for future works. 
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