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Abstract.  In this paper, we analyze the chaotic dynamics of an electromechanical damped Duffing oscillator coupled 

to a rotor. The electromechanical damped device or electromechanical vibration absorber consists of an electrical 

system coupled magnetically to a mechanical structure (represented by the Duffing oscillator with double-well 

potential), and that works by transferring the vibrational energy of the mechanical system to the electrical system. A 

Duffing oscillator with double-well potential it is considered.  Numerical simulations results are presented to 

demonstrate the effectiveness of the electromechanical vibration absorber. 
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1. INTRODUCTION  

 

For the symmetric Duffing oscillator, the potential function can be expressed as follows (Youngiae et al., 2000): 
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where a  and b  are constants.  Here we consider only the bounded case with positive b )0( >b . Then, depending on 

the sign of a , the potential function becomes one of two different types: Double-well potential for a )0( <a or  

Single-well potential for a )0( >a For the Duffing oscillator with a double-well potential there are two stable  

Equilibrium point at bax /−±= and one unstable equilibrium point at 0=x . On the contrary, the Duffing 

oscillator with a single well has only a stable equilibrium point at 0=x . 

 

The Duffing equation with a double-well potential (with a negative linear stiffness) it is an important model. 

One physical realization of such a Duffing oscillator model is a mass particle moving in a symmetric double well 

potential. This form of the equation also appears in the transverse vibrations of a beam when the transverse and 

longitudinal deflections are coupled(Sun and Lim, 2007). The Duffing equation with negative linear stiffness also 

describes the dynamics of a buckled beam as well as a plasma oscillator( Sang and Kim, 2000).  

 

The damped and forced double-well Duffing equation has been a subject of intensive study over the last few 

decades as a landmark chaotic system.  

 

(Venkatesan and Lakshmanan , 1997) showed numerically and analytically the existence of bifurcations and 
chaos in a double-well Duffing oscillator. The stability and bifurcation of a van der Pol-Duffing oscillator with the 

delay feedback are investigated by (Suqi et al., 2008). New methods have been used to suppress chaos by various 

authors, which considered the double-well Duffing equation ( Tereshko et al., 2004), ( Alvarez-Ramirez and Espinoza-

Paredes, 2003 and  (Sun et al, 2006).  

 

These methods have been applied for systems whose energy sources are described by a harmonic function. 

However, in several mechanical experiments the oscillator cannot be driven by systems whose amplitude and frequency 

are arbitrarily chosen, since the forcing source has a limited available energy supply. Such energy sources have been 

called non-ideal, and the corresponding system a non-ideal oscillator. For this kind of oscillator, the driven system 
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cannot be considered as given a priori, but it must be taken as a consequence of the dynamics of the whole system 

(oscillator and motor). For non-ideal dynamical systems, one must add an equation that describes how the energy source 

supplies the energy to the equations that govern the corresponding ideal dynamical system.  

 

 We remark that in non-ideal systems the so-called Sommerfeld effect is often present: steady state frequencies 

of the DC motor will usually increase as more power (voltage) is given to it in a step-by-step fashion. When a resonance 

condition with the structure is reached, the better part of this energy is consumed to generate large amplitude vibrations 

of the foundation without sensible change of the motor frequency. Eventually, enough power is supplied to the motor to 

cause a jump: the operating frequency increases and the foundation amplitude decreases, resulting in lower power 

consumption by the motor.   For a complete review of different approaches see (Balthazar et al. , 2003). We announced 

that  Souza et al., 2007) proposed a simple feedback control method to suppress chaotic behavior in oscillators with 
limited power supply( Non-ideal vibrations).  

 

In this work, we study the dynamics behavior of the double-well oscillator with limited power supply coupled 

to an electromechanical damped device. A single-well oscillator with limited power supply coupled to an 

electromechanical damping vibration absorber was studied by (Souza et al., 2007). The purpose of this paper is to 

consider the dynamics of an electromechanical damping device, and that works by transferring the vibration energy of 

the mechanical system to the electrical system, consists of an electrical part coupled magnetically to a mechanical 

structure (modeled by a double-well Duffing oscillator). A linear electrical system it is applied for suppressing the 

chaotic vibrations which limit the performance of the motion in the mechanical structure. 

 

This paper is structured as follows:  in Section 2 we describe the model equations for the oscillator with limited 
power supply. Section 3 explores some aspects of the model dynamics from numerical simulations, emphasizing the 

performance of the electromechanical damped device on a suppressing the chaotic vibrations. Our conclusion is 

presented in Section 4. 

 

 

2. THEORETICAL  MODEL 
 

The model shown in Fig. 1 it is a mechanical structure described by the Duffing oscillator with double-well 

potential coupled to an electromechanical vibration absorber.  The structure consists of a mass
1m , a viscous damping 

coefficient b , a linear spring constant 1k  and a nonlinear spring constant 2k . The structure is excited to a source of 

limited power supply, with mass unbalanced 0m  and eccentricity r . This system is called a main system. 

 

 The vibration absorber consists by an electromechanical transducer and a RCL electrical circuit in series. The 

simplest transducer constant model is given by nlBS π2= , where n  is the number of turns in the coil, l  is the radius 

of the coil and B  is the uniform radial magnetic field strength in the annular gap. The transducer constant S  also 

relates the electrical potential e , across to the terminals of the coil to the velocity of the coil, with respect to the 

permanent magnet. The electrical circuit consists by a linear inductor L , a linear capacitor C  and a linear resistor R . 
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Figure 1 - Schematic of a non-ideal structure coupled to nonlinear electromechanical vibration absorber device 
[11]. 
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The kinetic energy(  Felix et al, 2009) and potential energy( Iosaqui , 2009)) [12] of the Duffing oscillator with 

double-well potential are described as:   
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where x  is the displacement of the main structure, ϕ  is the angular displacement of the rotor, 0I  is the moment of 

inertia of the rotor. 

 

The motion of the DC motor is governed by the following equations: 

  

( ) ( ) ( )φφφ ′−′=′ HQM
                                                                                                                                                (4) 

 

where the function )(ϕ&Q  is the driving torque of the source of energy, the function )(ϕ&H  is the resistive torque that 

is applied to the motor.  

 

Note that, usually, the inductance taken to be as much smaller than the mechanical constant time of the 

vibrating system and, then in the stationary regime, we can take )(ϕ&Q  as (linear) ( ) ϕϕ &&
21 uuQ −= , where 1u  is 

related to the voltage applied across to the armature of the motor and 2u is a constant for each model of motor 

considered. We considered the resistive torque nulls. 

 

 

The motion of the system is governed by the following governing differential equations, modified from ( Felix 

et al, 2009) 
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It is convenient to rewrite (5), in terms o dimensionless variable: 
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Then, the governing equations of motion (5), itself reduce to the following non-dimensional equations: 
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where                                                                
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2. DYNAMICS ANALYSIS OF THE SYSTEM 
 

Equation (6b) it is numerically integrated, by using the fourth order Runge-Kutta algorithm with variable step-

time.  The numerical simulations were done in Simulink of MATLAB©.  

 

In the following numerical calculation, the values of system parameters are given in such a way that the local 

natural frequency of the main system 1ω  is equal to the local frequency of the absorber 2ω . The initial conditions are 

taken as being nulls.  

 

The responses are characterized by tracing the time evolutions, phase portrait and Lyapunov exponents. 

 

The main aim of the electromechanical damping device in this section, it is to eliminate or suppress the 

mechanical chaotic vibrations or instability issue of the mechanical Duffing oscillator. Due to the characteristics of the 

electromechanical damping device, it is not possible to stop the motion of the mechanical Duffing model, but we have 

to determine the parameter band in which the electrical system transforms the chaotic vibrations of the mechanical 

Duffing oscillator to steady state or to another type of periodic vibrations, but not to another chaotic vibration. 

 

 

Figure 2 shows the frequency response curves in amplitude for the system with an electromechanical damping 

vibration absorber. The values of the system parameters are  

 

2.01 =α , 102 =α , 31 =β , 201 =γ , 102 =γ , 5=λ , 1.0=ε  e 152 =µ  [10, 11].  

 

For the system without an electromechanical absorber the parameters of coupling 1γ  and 2γ  are taken as 

being nulls. The symbol ‘*’ represents the system without absorber and the symbol ‘.’ represents the system with 

absorber.  

 

Figures 2(a) and 2(b) show the amplitude 1χ  of the harmonic oscillation in the main system and the 

amplitude 2χ of the harmonic oscillation in the electromechanical damped vibration absorber, respectively. This graph 

it is estimated, by numerical simulations, defining the amplitude for angular velocity of the DC motor shaft or excitation 

frequency as being the mean value of the oscillations, and the amplitude for the foundation oscillation as absolute 

maximum value on the stationary state motion from equation (6). When is used the electromechanical absorber, we may 

observe that the amplitude of the Duffing oscillator is then weakly reduced.  
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Figure 2 – a) Frequency response curve for the double-well Duffing oscillator without and with absorber and b) 
Frequency response curve for the electromechanical absorber. 

 

 

The dynamic behavior of the electromechanical vibration absorber in the system (double-well Duffing 

oscillator) was observed from time histories of the displacements 1χ and its respective phase portrait for distinct control 

parameter 1µ  (figures 3 through 7).  Considering the other parameters fixed, we have: for ]14,0[1 ∈µ  the dynamic 

behavior is of stable periodic motion kind for the both systems without and with absorber (figure 3). The both systems 

are in the positive well. For ]18,15[1 ∈µ  the dynamic behavior is of the stable periodic motion type, but the system 

without absorber is in the negative well and the system with absorber is in the positive well (figure 4). 

   

 
Figure 3 – a) Time history of the displacement of the mechanical Duffing oscillator, b) Phase portrait. For 

141 =µ . 

 

 
Figure 4 – a) Time history of the displacement of the mechanical Duffing oscillator, b) Phase portrait. For 

151 =µ . 
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Figure 5 – a) Time history of the displacement of the mechanical Duffing oscillator, b) Phase portrait. For 

191 =µ . 

 

 
Figure 6 – a) Time history of the displacement of the mechanical Duffing oscillator, b) Phase portrait. For 

281 =µ . 

 
 

For ]27,19[1 ∈µ , the system without absorber is chaotic while the system with absorber it is stable and 

periodic. The system without absorber goes back and forth over the two well, sampling one well and then the other 

(figure 5). For ]42,28[1 ∈µ , the system without absorber is stable and periodic, and its orbits go through of the two 

wells. The system with absorber is stable and periodic, but its orbits belong to the positive well (figure 6). For 

431 >µ , the system without absorber has behavior chaotic while the system with absorber is stable and periodic.  

 

 
Figure 7 – a) Time history of the displacement of the mechanical Duffing oscillator, b) Phase portrait. For 

431 =µ . 
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 In figure 8, we note the alteration of characteristic curve of the energy source (DC motor) due to 

electromechanical absorber. Figure 8(a) and (b) show the Duffing oscillator in a periodic ( 141 =µ ) and chaotic region 

( 191 =µ ), respectively.   

 

 
 

Figure 8 – Time evolution of the motor velocity: a) for 141 =µ and b) for  191 =µ . 

 

The Lyapunov exponents are calculated to prove the occurrence of a chaotic vibration and the suppressing of 

the chaotic motion by using the method of Wolf et al. [13].  

 

Figure 9 shows the largest three Lyapunov exponents for the control parameter corresponding to figure 2. 

Figure 9(a) and (b) show the Lyapunov exponents of the system without absorber and Lyapunov exponents of the 

system with absorber, respectively.  

 

The fact that the largest Lyapunov exponent it is positive at ]27,19[1 ∈µ  and 431 >µ  proves the 

occurrence of a chaotic vibration in the system without absorber (figure 9(a)).  

 

The suppressing chaos it is verified in figure 9(b) which shows all Lyapunov exponents negative. 
 

 
 

Figure 9 – Three largest Lyapunov exponents of the system: a) without absorber and b) with absorber. 

 
3. CONCLUSIONS 
 

In this paper, we have considered the dynamics of a double-well Duffing oscillator coupled to a rotor (a source 

of limited power supply) and an electromechanical damped device (vibration absorber device). The main aim was 

analyze the behavior of an electromechanical absorber in a chaotic oscillator. The reduction of amplitude of vibration 

was considered .  
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We have also found that the chaotic motion of the mechanical Duffing oscillator has been transformed to 

periodic motion; see as a quenching of chaotic vibrations. The main conclusion is that the electrical system eliminates 

the mechanical chaotic vibrations.   

 

Future works will deals with experimental works.  
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