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Abstract. The present paper describes a formulation of macroscopic strength properties of porous media relying on the 
simulation of the regime o plastic flow of the solid matrix by means of an appropriate fictitious non-linear elastic law. 
Explicit expression for the latter is derived  in the particular case of a frictional solid matrix characterized by a 
Drucker-Prager yield condition. The approach is thus implemented in a numerical procedure specifically devised for 
evaluating the yield stresses of a porous medium. The finite element solutions are therefore compared to 
micromechanics-based analytical expression previously developed for the yield function. The last part of the paper is 
devoted to the formulation of phenomenological yield function for porous media with frictional solid matrix by 
combining the micromechanics-based approach and fitting the finite element results.  
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1. INTRODUCTION  
 

Assessment of strength properties or limit states of heterogeneous materials from the properties of their constituents 
still remains of major concern in the field of material and structural engineering.  Unlike the situation of elastic behavior 
where efficient techniques have been developed, application of micromechanical tools to the modeling of non-linear 
behavior of composite materials is relatively recent and several issues are still open (Zaoui, 2002).  

In this context, the determination of strength properties of porous geomaterials is an important task in geomechanics. 
The contributions in this domain are dedicated mainly to purely cohesive constituents described by a von Mises failure 
condition (Suquet, 1997). Few works have dealt with porous media with frictional solid matrix, which is commonly 
encountered for rocks and soils (see Dormieux et al., 2006).  In this respect, the works developed in Barthelémy and 
Dormieux (2003) or Maghous et al. (2009) can be considered are pioneering contributions in the field. 

Trillat et al. (2006) presented finite element solutions for the macroscopic yield criterion of a porous Drucker-Prager 
material. Idealizing the morphology of an isotropic porous medium by means of the hollow sphere model, these authors 
implemented numerically the limit analysis methods in the framework of a second order conic programming 
formulation. Comparison of the numerical solution with the analytical criterion derived from a non-linear 
homogenization technique by Barthelémy and Dormieux (2003) showed an excellent agreement in the domain of 
macroscopic tensions together with an improvement for compressive stresses. 

The aim of this contribution is to provide an efficient numerical tool to model by F.E procedure the limit states of 
porous materials defined by a frictional solid matrix. The approach is based on the simulation of the elastoplastic 
response of the solid matrix to a monotonic loading process by means of a fictitious non-linear elastic behavior.  The 
numerical results will then be used to formulate a phenomenological macroscopic yield function improving the 
micromechanical approach in the domain of predominating compressive stresses.  

 
2.  MICROMECHANICS 
 

Let us consider a representative elementary volume (r.e.v)Ω  of a randomly porous material as displayed in Fig. 1. 
The domais occupied in the r.e.v by te solid matrix and the pore space are respectively denoted by mΩ and pΩ . The 
volume fraction of pores, i.e. the porosity, is defined as the ratio ΩΩ=φ /p . 
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Figure 1. Representative elementary volume of a porous material and loading mode 

 
The strength properties of the solie matrix are defined by a Drucker-Prager yield condition: 
 

0)()( ≤−+= hTf md
m σσσ                                                                                                                                       (1) 

 
where 3/trσσ =m  is the mean stress and 

dddd σσσσ :== is the norm of the deviatoric stress 1md
σ−σ=σ . 

The parameters h and T respectively denote the tensile strength and friction coefficient of the material.  In addition, the 
matrix plastic yielding is characterized by the non-associated plastic potential 
 

md
m tg σσσ +=)(                                                                                                                                                       (2) 

 
which yields the following flow rule 
 

1if hdtd mv ≠= σ                                                                                                                                                   (3) 

d is the strain rate tensor. 3/tr dd v = and  1md ddd −=   are the volume strain rate and magnitude of deviatoric 

strain rate.   The dilatancy coefficient t  is such that Tt ≤≤0 . Equality Tt = corresponds to associated plasticity 
(normality rule). 
The determination of the macroscopic strength condition, which defines the set of macroscopic limit states of the porous 
material, requires to previously defining the loading mode of the r.e.v. The latter is prescribed by means of uniform 
strain rate boundary conditions 
 

Ω∂∈∀= xxDxv .)(                                                                                                                               (4) 
 
where v is the velocity field and D  is the macroscopic strain tensor , i.e. the volume average on of the microscopic 

strain rate field 2/)( vgradvgradd T+= associated with the velocity field v : 
 

Ω
Ω

=〉〈= ∫ΩΩ d1 ddD                                                                                                                                              (5) 

 
2.1. Macroscopic limit states 

 
Extending the definition of limit stress states proposed in Boushine et al. (2001) to the context of homogenization, it 

comes that the macroscopic yield function homF  can be defined by 
 

Ω 

v D .x=
Pores 

pΩ  

Solid matrix 
mΩ  
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whereΣ  and σ  respectively refer to the macroscopic and microscopic stress tensors. The determination of homF  
requires to solving problem (6), which turns to be an uneasy task for a medium with randomly distributed pores. In 
addition, the limit analysis theorems and associated approaches do not apply in the present situation since the limit 
analysis framework is implicitly dedicated to the strength properties of materials with associated flow rule. An original 
strategy has been proposed and implemented in Maghous et al. (2009). It relies on:  

• The rigid-plastic behavior with non-associated flow rule of the constitutive material of matrix is viewed 
formally as the limit of viscous-behaviors with pre-stress. This makes it possible to substitute problem (6)   
within a sequence of viscoplastic material stated on the r.e.v.  

• The above mentioned sequence of viscoplastic problems is addresses by means of nonlinear homogenization 
technique based on the concept of effective stress and performed in the framework of theso-caled modified 
secant method (Suquet, 1997; Dormieux et al. 2002).  

It is shown Maghous et al. (2009) that such micromechanical approach yields to the following expression for the 
strength condition of the porous medium 
 

0)1()1(2)1
2
3(3/21)( 222

2
2

2
hom ≤−−Σ−+Σ−+Σ

+
=Σ hh

TT
F mmd φφφφ                                                                 (7) 

  
which delimits in the plane ( dm ΣΣ , ) an elliptic domain characterizing the set of macroscopic limit states of the porous 
medium (Fig. 2).  It is first observed that condition (7) derived from micromechanics does not depend on the value of 
matrix dilatancy coefficient t . This is consistent with the results previously established in Barthélémy and Dormieux 
(2003) for Tt = and in Barthélémy (2005) 0=t . As far as the limit states of the porous medium are concerned, one 
may proceed adopting any (fictitious) value for t , not necessary the effective value of the dilatancy coefficient of the 
matrix. Adopting Tt = for instance, the yield condition for the porous medium may actually be derived in the 
framework of limit analysis. An important feature of the strength properties of randomly porous media is related to the 
flow rule at the microscopic level. If the geometrical domain of the limit states is independent on the value of dilatancy 
coefficient t  of the solid matrix, the macroscopic flow rule is, in contrast, highly sensitive to this parameter. Indeed, it 
can be established that that for any limit stress state Σ , that is complying with the yield condition 0)(hom =ΣF ,  the 

associated macroscopic strain rate D  is defined by 
 

mmd h
TtTt
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+

=Σ
Σ∂

∂
= )1(2)1
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It is readily seen from Eqs. (7) and  (8) that if Tt =  (associated flow rule at the microscopic level), the normality rule 

will hold at the macroscopic level, i.e. 
Σ∂

∂
=

homFD .  

Finally, the case of a von Mises solid matrix with parameter k as shear strength is obtained as the limit of Eq. (7) and 
Eq. (8)  when ++ →→= 0,0,2 tTkhT  
 

0)1(2
2
3)

3
21()( 2222hom ≤−−Σ+Σ+=Σ kF md φφφ    and   22hom

2
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3
21()( mdG Σ+Σ+=Σ

φφ                                   (9) 

 
which as expected corresponds to an associated behavior.  Expressions (9) have already been established in the past by 
several authors, such as Leblond et al. (1994) or Suquet (1997). 
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2.2. Case of pressurized pore space 

 
In this section, we examine the question of the macroscopic limit states when the pore space is saturated by a fluid 

at pressure P .  A stress-pressure state ),( PΣ  is said to be a limit state for the saturated porous medium if there exits a 

couple ),( vσ  of microscopic stress and velocity fields satisfying the set of equations (6) in which condition 0=σ is 

replaced by condition 1P−=σ  within the pore space pΩ .  It is assumed that, similarly to the drained situation (i.e. 

)0=P  examined in section 2.1, the domain of limit states is independence on the dilatation coefficient of the solid 
matrix.  Under this assumption, a general result established in de Buhan and Dormieux (1996) indicates that: 

“the stress-pressure state ),( PΣ  is a limit state for the pressurized porous material if and only if 
 

 
hP

Peff

/1

1

+

+Σ
=Σ                                                                                                                                                         (10)  

 
is a limit state for the dry (or drained) porous material (i .e. )0=P ” 
 
Accordingly, the yield condition reads 
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This means that the macroscopic strength is controlled by the effective stress effΣ . As opposed to the traditional 

concept of effective stress, it is noted that  effΣ  does not linearly depend on the pore pressure P .  The value of P  being 

fixed, the set of limit stress-pressure states ),( PΣ  is obtained in the plane ( dm ΣΣ , ) by means of a simple geometric 
transformation of the set of limit states for the dry porous material. This geometric transformation is the combination of 
a translation of quantity P−  along the mΣ -axis and an isotropic expansion of ratio hP /1+ . 

 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Schematic representation of the set of limit states for the porous material 
 
3.  FINITE ELEMENT ANALYSIS  

 
Expression (7) of the macroscopic yield function )(hom ΣF has been derived within the context of non-linear 
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homogenization technique and the concept of effective strain. It represents therefore an approximate solution of 
problem (6) and as such, it is not the exact expression for the macroscopic yield function of the porous material. The 
objective her is to check the accuracy of the micromechanical estimate (7) through comparison with finite solutions. 

The starting point consists in taking advantage of the local equivalence, under monotonic loading, between a rigid 
plastic behavior an an appropriate fictitious non-linear elastic behavior. The notations previously introduced for the 
microscopic and macroscopic strain rates d and D  are straightforwardly transposed to local and macroscopic 

linearized strainsε  and E . The principle of the method is to look for a non-linear elastic material, characterized by its 
secant stiffness tensor 

 
( ) 3 ( , ) 2 ( , )= +m m

v d v dkε ε ε µ ε εJ K                                                                                                                      (12) 
 

where mk is the bulk modulus, mµ  is the shear modulus, 1/ 3ijkl ij klδ δ=J , = −K I J  ( I being the fourth-order identity 

tensor), and such condition )(σmf =0 is fulfilled asymptotically for large values of the deviatoric strain 
 

( )
0/

lim ( ) : 0
d

mf
ε ε

σ ε ε
→∞

= =C                                                                                                                                     (13) 

 
where 10 <<ε  physically represents the order of magnitude of the shear strain at plastic yielding. A simple choice for 

the fictitious material consists in adopting a constant value for mk .  Eq. (13) therefore implies that  
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2

),( 0 >>−≈ εεε
ε

εεµ dv
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d
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m ifkhT                                                                                                         (14) 

Figure 3 displays the non-linear elastic representation of  the strength behavior obtained from Eqs. (12) and (14).  
For the F.E numerical implementation, the following expression has been adopted for the shear modulus 
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It can be readily seen that  0→mµ   in the asymptotic regime, whereas mk remains constant. This implies that 

0/ →mm kµ , which in turns implies that asymptotically 0/ →dv εε . The fictitious non-linear elastic material behaves 
for large values of shear strain as incompressible material. This means that non-linear elastic material will 
asymptotically model a Drucker-Prager solid matrix with a no plastic dilatancy, i.e. .0=t  However, this is not a 
restriction, since it has been seen that the macroscopic yield domain does not depend on the value of ],0[ Tt∈ . 
 

                                        
 

Figure 3.  Representation of the non-linear elastic behavior associated with the rigid plastic solid matrix 
 
The above behavior has been implemented in the code Abaqus as UMAT subroutine. A simplified morrphology for 
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the porous material, which refers to a periodic configuration has been considered. The corresponding elementary cell is 
sketched in Fig. 7a (cubic volume of solid phase surrounding a centered spherical void). The loading of the elementary 
cell is defined by uniform boundary strain conditions, with macroscopic strains of the form  

 
( ))( 2211330 eeeeeeEE ⊗+⊗+⊗= α                                                                                                                 (16) 

 
where parameter α  stands for the loading path. Owing to periodicity and the material symmetry, only the eighth of the 
elementary cell is discretized into finite elements (Fig. 4.b). 

Even the periodic configuration considered for the finite element analysis introduces a slight anisotropy in strength, 
it is expected that comparison between the micromechanical prediction (7) and the finite element solution would 
provide useful indication as regards then accuracy of the technique based on solving the limit state problem by means of 
the concept of an effective strain. 

 

      
(a) (b) 
 
Figure 4.  Elementary cell of the porous material and F.E discretization 

 
Figures 5(a)-(b) show the results obtained numerically as well as the micromechanical predictions provided by Eq. (7) 
for a porosity 15%φ = , which is rather moderate for geomaterials.  A good agreement is observed except for high 
macroscopic compressive stresses ( 0)mΣ ≤ for which the proposed micromechanical approach overestimates the set of 
limit states. This emphasizes the efficiency of the technique based on the concept of effective strain. It also points out 
that this technique should be improved in the domain of predominating compressive stresses. The shortcoming of the 
method in the range of predominating compressive stresses is attributed to the implementation of a single effective 
strain for the whole solid matrix, which is not accurate enough for low porosity. Indeed, highly heterogeneous strain 
rates are expected to concentrate around the pores in this case, so that an average value over the whole solid matrix fails 
to capture the local strain rate level. 
 

                    
 

(a) von Mises solid matrix 
 

km 2/Σ

kd 2/Σ
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(b)  Drucker-Ptrager solid matrix with 3.0=T  
                                                                                            

Figure 5.  Strength domain for a porous medium 15%φ =  
 

4. EMPIRICAL MODEL FOR YIELD FUNCTION 
 
In consistence with the results provided in Trillat et al. (2006), the F.E analysis of the previous section gave 

evidence of the yield surface asymmetry between tension and compression. It clearly indicates that the micromechanics-
based yield function given by Eq. (7) can lead to a significant overestimate of the domain of limit sates for 
predominating compressive stresses.  This may particularly occur for frictional matrix (i.e. 0≠T ) with relatively low 
porosities. The purpose herein is to propose a modified yield function )(~ hom ΣF which would correlates better with the 
F.E solutions.  This will be achieved on the basis on both micromechanical approach and numerical solutions as 
described below. 

Let 0 2(1 ) / (1 3 / 2 )m h Tφ φΣ = − − denotes the abscisse, in plane ( ),m dΣ Σ , of the center of ellipse 0)(hom =ΣF . We 

then introduce the macroscopic stress state 
0

Σ defined by its coordinates 0 01
2m mΣ = Σ  and 0

dΣ  such that 
0hom ( ) 0F Σ = . In 

view to improve the prediction of the isotropic compressive limit state, the value of limit pressure for a hollow sphere 
under isotropic compression  

 

( )2/3 /(1 2/3 )1c T T
m h φ +Σ = −                                                                                                                                        (17) 

 
will naturally provide a reasonable estimate for the value of macroscopic limit in isotropic compression state.  

To summarize, the new yield function proposed )(~ hom ΣF  is defined by 
 

hom 0
hom

hom 0

( )
( )
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m m

c m m

F if
F

F if

⎧ Σ Σ ≥ Σ⎪Σ = ⎨
Σ Σ ≤ Σ⎪⎩

                                                                                                                          (18) 

 
where hom ( ) 0cF Σ =  represents the equation of ellipse coinciding with ellipse hom ( ) 0F Σ = at stress state

0
Σ  (f=f=0 e 

df=df), and intersecting the mΣ -axis at isotropic compressive stress c
mΣ : 

 
hom

0 0 0hom hom hom( ) ( ) ; ( ) ( , 0) 0cc
c c m m d

F
F F and F

∂
Σ = Σ Σ Σ = Σ Σ = =

∂Σ
                                                             (19) 

 
which means that the micromechanics-based prediction (7) is preserved for tension and moderate compression stress 
states, while the phenomenological approximation hom ( ) 0cF Σ = is adopted for predominating compressive stresses.  

The accuracy of such a yield function is assessed through comparison to F.E solutions. Figures 6(a)-(d) display in 
the plane ( ),m dΣ Σ the yield function homF  (curves) along with the F.E results (symbols). It is noteworthy that the 

yield function )(~ hom ΣF  correlates better with the F.E results for wide range of the porosity, the friction coefficient of 

solid matrix and the compressive hydrostatic stresses. Clearly enough, the proposed yield function hom ( )cF Σ  for stresses 

such that 0
m mΣ ≤ Σ is only a first attempt toward a formulation of more accurate predictive model for macroscopic limit 

states of porous media. 

Thm /Σ  

Thm /Σ
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Figure 6.  The yield function homF (curves) and F.E results (symbols) for: (a) 0.1 and 15%T φ= = ; 

(b) 0.1 and 30%= =T φ ; (c) 0.3 and 15%= =T φ ; (d) 0.3 and 30%= =T φ  
 

5. CONCLUDING COMMENTS 
 

The macroscopic limit stress states of a porous material with frictional solid matrix have been addressed within the 
framework of a micromechanics-based formulation. First, the micromechanical approach based on a non-linear method 
and the concept of effective strain rate, as well as the related analytical expression for yield function, have been 
recalled.  In order to assess the accuracy of the micromechanical prediction, a finite element approach to limit stress 
states have been then proposed.  It is based on the formal equivalence under monotonic loading between the response of 
an elasto-plastic material and that of an appropriate non-linear elastic material.  

In this context, a non-linear elastic behavior has been formulated allowing to simulate asymptotically the regime of 
plastic flow of a Drucker-Prager material. It has therefore been introduced within a F.E procedure aiming at deriving 
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numerically limit stress states for a frictional porous material. Comparison between numerical solutions and 
micromechanical predictions emphasized the accuracy of the micromechanical yield function for a large range of 
porosities and macroscopic hydrostatic stresses.  It also shows, however, that the micromechanics-based model may 
significantly overestimate the limit state domain for predominating hydrostatic compressive stresses, more specifically 
in the situation of small porosities. 

On the basis of these observations, a macroscopic yield function for porous material have been proposed by 
combining the micromechanical approach and by fitting the F.E results of the yield stresses obtained for a simplified 
geometry of the porous material. The phenomenological model thus obtained prove to correlate well with the F.E 
solutions in  the range of predominating compressive stresses. 
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