
Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

HEAT TRANSFER OPTIMIZATION OF CROSS-FLOW OVER 
ASSEMBLIES OF BLUFF BODIES EMPLOYING CONSTRUCTAL 

PRINCIPLE  
 

Elizaldo Domingues dos Santos, edsantos@mecanica.ufrgs.br 
Anderson Dall’Agnol, anderson.dall@yahoo.com.br 
Adriane Prisco Petry, adrianep@mecanica.ufrgs.br 
Department of Mechanical Engineering 
Universidade Federal do Rio Grande do Sul – Rua Sarmento Leite, 425 – Porto Alegre - RS 
 
Luiz Alberto Oliveira Rocha, laorocha@gmail.com 
Escola de Engenharia 
Universidade Federal do Rio Grande – Avenida Itália, km 8 – Rio Grande - RS 

 
Abstract. This paper applies Constructal Theory to maximize heat transfer rate in cross-flow over assemblies of square 
cylinders. The main goal is to obtain the optimal number of square cylinders or the optimal placement of each cylinder 
in the assembly to improve the heat exchange between the obstacle and the cross flow. The cross flow is steady, 
incompressible, laminar and two-dimensional. The conservation equations of mass, momentum and energy are solved 
using a commercial package based on finite volume method. The accuracy of the code is evaluated by simulations of 
flows over a square cylinder (bluff body) for low Reynolds numbers, Re = 60 and 160, and different Prandtl numbers, 
Pr = 1, 10 and 20. The results agree within 4% with those shown in the literature. The optimal configurations of 
assemblies of bluff bodies are obtained for several Reynolds numbers, Re = 60, 100 and 160, and Prandtl numbers, Pr 
= 0.1, 0.72, 1 and 10. These optimal configurations as function of Reynolds and Prandtl numbers are also compared 
with those available in the literature for an arrangement of circular cylinders. The optimal spacing between obstacles 
decreases monotonically as the Reynolds and Prandtl numbers increase. 
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1. INTRODUCTION 
 
 This paper reports numerically the maximization of the heat transfer rate in cross-flow over a parallel arrange of 
square bluff-bodies. The optimization is conducted by applying Constructal design. According to this method “the flow 
geometry is malleable and it is deduced from a principle of global performance maximization subjected to global 
constraints” (Bejan, 1997; Bejan, 2000). This method is based on Constructal theory: “the view that flow configuration 
(geometry, design) can be reasoned on the basis of a principle of configuration, generation and evolution in time toward 
greater global flow access in systems that are free to morph” (Bejan and Lorente, 2008). 

The many applications of Constructal theory to generate configuration in nature, and engineering has been 
appropriately reviewed by Bejan and Lorente (2006). This reference shows how natural configuration – river basins, 
turbulence, animal design, crack in solids, earth climate, etc, can be predicted by principle. The same principle can be 
applied in the engineering realm: packing of electronics, fuel cells, tree networks for transport of people, goods and 
information, etc.  

More recently, Constructal theory has been used to optimize geometry configuration of heat sinks, cooling channels 
and micro-channels (Bello-Ochende et al., 2007a; Bello-Ochende et al., 2007b). The purpose of the first study was the 
maximization of the global thermal conductance, or the minimization of thermal resistance. To achieve this objective, 
the geometry configuration was submitted to the following global constraints: fixed volume of the heat-sink cooling 
channel and fixed total volume of the conducting solid. In the second work, a similar study was performed. However, 
other global constraints were evaluated for the optimization of the geometry: a fixed total elemental volume and a fixed 
axial length of the micro-channel heat sink. In both cases, Constructal theory led to the best geometry configurations. 
Besides that, Constructal theory has also been employed to increase the heat transfer rate in ducts by using wrinkled 
entrance regions (Bello-Ochende et al., 2009) and to maximize the heat transfer in cross-flow over a parallel arrange of 
circular cylinders (Bello-Ochende et al., 2005). 

In this paper we apply Constructal design to optimize the heat transfer rate in cross-flow over a parallel arrange of 
square bluff-bodies. This kind of flow has been a subject of many engineering applications such as heat exchangers, 
solar heating systems and packing of electronics. According to Constructal design, the number of obstacles in the 
assembly is free to change subject to the constraint H/D0, i.e. the ratio between the height of the assembly and the side 
length of the square obstacle, in the pursuit of maximal global performance. The global performance indicator is the 
global thermal conductance between the heated obstacles and the cross-flow. For simplicity and clarity, we consider 
two-dimensional configurations and take advantage of symmetry to build the computational domain. 
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2. NUMERICAL AND MATHEMATICAL MODELING 
 
The analyzed physical problem consists of a cross-flow over a parallel arrange of square bluff-bodies, as can be seen 

in Fig. 1. In this study the fluid flow is heated by the square cylinder arrange subjected to a global restriction, which is 
given by the ratio between two fixed dimensions (H/D0), where H is the height of the assembly and D0 is the side length 
of the square cylinder. The optimization process aims to select the number of obstacles in the assembly, or the 
placement between each square cylinder (s0), such that the overall thermal conductance between the cylinder and the 
cross-flow is maximal. The flow is considered steady, incompressible, two-dimensional and laminar. Further, all the 
thermophysical properties are assumed constant. 

The lower part of Fig. 1 illustrates the computational domain that characterizes this assembly. Though the flow over 
bluff bodies persists symmetric about the mid-plane up to about Re = 40 (Sahu et al., 2009), we assume that this non-
symmetric behavior will not affect the evaluation of fluid dynamic and heat transfer parameters, such as drag and lift 
coefficients and Nusselt number. Therefore, it is simulated only half of channel formed between two obstacles. The 
same consideration was previously performed in the literature for simulations of cross-flow over circular cylinders 
arrange (Bello-Ochende and Bejan, 2005). The non-dimensional distance between the inlet plane and the front surface 
of the obstacles arrange (L�u) and that between the rear surface of the cylinder and the exit plane (L�d) were considered L�u 
= 8.5 and L�d = 16.5, respectively (note that D0 is the length scale according to Eq. (5)). These values were chosen to 
avoid the influence of domain over on the heat transfer from the obstacle. 
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Figure 1. Parallel square cylinders arrange and the computational domain  
 

The conservation equations of mass, momentum in x and y directions and energy, respectively, are given by (Bejan, 
1994): 
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where x and y are the cartesian coordinates (m), u and v are the velocity components in x and y directions (m/s), ρ is 

the specific mass of the fluid (kg/m³), υ is the kinematic viscosity of the fluid (m²/s), α is the thermal diffusivity of the 

fluid (m²/s), T is the temperature (°C or K), and 2∇  means 222 yx ∂∂+∂∂=∇ . 

For solving Eq. (1)-(4) numerically, the dimensionless coordinates, velocities, temperature, and pressure are 
obtained from Eq. (5a)-(5d): 
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In the equations above the symbol (~) indicates dimensionless variables; U∞ is the free-stream velocity (m/s), T∞ is 

the free-stream temperature (ºC or K), TS is the temperature of the square cylinder (ºC or K), and P is pressure (Pa). 
Then, the resulting dimensionless equations can be written as:   
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Pr and 

0
ReD are dimensionless parameters, Prandtl and Reynolds numbers, respectively, which are defined by:  
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where µ is the kinematic viscosity (kg/ms), and D0 is the characteristic length used to compute the Reynolds number 

(m). 
The boundary conditions as function of dimensionless variables are observed in Fig. 1. The fluid dynamics boundary 

conditions are no slip and no penetration on the obstacle surfaces, free slip and no penetration on the symmetry 
surfaces, prescribed velocity (u = 1) on the inlet surface, and ∂(u, v)/∂ x = 0 on the outlet surface. Concerning to the 

thermal boundary conditions, they are prescribed temperature on the obstacle surfaces (T = 1) and on the inlet plane of 

computational domain (T = 0). The remaining boundaries of the computational domain are adiabatic. 
To obtain the optimal arrangement of square bluff-bodies, the overall heat transfer rate between the cylinder and the 

surrounding fluids is fixed as objective function, which in its dimensionless form is given by the following expression: 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 
 

 

( )∞−
′=
TTk

q
q

S

~                                (11) 

 
where q’ is the heat transfer rate integrated over the surface of one cylinder between the obstacle and the 

surrounding fluid (W/m), and k is the thermal conductivity (W/mK).  
Equation (6)-(9) were solved by using a CFD package based on rectangular finite volume (Fluent, 2007). The solver 

is pressure based (coupled 2nd order for pressure and Power-law scheme for momentum and energy). The grid is 
stretched with more refined volumes near the surfaces of the obstacle. The appropriate mesh size dimension was 
determined by successive refinements until the criterion |(Nui – Nui+1)| ≤ 5 × 10-3 was satisfied, where Nui is the spatial 
averaged Nusselt number using the current mesh and Nui+1 is the spatial averaged Nusselt number correspondent to the 
next mesh. 

Table 1 shows the attainment of grid independence for flows with Re = 100 and Pr = 0.7. The grid independent 
results agree with those presented in Sahu et al. (2009) and Sharma and Eswaran (2004), within 1.01% and 0.54%, 
respectively. Convergence was achieved when the following maximal residual were reached: 10-4 for mass and 
momentum equations and 10-8 for energy equation. Double precision was used for all numerical simulations.     

 
Table 1. Grid independence as function of Nusselt number for a flow with Re = 100 and Pr = 0.7  

 
Number of elements Nusselt number |(Nui – Nui+1)| ≤ 5 × 10-3 

36175 4,3877  
52380 4,2782 2.50 × 10-2 
105910 4,1882 2.10 × 10-2 
143900 4,1385 1.19 × 10-2 
171848 4,1058 7.90 × 10-3 
207600 4,0848 5.11 × 10-3 
324375 4,0661 4.58 × 10-3 

 
For validation of the code it was simulated steady, incompressible, forced convection flows at laminar regime for 

various Prandtl numbers, Pr = 1, 10 and 20, and Reynolds numbers of Re = 60 and 160. The local Nusselt numbers for 
the top half of the square cylinder are compared with the results of Sahu et al. (2009), as can be seen in Fig. 2a for Re = 
60 and Fig. 2b for Re = 160. One observes that all results agree within 4%. The worst situation occurs for a flow with Pr 
= 20 and Re = 160. 
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Figure 2. Local Nusselt number obtained from the present code and that presented in Sahu et al. (2009) for flow with 

various Prandtl numbers, Pr = 1, 10 and 20, and a fixed Reynolds number – a) Re = 60 and b) Re = 160 
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3. RESULTS 
 

The flow and temperature fields were simulated in a large number of configurations to determine the effect of 
spacing on heat transfer rate. For the achievement of this objective, the bluff-bodies arrange is submitted to a global 
restriction, given by the ratio H/D0, and to one degree of freedom, which is the distance between the square cylinders 
(s0). For all geometric configurations it was simulated various Prandtl numbers, Pr = 0.1, 0.72, 1.0 and 10.0, and 
Reynolds numbers, Re = 60, 100 and 160, with the purpose to evaluate the behavior of heat transfer rate from the 
obstacles to surrounding flow as function of these dimensionless parameters. 

Figure 3 shows the dimensionless heat transfer rate (q) as function of the distance between the square cylinders (s�0) 
for various Reynolds numbers, Re = 60, 100 and 160, and a fixed Prandtl number. Figure 3a presents this evaluation for 
a Prandtl number of Pr = 0.1. One observes that there is an optimal geometric configuration for all evaluated Reynolds 
numbers. These optimal configurations, for each Reynolds number, do not correspond to the highest or lowest space 
between the square cylinders (s�0). In other words, the optimal geometry is not obtained by the insertion of the maximum 
or the minimum number of obstacles in a fixed space, H. It is also investigated the behavior of the optimal non-
dimensional distance between square cylinders (s�0,opt) as function of Reynolds number (Re), s�0,opt decreases as Reynolds 
number increases. This same behavior was previously shown in Bello-Ochende and Bejan (2005) for a cross-flow over 
circular cylinders. In that study, the optimal geometry is obtained as function of Bejan number, Be, instead of Reynolds 
number, Re, as presented here. Since both dimensionless parameters, Be and Re, has a similar influence for the 
determination of an optimal assembly, a comparison of the behavior of optimal distance between square and circular 
cylinders as function of Reynolds and Bejan numbers, respectively, is suitable. 

In Figure 3b, the dimensionless heat transfer rate (q) as function of the distance between the square cylinders (s�0) for 
a fixed Prandtl number Pr = 0.72 is presented. In comparison with the previous case, Pr = 0.1, the optimal distances 
between the square cylinders for all Reynolds numbers has decreased significantly, but it has not yet decreased until the 
minimal distance (s�0,opt ≠ s�0,min) for flows with Re = 60 and 100. Except for a flow with Re = 160, where the optimal 
dimensionless distance between the square cylinders is minimal, s�0,opt = s�0,min. In addition, for Pr = 0.72 the optimal 
distance between the square obstacles s�0,opt , as well as for Pr = 0.1, decreases as Reynolds number increases. 

 

a) b)
 

 
Figure 3. The optimization of dimensionless heat transfer rate (q) as function of the dimensionless distance between the 
square cylinders (s�0) for various Reynolds numbers, Re = 60, 100 and 160, and Prandtl numbers: a) Pr = 0.1 and b) Pr = 

0.72     
 

 For a better understanding of the thermal behavior as function of the dimensionless distance between square 
cylinders, s�0, the temperature distribution for three different arranges and a flow with Re = 60 and Pr = 0.72, is 
presented in Fig. 4. The first one, Fig. 4a, represents the largest distance between the square cylinders. The second one, 
Fig. 4b, represents an intermediate distance and the last one, Fig. 4c, represents the shortest distance between the square 
cylinders. The decrease of the dimensionless distance between the square cylinders, from Fig. 4a to Fig. 4b, led to an 
increasing of the heat exchange between the obstacle and the surrounding flow. This fact is related with the increase of 
the temperature gradients around the obstacles. Nevertheless, from distances lower than s�0 = s�0,opt = 0.04, as illustrated 
in Fig. 4c, the interaction of thermal boundary layers happens such that diffusion dominates the heat transfer process, 
consequently, the heat exchange rate between the square cylinders and the surrounding flow drops down again. 
Therefore, there is one distance between square cylinders where the increasing of heat exchange area is balanced by the 
interaction of thermal boundary layers, attempting to an optimal configuration. For this analyzed case, this balance 
happens for the distance between the square cylinders of s�0 = 0.04. 
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 When the Prandtl number increases, not only the dimensionless optimal distance between square cylinders, s�0,opt, but 
also the dimensionless optimal heat transfer rate between the arrange and the surrounding flow, q�opt, decreases, for a 
fixed Reynolds number, as illustrated in Fig. 3a and 3b. This fact is linked with the increasing of thermal boundary layer 
for higher Prandtl numbers. This tendency is corroborated when higher Prandtl numbers are evaluated, Pr = 1.0 and 
10.0, shown in Fig. 5a and 5b, respectively. 
 For a Prandtl number of Pr = 1, Fig. 5a, the optimal distance between the square cylinders corresponds to the 
minimal one, except for Re = 60. For a Prandtl number of Pr = 10.0, Fig. 5b, the optimal distance between the square 
cylinders is the minimal for all Reynolds numbers. 

 

a) b) c)
 

 
Figure 4. Temperature distribution as function of the spacing between square cylinders (s�0): a) long distance; b) 

intermediate distance (optimal configuration) and c) short distance   
 

a) b)
 

 
Figure 5. Optimization of dimensionless heat transfer rate (q) as function of the dimensionless distance between the 

square cylinders (s�0) for various Reynolds numbers, Re = 60, 100 and 160, and Prandtl numbers: a) Pr = 1.0 and b) Pr = 
10.0 

 
Figure 6 presents the dimensionless optimal distance between the square cylinders (s�0,opt) and the dimensionless 

optimal heat transfer rate (q�opt) as function of Reynolds number. Since these variables have different magnitude orders 
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they will be presented in the graphs with the following manipulation 10 × s�0,opt and q�opt/10, respectively. In Fig 5a and 
5b these variables are evaluated for fixed Prandtl numbers of Pr = 0.1 and Pr = 0.72, respectively. For both Prandtl 
numbers, s�0,opt decreases with the increasing of Reynolds number, while q�opt has an opposite behavior. It is also 
observed that the dimensionless optimal heat transfer rate (q�opt) increases linearly with the increasing of Reynolds 
number. Nevertheless, the rate of dimensionless optimal distance between the square cylinders (s�0,opt) has a more 
steeped decline for lower Reynolds (60 ≤ Re ≤ 100) than for higher Reynolds (100 ≤ Re ≤ 160). 

Figure 7 shows the dimensionless optimal distance between the square cylinders (s�0,opt) and the dimensionless 
optimal heat transfer rate (q�opt) as function of Prandtl number, for Reynolds numbers of Re = 60 and Re = 160, Fig. 7a 
and 7b, respectively. For simplification, we will not show the dimensionless optimal variables as function of Prandtl 
number for Re = 100. The dimensionless optimal heat transfer rate (q�opt) decreases with the increasing of the Reynolds 
number. Concerning the dimensionless optimal spacing between square cylinders (s�0,opt) a similar behavior is found. 
One also observes that for lower Prandtl numbers, Pr ≤ 1, specially for Reynolds number of Re = 60, there are a steep 
decline of the dimensionless optimal spacing between square cylinders (s�0,opt) as function of Prandtl number, as can be 
seen in Fig 7a. This fact is not so intense for Re = 160 since the increase of Reynolds number decreases the 
dimensionless optimal distance between square cylinders (s�0,opt). Then, even for lower Prandtl numbers the values of 
s�0,opt is near to the minimum. When Prandtl number is Pr > 1, s�0,opt is quasi-independent of Prandtl number. With the 
significant increase of thermal boundary layer the sole alternative to increase the heat exchange between the square 
cylinders arrange and the surrounding flow is to increase the area of heat exchange. 

  

a) b)
 

 
Figure 6. Dimensionless optimal heat transfer rate (q�opt) and dimensionless optimal spacing between square cylinders 

(s�0,opt) as function of Reynolds numbers for Prandtl numbers: a) Pr = 0.1 and b) Pr = 0.72   
 

 a) b)
 

 
Figure 7. Dimensionless optimal heat transfer rate (q�opt) and dimensionless optimal spacing between square cylinders 

(s�0,opt) as function of Prandtl numbers for Reynolds numbers: a) Re = 60 and b) Re = 160 
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4. CONCLUSION 
 

The present work presented a numerical study of the maximization of heat transfer rate from an assembly of square 
cylinders to a surrounding flow employing Constructal theory. Various square cylinder assemblies were analyzed to 
select the best spacing between square cylinders that optimizes the heat transfer rate. The flow system was submitted to 
one global restriction (H/D0) and one degree of freedom (s�0) was optimized. For all geometric configurations it was 
performed simulations with various Prandtl, Pr = 0.1, 0.72, 1.0 and 10.0, and Reynolds numbers, Re = 60, 100 and 160, 
to investigate the influence of these dimensionless parameters in the optimization of assembly geometry. 

When the dimensionless heat transfer rate (q) was obtained as function of the dimensionless distance between the 
square cylinders (s�0) it was observed that for lower Prandtl numbers, especially for Pr = 0.1, the optimal configuration 
of the assembly is achieved when the cylinders are brought close enough so that their thermal boundary layers just 
touch. However, for higher Prandtl numbers, Pr, especially for Pr = 10.0, the optimal configuration is achieved for 
minimal distances between the obstacles by the increasing of the heat exchange area, since the thermal boundary layer 
increases significantly allowing only diffusion heat transfer between the obstacles and the surrounding flow. Therefore, 
there is one distance between square cylinders where the increasing of heat exchange area is balanced by the interaction 
of thermal boundary layers, so that one optimal configuration is achieved. 

The dimensionless optimal distance between square cylinders, s�0,opt, decreased with the increasing of Reynolds 
number for a fixed Prandtl number, except for Prandtl numbers higher than Pr > 1, where the dimensionless optimal 
distance between square cylinders was independent of the Reynolds number. It also decreased with the increasing of 
Prandtl number, Pr, for a fixed Reynolds number. 

The dimensionless heat transfer rate, q�opt, increased with the increasing of Reynolds number, Re, for a fixed Prandtl 
number, Pr, and decreased with the increasing to Prandtl number, Pr, for a fixed Reynolds number, Re. 

It is also worth to note that the dimensionless optimal distance between the square cylinders, s�0,opt, and the 
dimensionless heat transfer rate, q�opt, as function of Reynolds number presented a similar behavior to those presented by 
Bello-Ochende and Bejan (2005) for cross-flows over assemblies of circular cylinders. 
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