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Abstract. This paper applies Constructal Theory to maxinhieat transfer rate in cross-flow over assembliesqpfare
cylinders. The main goal is to obtain the optimaihtber of square cylinders or the optimal placentdrgach cylinder
in the assembly to improve the heat exchange batwhe obstacle and the cross flow. The cross flowtéady,
incompressible, laminar and two-dimensional. Thasswvation equations of mass, momentum and eneegyodved
using a commercial package based on finite volurathod. The accuracy of the code is evaluated bulations of
flows over a square cylinder (bluff body) for lowyRolds numbers, Re = 60 and 160, and differenh&tanumbers,
Pr = 1, 10 and 20. The results agree within 4% wtlose shown in the literature. The optimal configions of
assemblies of bluff bodies are obtained for sevi@minolds numbers, Re = 60, 100 and 160, and Prandtbers, Pr
= 0.1, 0.72, 1 and 10. These optimal configuratiassfunction of Reynolds and Prandtl numbers as® alompared
with those available in the literature for an argement of circular cylinders. The optimal spacirgween obstacles
decreases monotonically as the Reynolds and Prandgtbers increase.
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1. INTRODUCTION

This paper reports numerically the maximizationtted heat transfer rate in cross-flow over a paratrange of
square bluff-bodies. The optimization is condudigcapplying Constructal design. According to thisthod “the flow
geometry is malleable and it is deduced from aqgiple of global performance maximization subjectedglobal
constraints” (Bejan, 1997; Bejan, 2000). This mdtiobased on Constructal theory: “the view thawflconfiguration
(geometry, design) can be reasoned on the basiponciple of configuration, generation and eviolatin time toward
greater global flow access in systems that aretfresorph” (Bejan and Lorente, 2008).

The many applications of Constructal theory to getee configuration in nature, and engineering haenb
appropriately reviewed by Bejan and Lorente (200®iis reference shows how natural configurationverrbasins,
turbulence, animal design, crack in solids, ealithate, etc, can be predicted by principle. The egminciple can be
applied in the engineering realm: packing of eleuits, fuel cells, tree networks for transport ebple, goods and
information, etc.

More recently, Constructal theory has been useaptimize geometry configuration of heat sinks, auplchannels
and micro-channels (Bello-Ochendtal, 2007a; Bello-Ochendet al, 2007b). The purpose of the first study was the
maximization of the global thermal conductancetha minimization of thermal resistance. To achithis objective,
the geometry configuration was submitted to théofaing global constraints: fixed volume of the hsatk cooling
channel and fixed total volume of the conductinfidsdn the second work, a similar study was parfed. However,
other global constraints were evaluated for thénupation of the geometry: a fixed total elementalume and a fixed
axial length of the micro-channel heat sink. Inthoases, Constructal theory led to the best gegngetrfigurations.
Besides that, Constructal theory has also beenoymglto increase the heat transfer rate in ductasioyg wrinkled
entrance regions (Bello-Ocheneeal, 2009) and to maximize the heat transfer in cfmsg-over a parallel arrange of
circular cylinders (Bello-Ochends al, 2005).

In this paper we apply Constructal design to optarthe heat transfer rate in cross-flow over allghrarrange of
square bluff-bodies. This kind of flow has beenulject of many engineering applications such as érehangers,
solar heating systems and packing of electronicxzoAding to Constructal design, the number of albetain the
assembly is free to change subject to the constriiDy, i.e. the ratio between the height of the asserahty the side
length of the square obstacle, in the pursuit okimal global performance. The global performanadicator is the
global thermal conductance between the heated @éstand the cross-flow. For simplicity and claritye consider
two-dimensional configurations and take advantdggymmetry to build the computational domain.
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2. NUMERICAL AND MATHEMATICAL MODELING

The analyzed physical problem consists of a crlusg-6ver a parallel arrange of square bluff-bodéscan be seen
in Fig. 1. In this study the fluid flow is heateg the square cylinder arrange subjected to a glastiction, which is
given by the ratio between two fixed dimensioA#), whereH is the height of the assembly abglis the side length
of the square cylinder. The optimization procegssato select the number of obstacles in the assenoblthe
placement between each square cylindgt such that the overall thermal conductance betvibe cylinder and the
cross-flow is maximal. The flow is considered stgadcompressible, two-dimensional and laminar.tiker, all the
thermophysical properties are assumed constant.

The lower part of Fig. 1 illustrates the computatibdomain that characterizes this assembly. Tholugllow over
bluff bodies persists symmetric about the mid-plapgo abouRe= 40 (Sahtet al, 2009), we assume that this non-
symmetric behavior will not affect the evaluatiohfloid dynamic and heat transfer parameters, saghkirag and lift
coefficients and Nusselt number. Therefore, itilsutated only half of channel formed between twetables. The
same consideration was previously performed inlitkeature for simulations of cross-flow over citau cylinders
arrange (Bello-Ochende and Bejan, 2005). The noredsional distance between the inlet plane andrtim surface
of the obstacles arrange, and that between the rear surface of the cyliaderthe exit pland_() were consideretl,
= 8.5 andly = 16.5, respectively (note thBY is the length scale according to Eq. (5)). Theslees were chosen to
avoid the influence of domain over on the heatsfanfrom the obstacle.
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Figure 1. Parallel square cylinders arrange andaoheputational domain

The conservation equations of mass, momenturaindy directions and energy, respectively, are giveriBsjan,
1994):
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wherex andy are the cartesian coordinates (mandv are the velocity componentsxrandy directions (m/s)p is
the specific mass of the fluid (kg/m®),js the kinematic viscosity of the fluid (m%g),is the thermal diffusivity of the

fluid (m?/s), T is the temperature (°C or K), amf meang)? :0/6x2 +6/6y2 .

For solving Eq. (1)-(4) numerically, the dimensigsd coordinates, velocities, temperature, and ymesare
obtained from Eq. (5a)-(5d):

(i.v):(xg)oy) (5a)

(@.9)= 1Y) (5b)

U
~ T-T,
T_TS—TOO 0)
s_ P
P_pui (5d)

In the equations above the symbol (~) indicatesedsionless variablesl,, is the free-stream velocity (m/g), is
the free-stream temperature (°C or K3,is the temperature of the square cylinder (°C prafdP is pressure (Pa).
Then, the resulting dimensionless equations camrlieen as:

ol , oV _
ox oy 0 (6)
god,gou__oP, 1 25 (7)

SOV, OV _ P, 1 2
VoxVoy T oy "Rey, - ®)
g0l 4+g0T = 1 27 9)
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Pr and Re,, are dimensionless parameters, Prandtl and Reynalubers, respectively, which are defined by:

(10a)
=YDy (10b)

wherey is the kinematic viscosity (kg/ms), aBg is the characteristic length used to compute tgnBlds number
(m).

The boundary conditions as function of dimensioskriables are observed in Fig. 1. The fluid dyiearboundary
conditions are no slip and no penetration on thstaaite surfaces, free slip and no penetration ensgrmmetry
surfaces, prescribed velocity € 1) on the inlet surface, ar@fd, ¥)/0 X = 0 on the outlet surface. Concerning to the

thermal boundary conditions, they are prescribetptrature on the obstacle surfacés:(1) and on the inlet plane of

computational domaini(= 0). The remaining boundaries of the computatidoanain are adiabatic.
To obtain the optimal arrangement of square bloffibs, the overall heat transfer rate between yhiader and the
surrounding fluids is fixed as objective functievhich in its dimensionless form is given by thddaling expression:
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where g’ is the heat transfer rate integrated over theasarfof one cylinder between the obstacle and the
surrounding fluid (W/m), an# is the thermal conductivity (W/mK).

Equation (6)-(9) were solved by using a CFD pacKkaaged on rectangular finite volume (Fluent, 2001 solver
is pressure based (coupletf @rder for pressure and Power-law scheme for mamerand energy). The grid is
stretched with more refined volumes near the sadaof the obstacle. The appropriate mesh size dimenvas
determined by successive refinements until thertimiltl_N\IUi —Nu™)| < 5 x 10° was satisfied, wherdu is the spatial
averaged Nusselt number using the current mesiNdiidis the spatial averaged Nusselt number correspndehe
next mesh.

Table 1 shows the attainment of grid independencdldws with Re = 100 andPr = 0.7. The grid independent
results agree with those presented in Sathal. (2009) and Sharma and Eswaran (2004), within 1.@htb 0.54%,
respectively. Convergence was achieved when thewisly maximal residual were reached:“1@r mass and
momentum equations and 4fbr energy equation. Double precision was usea@fianumerical simulations.

Table 1. Grid independence as function of Nussettlver for a flow wittRe= 100 andPr = 0.7

Number of elements Nusselt number Ny(=Nu™)| <5 x 10°

36175 4,3877

52380 4,2782 2.50 x 0
105910 4,1882 2.10 x 0
143900 4,1385 1.19 x 0
171848 4,1058 7.90 x 0
207600 4,0848 5.11 x 0
324375 4,0661 4.58 x T0

For validation of the code it was simulated steadgpmpressible, forced convection flows at lamiregime for
various Prandtl numberBr = 1, 10 and 20, and Reynolds numberfRef 60 and 160. The local Nusselt numbers for
the top half of the square cylinder are compardt thie results of Sahet al. (2009), as can be seen in Fig. 2aRer=
60 and Fig. 2b foRe= 160. One observes that all results agree witbiein The worst situation occurs for a flow wiein
=20 andRe= 160.
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Figure 2. Local Nusselt number obtained from ttespnt code and that presented in Sgthal. (2009) for flow with
various Prandtl numberBy = 1, 10 and 20, and a fixed Reynolds numberRes) 60 and bRe= 160
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3. RESULTS

The flow and temperature fields were simulated ilarge number of configurations to determine thieafof
spacing on heat transfer rate. For the achievewfetitis objective, the bluff-bodies arrange is sitted to a global
restriction, given by the ratibl/D,, and to one degree of freedom, which is the digtdretween the square cylinders
(so). For all geometric configurations it was simuthtearious Prandtl number®r = 0.1, 0.72, 1.0 and 10.0, and
Reynolds numbersRe = 60, 100 and 160, with the purpose to evaluatehithavior of heat transfer rate from the
obstacles to surrounding flow as function of theiseensionless parameters.

Figure 3 shows the dimensionless heat transfer(@ates function of the distance between the squdiedeyrs &)
for various Reynolds humbeRe= 60, 100 and 160, and a fixed Prandtl numberuri@a presents this evaluation for
a Prandtl number d?r = 0.1. One observes that there is an optimal geaneonfiguration for all evaluated Reynolds
numbers. These optimal configurations, for eachnkls number, do not correspond to the highesbwest space
between the square cylindegs)( In other words, the optimal geometry is not ai#d by the insertion of the maximum
or the minimum number of obstacles in a fixed spatelt is also investigated the behavior of the opfimon-
dimensional distance between square cylindglg) as function of Reynolds numbeRd), % o, decreases as Reynolds
number increases. This same behavior was previahsiywn in Bello-Ochende and Bejan (2005) for a ffteav over
circular cylinders. In that study, the optimal gexiry is obtained as function of Bejan numlige, instead of Reynolds
number,Re as presented here. Since both dimensionless pteesyBe and Re has a similar influence for the
determination of an optimal assembly, a comparisiothe behavior of optimal distance between squaac circular
cylinders as function of Reynolds and Bejan numbspectively, is suitable.

In Figure 3b, the dimensionless heat transfer(@tas function of the distance between the squdnedeys &) for
a fixed Prandtl numbePr = 0.72 is presented. In comparison with the previcasePr = 0.1, the optimal distances
between the square cylinders for all Reynolds numbas decreased significantly, but it has notigeteased until the
minimal distance ) op # %,min) for flows with Re= 60 and 100. Except for a flow wifRe = 160, where the optimal
dimensionless distance between the square cyliridarsnimal, % opi= S%min IN addition, forPr = 0.72 the optimal
distance between the square obstalgs, as well as foPr = 0.1, decreases as Reynolds number increases.
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Figure 3. The optimization of dimensionless heatsfer rated) as function of the dimensionless distance betwken
square cylindersyf) for various Reynolds numbeiRe= 60, 100 and 160, and Prandtl number$ra} 0.1 and bpPr =
0.72

For a better understanding of the thermal behaa®rfunction of the dimensionless distance betwsgpmare
cylinders, %, the temperature distribution for three differ@mtanges and a flow witRe = 60 andPr = 0.72, is
presented in Fig. 4. The first one, Fig. 4a, regméesthe largest distance between the square eytinithe second one,
Fig. 4b, represents an intermediate distance anthtlh one, Fig. 4c, represents the shortest distbatween the square
cylinders. The decrease of the dimensionless disthetween the square cylinders, from Fig. 4a ¢o #, led to an
increasing of the heat exchange between the obstad the surrounding flow. This fact is relatethwhe increase of
the temperature gradients around the obstacleserifeless, from distances lower thgrF % o = 0.04, as illustrated
in Fig. 4c, the interaction of thermal boundarydesyhappens such that diffusion dominates the thaagfer process,
consequently, the heat exchange rate between tharesgylinders and the surrounding flow drops dagain.
Therefore, there is one distance between squairedeys where the increasing of heat exchange arealanced by the
interaction of thermal boundary layers, attemptiagan optimal configuration. For this analyzed c¢cabés balance
happens for the distance between the square cydird& = 0.04.
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When the Prandtl number increases, not only tiredsionless optimal distance between square cyBrge,, but
also the dimensionless optimal heat transfer ratevd®en the arrange and the surrounding flGyy, decreases, for a
fixed Reynolds number, as illustrated in Fig. 3d &8h. This fact is linked with the increasing oétimal boundary layer
for higher Prandtl numbers. This tendency is casrated when higher Prandtl numbers are evaluded; 1.0 and
10.0, shown in Fig. 5a and 5b, respectively.

For a Prandtl number d®r = 1, Fig. 5a, the optimal distance between theasgjeylinders corresponds to the
minimal one, except foRe= 60. For a Prandtl number Bf = 10.0, Fig. 5b, the optimal distance betweenstigare
cylinders is the minimal for all Reynolds numbers.

a) b) c)

Figure 4. Temperature distribution as functionhe spacing between square cylind&s @) long distance; b)
intermediate distance (optimal configuration) apdlwrt distance
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Figure 5. Optimization of dimensionless heat transdte {) as function of the dimensionless distance betvileen
square cylindersyf) for various Reynolds numbeiRe= 60, 100 and 160, and Prandtl number$ra3 1.0 and bpPr =
10.0

Figure 6 presents the dimensionless optimal distdvetween the square cylindeggf) and the dimensionless
optimal heat transfer ratgf) as function of Reynolds number. Since these bsahave different magnitude orders
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they will be presented in the graphs with the feileg manipulation 10 %, o, andde,¢10, respectively. In Fig 5a and
5b these variables are evaluated for fixed Pramgthbers ofPr = 0.1 andPr = 0.72, respectively. For both Prandtl
numbers,% o, decreases with the increasing of Reynolds numbaile d,,: has an opposite behavior. It is also
observed that the dimensionless optimal heat teansite @) increases linearly with the increasing of Reynolds
number. Nevertheless, the rate of dimensionlessnaptdistance between the square cylindégs,§ has a more
steeped decline for lower Reynolds 6®e< 100) than for higher Reynolds (18Re< 160).

Figure 7 shows the dimensionless optimal distaretevden the square cylinderg {,) and the dimensionless
optimal heat transfer ratgy) as function of Prandtl number, for Reynolds nursli Re= 60 andRe= 160, Fig. 7a
and 7b, respectively. For simplification, we wilbtnshow the dimensionless optimal variables astionof Prandtl
number forRe= 100. The dimensionless optimal heat transfer ) decreases with the increasing of the Reynolds
number. Concerning the dimensionless optimal spabitween square cylinderg {,) a similar behavior is found.
One also observes that for lower Prandtl numbiers; 1, specially for Reynolds number BE= 60, there are a steep
decline of the dimensionless optimal spacing betwseiare cylinderss{q,) as function of Prandtl number, as can be
seen in Fig 7a. This fact is not so intense R@ = 160 since the increase of Reynolds number dsesethe
dimensionless optimal distance between squaredsfiing o). Then, even for lower Prandtl numbers the valkies
%,0pt IS Near to the minimum. When Prandtl numbePiis> 1, % o is quasi-independent of Prandtl number. With the
significant increase of thermal boundary layer $ée alternative to increase the heat exchangeeeetwhe square
cylinders arrange and the surrounding flow is tréase the area of heat exchange.
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Figure 6. Dimensionless optimal heat transfer (gg) and dimensionless optimal spacing between souydirelers
(%,0p) @s function of Reynolds numbers for Prandtl nurstb&)Pr = 0.1 and bpPr = 0.72
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Figure 7. Dimensionless optimal heat transfer (gg) and dimensionless optimal spacing between souydirelers
(%,0p) @s function of Prandtl numbers for Reynolds nursb&g)Re= 60 and bRe= 160



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil

4. CONCLUSION

The present work presented a numerical study ofrtheimization of heat transfer rate from an assgrobkquare
cylinders to a surrounding flow employing Constalidheory. Various square cylinder assemblies veera@yzed to
select the best spacing between square cylindar®himizes the heat transfer rate. The flow systeas submitted to
one global restrictionH/Dy) and one degree of freedo®)(was optimized. For all geometric configuratiohsvas
performed simulations with various Prandit,= 0.1, 0.72, 1.0 and 10.0, and Reynolds numliies, 60, 100 and 160,
to investigate the influence of these dimensiongesameters in the optimization of assembly geometr

When the dimensionless heat transfer rgjen@s obtained as function of the dimensionlestadie between the
square cylindersyf) it was observed that for lower Prandtl numbespeeially forPr = 0.1, the optimal configuration
of the assembly is achieved when the cylindersbaoeight close enough so that their thermal bountkygrs just
touch. However, for higher Prandtl numbePs, especially forPr = 10.0, the optimal configuration is achieved for
minimal distances between the obstacles by theasing of the heat exchange area, since the théanadary layer
increases significantly allowing only diffusion héensfer between the obstacles and the surrogriltiv. Therefore,
there is one distance between square cylinderseatherincreasing of heat exchange area is balanc#tk interaction
of thermal boundary layers, so that one optimafiganation is achieved.

The dimensionless optimal distance between squgieders, % ., decreased with the increasing of Reynolds
number for a fixed Prandtl number, except for Piandmbers higher thaRr > 1, where the dimensionless optimal
distance between square cylinders was independehe dreynolds number. It also decreased with tioeeasing of
Prandtl numberPr, for a fixed Reynolds number.

The dimensionless heat transfer rafg, increased with the increasing of Reynolds numRerfor a fixed Prandtl
number Pr, and decreased with the increasing to Prandtl en/fio, for a fixed Reynolds humbeRe

It is also worth to note that the dimensionlessimat distance between the square cylind&g,, and the
dimensionless heat transfer rajg,, as function of Reynolds number presented a sirh#havior to those presented by
Bello-Ochende and Bejan (2005) for cross-flows aasemblies of circular cylinders.
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