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Abstract. Nowadays, optimization techniques using analogy with swarming principles and collective activities of social 

insects in nature have been used to the development of methodologies for solving a variety of real-world optimization 

problems. In this context, the social foraging behavior of Escherichia coli bacteria has recently been explored to 

develop a novel algorithm, called Bacterial Foraging Optimization Algorithm (BFOA). In this approach, the 

coordinates of a bacterium here represent an individual solution of the optimization problem, where the set of trial 

solutions converges towards the optimal solution following the foraging group dynamics of the bacteria population. 

The bacterium is free to move in the direction of positive nutrient gradient, i. e., increasing fitness. After a certain 

number of complete swims the best half of the population undergoes reproduction, eliminating the rest of the 

population. In order to escape local optima, an elimination-dispersion event is carried out so that some bacteria are 

eliminated at random with a very small probability and the new replacements are initialized at random locations of the 

search space. In this paper, the BFOA is applied to engineering systems, such as structural design and distillation 

column design. The results obtained are compared with those obtained from other classical evolutionary approaches. 
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1. INTRODUCTION 
 

Nowadays, the development of optimization techniques based on analogies with swarming principles and collective 
activities of social insects in nature (swarm intelligence) to solve real-world optimization problems constitutes an 
interesting and encouraging research topic. The corresponding techniques are based on various aspects of the collective 
activities of social insects, such as foraging of ants, birds flocking and fish schooling, which are self-organizing ones, 

meaning that complex group behavior emerges from the interactions of individuals who exhibit simple behaviors by 
themselves (Kennedy et al., 2001) 

Swarm intelligence is inspired in nature, i.e., this characteristic found among living animals of a group contribute 
with their own experiences to the group, making it stronger in face of others. The most familiar representatives of 

swarm intelligence in optimization problems are: food-searching behavior of ants (Dorigo and Di Caro, 1999), particle 
swarm optimization (Shi and Eberhart, 2000), and artificial immune system (Castro and Timmis, 2002).  

In this context, an optimization technique known as Bacterial Foraging Optimization Algorithm (BFOA) based on 
the foraging strategies of the Escherichia coli bacterium cells was recently proposed in (Passino, 2001). The basic idea 

is that during the course of evolution, bacteria colonies have developed sophisticated behavior, intricate communication 
capabilities, decentralized colony control, group foraging strategies and a high degree of worker cooperation when 
tackling tasks (Shapiro, 1988). Besides, natural selection tends to eliminate animals with poor foraging strategies 
through methods associated with locating, handling, and ingesting food and favors the propagation of genes of those 
animals that have successful foraging strategies, since they are more likely to obtain reproductive success. After many 
generations, poor foraging strategies are either eliminated or re-structured into good ones. Since a foraging 
organism/animal takes actions to maximize the energy utilized per unit time spent foraging, considering all the 
constraints presented by its own physiology, such as sensing and cognitive capabilities and environmental parameters 

(e.g., density of prey, risks from predators, and physical characteristics of the search area), natural evolution could lead 
to optimization. It is essentially this idea that could be applied to complex optimization problems (Farmer et al., 1986; 
Passino, 2001; 2002).  

In the literature, a small number of applications of BFOA are found, such as in engineering problems including 

antenna arrays (Mishra, 2005; Tripathy and Mishra, 2007; Guney and Basbug, 2008; Mangaraj et al., 2008). Niu et al. 
(2006) has illustrated the faster settling time and higher robustness with BFA-PID controller. Kim et al. (2007) 
proposed a hybrid approach involving GA and BFA to tune PID controllers (proportional-integral-derivative 
controllers) of an automatic voltage regulator and has shown the efficiency of this approach for global optimization 

problems. Coelho and Sierakowski (2007) applied a new bacteria colony algorithm to solve the problem of path 
planning optimization of mobile robots. 

In the present paper, BFOA is used in the context of engineering system design. This work is organized as follows. 
Section 2 provides a brief literature overview of the BFOA. The results and discussion are described in Section 3.  

Finally, the conclusions and suggestions for future work conclude the paper. 
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2. BACTERIAL FORAGING OPTIMIZATION ALGORITHM  

 

2.1. Overview of chemotaxis behavior of Escherichia coli 

 

Basically, chemotaxis is a foraging behavior that implements a type of optimization where bacteria try to climb up 
the nutrient concentration and avoid noxious substances and search for ways of neutral media (Coelho and Sierakowski, 
2007). Based on these biological concepts, the definition of an optimization model of Escherichia coli bacterial 
foraging is possible. 

In this sense, the algorithm proposed by Passino (2001, 2002) is based on the behavior of Escherichia coli present in 
human intestines. Its behavior and movement comes from a set of six rigid spinning (100–200 rotations per second) 
flagella, each driven as a biological motor. An Escherichia coli bacterium alternates through running and tumbling. 
Running speed is 10–20 µm/sec but they are unable to swim straight. The chemotaxis action of the bacteria is modeled 

as follows (Passino, 2001; 2002): 
 

• In a neutral medium, if it tumbles and runs in an alternating fashion, its action could be similar to search. 

• If swimming up a nutrient gradient (or out of noxious substances), or swimming for a longer period of time 
(climb up nutrient gradient or down noxious gradient), its behavior seeks increasingly favorable 
environments. 

• If swimming down a nutrient gradient (or up noxious substance gradient), then the search action is avoiding 
unfavorable environments. 

 
Subsequently, it can climb up nutrient hills and at the same time avoid noxious substances. The sensors it needs for 

optimal resolution are receptor proteins that are very sensitive and possess high gain. That is, a small change in the 
concentration of nutrients can cause a significant change in the behavior. Experts claim that this is probably the best-
understood sensory and decision-making system in biology.  

Mutations in Escherichia coli affect the reproductive efficiency at different temperatures, and occur at a rate of 
about 10-7 per gene per generation. E. coli occasionally engages in a conjugation that affects the characteristics of a 
population of bacteria. There are many types of taxis that are used in bacteria such as, aerotaxis (attracted to oxygen), 
phototaxis (light), thermotaxis (temperature), magnetotaxis (magnetic lines of flux) and some bacteria can change their 

shape and number of flagella based on the medium to reconfigure in order to ensure efficient foraging in a variety of 
media. Bacteria can form intricate stable spatio-temporal patterns in certain semisolid nutrient substances and they can 
radially eat their way through a medium if placed together initially at its center. Moreover, under certain conditions, 

they will secrete cell-to-cell attractant signals in order to group and protect each other. 
 

2.2. Optimization function for the BFOA 
 
BFOA is categorized into four processes: Chemotaxis, Swarming, Reproduction and Elimination. Each one is 

described as follows (Passino, 2001): 
 
a) Chemotaxis: in this process the bacteria climbs the nutrient concentration, avoid noxious substances, and search 

for a way out of neutral media. The bacterium usually takes a tumble followed by a tumble or a tumble followed by a 
run. For an Nc number of chemotaxis steps the direction of movement after a tumble is given by: 

 

( ) ( ) ( ) ( )+1, , , ,= + ×i ij k l j k l C i jθ θ φ  (1) 

 
where C(i) is the step size taken in direction of the tumble, j is the index for the chemotaxis step taken, k is the index for 

the number of reproduction step, l is the index for the number of elimination-dispersal event, ( )jφ  is the unit length 

random direction taken at each step. 

If the cost at θi(j+1,k,l) is better than the cost at θi(j,k,l) then the bacterium takes another step of size C(i) in that 
direction. This process will be continued until the number of steps taken is not greater than Ns.  

 
b) Swarming: the bacteria in times of stresses release attractants to signal bacteria to swarm together. It also 

releases a repellant to signal others to be at a minimum distance from it. Thus all of them will have a cell to cell 
attraction via attractant and cell to cell repulsion via repellant. The equation involved in the process is: 
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where dattract is the depth of the attractant, wattract is the measure of the width of the attractant, hrepelent=dattract  is the 
height of the repellant effect, wrepelent is the measure of the width of the repellant, p is the number of parameters to be 
optimized, S is the number of bacteria. 

The bacteria climbing on the nutrient hill can be represented by: 
 

( ) ( ), , + ccJ i, j k l J ,Pθ  (3) 

 
where J(i,j,k,l) is the cost function. 
 

c) Reproduction: after all the Nc chemotactic steps have been covered, a reproduction step takes place. The fitness 

(accumulated cost) of the bacteria is sorted in the ascending order. Sr (Sr=S/2) bacteria having higher fitness die and the 
remaining Sr are allowed to split into two, thus keeping the population size constant.  

 
d) Elimination-Dispersion: for each elimination-dispersion event each bacterium is eliminated with a probability of 

ped. A low value of Ned dictates that the algorithm will not rely on random elimination-dispersal events to try to find 
favorable regions. A high value increases computational complexity but allows bacteria to find favorable regions. The 
ped should not be large either or else it should lead to an exhaustive search. 

 

3. RESULTS AND DISCUSSION 

 
For evaluating the methodology used in this work, some practical points should be emphasized: 
  

• In all case studies the following parameters for the BFOA were used: population size (number of bacteria) 
equal to 32; number of chemotaxis steps equal to 10; length of a swim equal to 4; number of reproduction 

steps equal to 10; number of elimination-dispersion events equal to 2, probability that each bacteria will be 
eliminated/dispersed equal to 0.25, and penalization parameter equal to 108 (designed to penalize any 
constraint violation).  

• In this paper, all case studies were run 30 times independently to obtain the values shown in the upcoming 
tables.  

 

3.1. Welded beam design problem 
 
The welded beam design problem is taken from Rao (1996) and He and Wang (2007), in which a welded beam is 

designed for minimum cost subject to constraints on shear stress (τ), bending stress in the beam, buckling load on the 
bar (Pc), end deflection of the beam (δ), and side constraints. There are four design variables as shown in Fig. 1, i. e., h 
(x1), l (x2), t (x3), and b (x4).  

 

F
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b
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Figure 1: Welded beam design problem. 
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Mathematically, the problem can be formulated as follows (Rao, 1996): 
 

( ) ( )2

1 2 3 4 2min  1.10471 0.04811 14= + +f x x x x x x  (4) 

 
subject to 
 

( ) ( )1 -13000 0= ≤g x xτ  (5) 

 

( ) ( )2 -30000 0= ≤g x xσ  (6) 

 

( )3 1 4 0= ≤g x x - x  (7) 

 

( ) ( )2

4 1 3 4 21.10471 0.04811 14 5 0= + + − ≤g x x x x x  (8) 

 

( )5 10.125 0= ≤g x - x  (9) 

 

( ) ( )6 0.25 0= ≤g x x -δ    (10) 

 

( ) ( )7 6000 0= ≤cg x - P x    (11) 

 

where   
 

( ) ( ) ( )2 22
1 1 2 22

2
= + +

x
x

R
τ τ τ τ τ , 1

1 2

6000

2
=

x x
τ , 2 =

MR

J
τ , 26000 14 + 

2

 
=  

 

x
M , 

22

1 32

4 2

+ 
= +  

 

x xx
R , 

22

1 32
1 22 2

12 2

  +  = +       

x xx
J x x , ( ) 2

4 3

504000
=x

x x
σ , ( ) 3

4 3

2.1952
=x

x x
δ , ( ) ( ) 3

3 3 464746.022 1 0.028234=cP x - x x x . 

 
The approaches applied to this problem include genetic algorithm with binary representation and traditional penalty 

function (Deb, 1991), a GA-based co-evolution model (Coello, 2000), and a co-evolutionary particle swarm 
optimization (He and Wang, 2007). 

The following design space is adopted (He and Wang, 2007): 0.1 in ≤ x1 ≤ 2 in, 0.1 in ≤ x2 ≤ 10 in, 0.1 in ≤ x3 ≤ 10 
in, 0.1 in  ≤ x4 ≤ 2 in. The best solutions obtained by the above mentioned approaches are listed in Table 1. In this table, 
it can be seen that the best solution found by BFOA is better than the best solutions found by other techniques (Deb, 
1991; Coello, 2000), but slightly inferior to the result obtained by He and Wang (2007). 

 
Table 1. Comparison of the best solutions for the welded beam design problem using different techniques. 

 

Design variables Deb (1991) Coello (2000) He and Wang (2007) This work (average) 

x1 (in) 0.248900 0.208800 0.202369 0.208796 (0.210056) 

x2 (in) 6.173000 3.420500 3.544214 3.412545 (3.435689) 

x3 (in) 8.178900 8.997500 9.048210 8.910044 (8.932545) 

x4 (in) 0.253300 0.210000 0.205723 0.210001 (0.215552) 

g1 (psi) -5758.607 -0.337812 -12.839796 -23896.252 

g2 (psi) -255.5769 -353.9026 -1.247467 -230.95874 

g3 (in) -0.004400 -0.001200 -0.001498 -0.001204 

g4 ($) -2.982866 -3.141865 -3.429347 -3.384378 

g5 (in) -0.123900 -0.083800 -0.079381 -0.083796 

g6 (in) -0.234160 -0.235649 -0.235536 -0.235222 

g7 (lb) -44.65270 -363.2323 -11.681355 -808.56989 

f ($) 2.433116 1.748309 1.728024 1.7318117 (1.745889) 
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3.2. Tension/compression string design problem 
 
This problem is from Arora (1989), Belegundu (1982) and He and Wang (2007). It is devoted to the minimization of 

the weight of a tension/compression spring as shown in Fig. 2. The design variables are the wire diameter d (x1), the 
mean coil diameter D (x2) and the number of active coils P (x3). 

 

d

P P

D

 
 

Figure 2: Tension/compression string design problem. 
 

The mathematical formulation of this problem can be described as follows: 
  

( ) ( ) 2

3 2 1min  2= +f x x x x    (12) 

 
subject to constraints on minimum deflection - Eq. (13), shear stress - Eq. (14), surge frequency - Eq. (15), limits on 

outside diameter - Eq. (16), and on side constraints: 
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The approaches applied to this problem include eight different numerical optimization techniques (Belegundu, 

1982), a numerical optimization technique called constraint correction at constant cost (Arora, 1989), a GA-based co-
evolution model (Coello, 2000), and a co-evolutionary particle swarm optimization (He and Wang, 2007). 

The following design space is adopted (He and Wang, 2007): 0.05 in ≤ x1 ≤ 2 in, 0.25 in ≤ x2 ≤ 1.3 in, 2 in ≤ x3 ≤ 15 
in. Table 2 presents the best solutions obtained by the above mentioned approaches. In this table, it can be seen that the 

best solution found by BFOA has the same quality of obtained by others techniques. 
 

Table 2. Comparison of the best solutions for the tension/compression spring design problem using different methods. 
 

Design variables Belegundu (1982) Arora (1989) He and Wang (2007) This work (average) 

x1 (in) 0.050000 0.053396 0.051728 0.051744 (0.050777) 

x2 (in) 0.315900 0.399180 0.357644 0.357754 (0.354189) 

x3 (in) 14.25000 9.185400 11.244543 11.56132 (11.70360) 

g1 (in) -0.000014 0.000019 -0.000845 -0.028697  

g2 (ksi) -0.003782 -0.000018 -1.260E-05 -0.000645 

g3 (-) -3.938302 -4.123832 -4.051300 -3.911391 

g4 (in) -0.727090 -0.698283 -0.727090 -0.727001 

f (lb) 0.012674 0.012730 0.012674 0.012789 (0.012897) 
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3.3. Pressure vessel design problem 

 
The pressure vessel design problem was proposed by Kannan and Kramer (1994) and is devoted to the minimization 

of the total cost of the specimen, including the cost of the material, forming and welding. A cylindrical vessel is capped 
at both ends by hemispherical heads as shown in Fig. 3. There are four design variables: Ts (x1, thickness of the shell), 

Th (x2, thickness of the head), R (x3, inner radius) and L (x4, length of the cylindrical section of the vessel, not including 
the head). Among the four variables, Ts and Th are integer multiples of 0.0625 in that are the available thicknesses of 
rolled steel plates, and R and L are continuous variables. 

 

L

R

Ts

R

Th

 
Figure 3: Pressure vessel design problem. 

 

The problem can be formulated as follows (Kannan and Kramer, 1994): 
 

( ) 2 2 2

1 3 4 2 3 1 4 1 3min  0.6224 1.7781 3.1661 19.84= + + +f x x x x x x x x x x    (17) 

 
subject to 

 

( )1 1 30.0193 0= − + ≤g x x x    (18) 
 

( )2 2 30.00954 0= − + ≤g x x x    (19) 
 

( ) 2 3

3 3 4 3

4
1296000 0

3
= − − + ≤g x x x xπ π    (20) 

 

( )4 4 240 0= ≤g x x -    (21) 

 
In the literature, this problem has been solved by using an augmented Lagrangian multiplier approach (Kannan and 

Kramer, 1994), a genetic adaptive search (Deb, 1997), and a co-evolutionary particle swarm optimization (He and 
Wang, 2007).  

In the present work, the following design space is adopted (He and Wang, 2007): 1 in ≤ x1 ≤ 99 in, 1 in ≤ x2 ≤ 99 in, 
10 in ≤ x3 ≤ 200 in, 10 in ≤ x4 ≤ 200 in. The best solutions obtained by the above mentioned approaches are listed in 
Table 3. From Table 3, it can be seen that the best solution found by BFOA is better than the best solutions found by 
other techniques (Kannan and Kramer, 1994; Deb, 1997), and has same quality as the one obtained by He and Wang 

(2007).  
 

Table 3. Comparison of the best solutions for the pressure vessel design problem using different methods. 
 

Design variables Kannan and Kramer (1994) Deb (1997) He and Wang (2007) This work (average) 

x1 (in) 1.125000 0.937500 0.812500 0.812500 (0.875) 

x2 (in) 0.625000 0.500000 0.437500 0.437500 (0.500) 

x3 (in) 58.29100 48.32900 42.09126 42.09127 (42.12526) 
x4 (in) 43.69000 112.6790 176.7465 176.7466 (176.7747) 
g1 (in) 0.000016 -0.004750 -0.000139 -0.000139 

g2 (in) -0.068904 -0.038941 -0.035949 -0.035949 

g3 (in
3) -21.22010 -3652.876 -116.3827 -116.3827 

g4 (in) -196.3100 -127.3210 -63.25350 -63.25350 
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f ($) 7198.0428 6410.3811 6061.0777 6061.0778 (6064.7256) 

 

3.4. Binary distillation column design problem 
 
Next case study is a binary distillation system from the MINOPT User’s Guide (Schweiger et al., 1997) and Bansal 

et al. (2003). The column has a fixed number of trays and the objective is to determine the optimal feed location 
(discrete decision), vapour boil-up, V, and reflux flow rate, R (continuous decisions), in order to minimize the integral 
square error (ISE) between the bottoms and distillate compositions and their respective set-points. The superstructure of 

the system is depicted in Fig. 4.  
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Figure 4: Binary distillation column. 
 

The following modeling assumptions were used by Schweiger et al. (1997): (i) constant molar overflow; (ii) 
constant relative volatility, a; (iii) phase equilibrium; (iv) constant liquid hold-ups, equal to m for each tray and 10m for 
the reboiler and condenser; (v) no tray hydraulics; (vi) negligible vapour hold-ups; and (vii) no pressure drops. The 

system is initially at steady-state; at t=0 there is a step change in the feed composition, zf; and the inequality constraints 
are that the distillate composition must be greater than 0.98, and the bottoms composition must be less than 0.02, at the 
end of the time horizon of 400 min. The problem can be stated mathematically as: 

 

( ) ( )fmin  =f x ISE t    (22) 

 
where 

 

( ) ( ) ( )2 2

b b N+1 N+1= − + −* *
d ISE

x x x x
dt

   (23) 

 

subject to component balances - Eqs. (24)-(27), overall balances - Eq. (28)-(31), vapour-liquid equilibrium - Eqs. 
(32)-(33), and step disturbance – Eq. (24):  
 

b b
1 1 o b10     0

=

= − − =
t 0

dx dx
m L x Vy Bx ,
dt dt

   (24) 
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( )f =0.54 0.09exp 10z - - t    (34) 
 

The following design space is adopted (Bansal et al., 2003): 0.05 kmol/min ≤ V ≤ 2 kmol/min, 0.25 kmol/min ≤ R ≤ 
1.3 kmol/min, 1 ≤ yf ≤ 30. Model parameters (Bansal et al., 2003): number of trays (N) equal to 30; relative volatility, α 

equal to 2.5; tray liquid hold-up equal to 0.175 kmol; feed flow rate (F) equal to 1 kmol/min; distillate set-point ( N+1

*x ) 

equal to 0.98 and bottoms set-point ( b

*x ) equal to 0.02. 

Table 4 presents the results obtained by BFOA and by other techniques. In this table, it can be seen that the best 
solution found by BFOA has the same quality as compared with the results found by Bansal et al. (2003). 

 
Table 4. Comparison of the best solutions for the binary distillation column design problem. 

 

Design variables Bansal et al. (2003) This work (average) 

Feed tray 25 25 (25) 

V (kmol/min) 1.5426 1.5426 (1.5699) 

R (kmol/min) 1.0024 1.0024 (1.0068) 

f (-) 0.1817 0.181798 (0.183544) 

 
 

4. CONCLUSIONS 

 
In this work, Bacterial Foraging Optimization Algorithm (BFOA) based on the social foraging behavior of the 

Escherichia coli bacteria, was applied to solve different design problems. The simulation results were compared with 
those obtained from other competing evolutionary algorithms. Besides, the results showed that the methodology is 
configured as a promising alternative for a number of engineering applications. However, in terms of the number of 
objective function evaluations, this approach need yet to be better studied, so that more definitive conclusions can be 
drawn. This particular characteristic, i.e., the number of objective function evaluations is inherent to this methodology 

due to the quantity loops to be performed. Consequently, it is expected that a high number of objective function 
evaluations is necessary in the present version of the algorithm. 

Further research work will be focused on the influence of the parameter values required by BFOA on the quality of 
solution. 
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