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Abstract. In this work an analytical strategy to derive consistent density-corrected tangent operators for compressible
materials in the context of finite deformation is proposed. It is shown that the density dependence of some model variables
implies corrections in the tangent operators. To derive this called density-corrected tangent operators an algorithm con-
sistent equation is devised and added to the set of return mapping nonlinear equations only at the moment of linearization.
Examples of such corrections are presented considering two different elastoplastic compressible models inside the context
of finite deformations. Numerical examples showing the influence of the density-correction term in the global convergence
are presented in order to attest the proposed methodology.
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1. INTRODUCTION

As well stated by Doraivelu et. al. (1984) "In the development of plasticity models for compressible porous materials
it is necessary to establish a yield criterion and a flow rule from which the complementary evolution equations can be
derived. However, the yielding of porous materials is much more complex than the yielding of fully dense materials,
mainly due to the fact that the yielding is not only influenced by the deviatoric part of the stress, but also by its hydrostatic
part".

Examples of compressible materials are soils, powders and foams. Each one of these materials has its particularity,
which influences its modeling. In the literature, it is possible find many original models and dozens of their variations. In
general soils are modeled by Cap models, powders are modeled also by Cap models and by the so called elliptical models,
a variation of the von Mises criterion that incorporates the hydrostatic part of the stress, and foams are in general modeled
by the usage of a specific model that takes into account the foam microstructure.

To successfully model compressible porous materials by means of computational efficiency, CPU time consuming
and convergence rates, it is necessary, despite the correct material model choice, to derive the so called consistent or
continuum tangent operator. A particular characteristic of compressible porous materials is that some model constitutive
variables can depend on the density evolution. In a first look such a dependence do not bring any important novelty once
the solution of the so called return mapping equations takes place by assuming a known fixed value of the displacement
vector and therefore a fixed density.

However, to achieve better convergence rates it is imperative that during the linearization of the return mapping equa-
tions one takes into account the density as variable. Therefore an equation comprising the relationship between the density
and the strain, for instance, have to be identified. This equation shall be consistent with the description and algorithm in
use. Pérez-Foguet et al. (2001,2003) presented how to derive consistent tangent matrices for density-dependent finite
plasticity models inside the arbitrary Lagrangian-Eulerian description. A general equation for the tangent operator was
presented, Pérez-Foguet et al. (2001), based on the previously density-independent results presented by Ortiz & Mar-
tin (2000). The tangent operators for the elastoplastic models presented in Pérez-Foguet et al. (2001,2003) were then
computed by using numerical strategies presented by Pérez-Foguet et. al. (2000).

In this work an analytical strategy to derive consistent density-corrected tangent operators for compressible materials is
derived. The proposed procedure assumes the Total Lagrangian description and considers: a multiplicative decomposition
of the deformation gradient, into a plastic and an elastic part; the isotropic constitutive formulation given in terms of the
logarithmic deformation measure and the rotated Kirchhoff stress so that the exponential return mapping can be used. In
this work the elastic response is assumed to be hyperelastic, according to the Hencky model, where the elastic material
parameters can or can not depend on the relative density.

2. DENSITY-DEPENDENT FINITE PLASTICITY MODELS

Inside the context of the mathematical theory of fully dense materials, density-independent materials, it is stated that
the functional form of the yield function f has dependence on the stress tensor and on a set of β hardening thermodynam-
ical forces.

Despite the functional form of the mathematical model used in the modeling of density-dependent finite plasticity
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models they usually have some parameters that are dependent on the evolution of the mass density ρ

ρ =
ρo

det (F)
, (1)

where ρo is the initial mass density and F is the deformation gradient. This equation can be presented in terms of relative
density η which is defined as

η =
ρ

ρm
=

ηo
det (F)

, (2)

in which ρm is the mass density of fully dense material and ηo = ρo
ρm

. Therefore, in the modeling of density-dependent
finite plasticity the yield function shall be written as

f = f (τ̄ , β, η) , (3)

in whichτ̄ is the rotated Kirchhoff stress. In addition to the yield criteria an elastoplastic constitutive model has to
establish the evolution of the plastic flow rule and of the internal variables. Here the constitutive elastoplastic model can
by summarized, by assuming an associative flow1 rule, as to enforce at every point where f > 0 the satisfaction of the
following set of nonlinear equations

f (τ̄ , β, η) = 0 (4a)

D̄p = λ̇
∂f

∂τ̄
= λ̇Nτ̄ (4b)

α̇ = λ̇
∂f

∂β
= λ̇Nβ (4c)

In equation Eq.(4b) and Eq.(4c) λ̇ is the plastic multiplier, which is determined by the satisfaction of the Karush-Kuhn-
Tucker conditions

f ≤ 0 λ̇ ≥ 0 λ̇f = 0, (5)

D̄p is the modified plastic evolution, α̇ plays the role of the internal variables evolution vector, β denotes the vector of
internal variables which are associated with α. Besides the constitutive equation for the stress is

τ̄ = De (η) Ee (6)

where De is the fourth order elasticity tensor, Ee = ln (Ue) is the Hencky strain measure, Ue =
√

Ce , Ce = (Fe)T Fe

and F = FeFp.

3. THE MATERIAL TANGENT MODULUS

It is well known that the material version of the tangent modulus, assuming the finite strain case, can be derived if one
assumes the first Piola-Kirchhoff stress tensor as a function of the deformation gradient

P = P (F (u)) (7)

in which u is the displacement vector. As a result the material version of the virtual work is given by

G (u, û) = 0 ∀ û ∈ W1
p (Ωo) (8)

with

G (u, û) =
∫

Ωo

P (u) · ∇Xû dΩo −
∫

Ωo

ρob̄ · û dΩo −
∫

Γto

t̄ · û dΓto (9)

where b̄ is the body force field defined in the initial body configuration Ωo, which has boundary ∂Ωo = Γto ∪ Γuo with
Γto ∩ Γuo = ∅, t̄ is the prescribed traction defined on boundary Γto, ∇X (•) means the material gradient of the field (•), ū
is the prescribed displacement defined on Γuo and û is the virtual displacement vector field. The linearization of the weak
form presented in Eq.(8)

DG (u, û) [δu] =
d

dε
G (u + εδu, û)|ε=0 (10)

1Non associative functions could also be used.



Proceedings of COBEM 2009
Copyright c© 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

leads to the linearization of the term associated with the internal virtual work, i.e.,

d

dε

∫
Ωo

P (u) · ∇Xû dΩo

∣∣∣∣
ε=0

which can be expressed, after a straightforward algebric manipulation, as

DG (u, û) [δu] =
∫

Ωo

A (u)∇Xu · ∇Xû dΩo (11)

whereA is fourth order tensor called material tangent modulus that can be written as

A (u) =
∂P
∂F

∣∣∣∣
u

(12)

or more specifically in components

Aijkl =
∂Pij
∂Fkl

=
∂τip
∂Fkl

F−1
jp − τipF

−1
jk F

−1
lp . (13)

Here τ is the Kirchhoff stress tensor, τ = Jσ with σ denoting the Cauchy stress tensor and J = det (F). τ is related to
the first Piola-Kirchhoff stress tensor by P = τF−T .

4. ALGORITHM CONSIDERATIONS AND TANGENT OPERATOR CORRECTIONS

4.1 Determination of the tangent modulus A

The determination of the tangent modulus A requires the computation of the derivative of the Kirchhoff stress tensor
with relation to the deformation gradient tensor, as seem in Eq.(12). In addition, it is possible to relate Kirchhoff stress
tensor with the rotated Kirchhoff stress tensor and therefore write τ as a function of the τ̄ . In other words, the computation
of ∂τ

∂F requires the computation of ∂τ̄
∂F .

Taking into account the incremental constitutive formulation, see Souza Neto et al. (1998), the derivative of the rotated
Kirchhoff stress tensor with relation to the deformation gradient tensor can be evaluated realizing that

τ̄n+1 = ˆ̄τn+1

(
Eetrial

n+1 , βn

)
. (14)

Now, by applying the chain rule

∂τ̄n+1

∂Fn+1
=

∂τ̄n+1

∂Eetrial
n+1

∂Eetrial

n+1

∂Cetrial
n+1

∂Cetrial

n+1

∂Fn+1
(15)

and denoting

D =
∂τ̄n+1

∂Eetrial
n+1

, G =
∂Eetrial

n+1

∂Cetrial
n+1

and H =
∂Cetrial

n+1

∂Fn+1
(16)

it is possible rewrite the Eq.(15) as

∂τ̄n+1

∂Fn+1
= DGH. (17)

Starting from Cetrial

n+1 =
(
Fe

trial

n+1

)T
Fe

trial

n+1 the H components, after a straightforward algebric manipulation, can be
expressed as

Hijkl = F p
−1

lin
F e

trial

kjn+1
+ F e

trial

kin+1
F p

−1

ljn
. (18)

The fourth order tensor G is computed by the following expression

G =
∂

∂Cetrial
n+1

ln
(
Uetrial

n+1

)
=

1
2

∂

∂Cetrial
n+1

ln
(
Cetrial

n+1

)
. (19)

Note that in G determination we need to compute a derivative that involves ∂ ln(X)
∂X , that is a derivative of the isotropic

function ln (X). This class of functions and their derivatives are investigated in details in the works presented by Souza
Neto et al. (1998) and Ortiz et al. (2001). In the Eq.(17) the fourth order tensor D is the term that involves the material
constitutive relationship. The other two are related with geometric portion of the tangent modulus. In fact, the derivation
of D will depend on the type of material being modeled, i.e., in the case of a material that exhibits elastic and inelastic
behavior, if the yield function f ≤ 0 then D is taken as the elastic modulus De, otherwise if f > 0 then D will be the
consistent elastoplastic tangent operator Dep.
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4.2 The elastic predictor and plastic corrector algorithm

To understand how the relative density influence arises into tangent operators it is important to review the returning
mapping algorithm used in the solution of the local equations and how it relates to the determination of the tangent
operator Dep. The use of the approximation via the elastic predictor and plastic corrector algorithm technique leads to an
algorithm based on two main steps. They are:

1. Elastic prediction: the problem is assumed to be purely elastic between tn e tn+1;

2. Plastic correction: by the enforcement of the elastic relation, plastic flow rule, the evolution of hardening variables
(internal variables) and the satisfaction of the Karush-Kuhn-Tucker conditions.

4.2.1 Elastic prediction

In the elastic prediction it is assumed that

Ḟp = 0 α̇ =0. (20)

As the solution is former assumed as elastic then

Fp
trial

n+1 = Fpn αtrialn+1 = αn. (21)

The called trial elastic state is obtained by means of

Fe
trial

n+1 = Fn+1 (Fpn)−1
. (22)

This implies that the logarithmic strain measure is computed by

Eetrial

n+1 =
1
2

ln Cetrial

n+1 (23)

with Cetrial

n+1 =
(
Fe

trial

n+1

)T
Fe

trial

n+1 . Since that Eetrial

n+1 is determined, then it is possible determine the trial rotated Kirchhoff
stress tensor by the use of the elastic relation,i.e,

τ̄ trialn+1 = 2µ (ηn+1) Eetrial

n+1 +
[
κ (ηn+1)− 2

3
µ (ηn+1)

]
tr
(
Eetrial

n+1

)
I (24)

where we assume the standard fourth order elasticity tensor being also dependent on the relative density, that means

De = 2µ (ηn+1) I +
[
κ (ηn+1)− 2

3
µ (ηn+1)

]
I⊗ I. (25)

4.2.2 Plastic correction

The plastic correction must be performed if f
(
τ̄ trialn+1 , α

trial
n+1 , ηn+1

)
> 0. The procedure adopted to perform the plastic

correction belongs to the return mapping algorithms, extensively explored in literature. In this work, as proposed by
Eterovic and Bathe (1990) and Weber and Anand (1990), the exponential mapping is used.

Exponential return mapping The discretization of the plastic flow, Ḟp = D̄pFp, and its approximation based on the
backward exponential mapping leads to

Fpn+1 = exp
(
∆λNτ̄n+1

)
Fpn. (26)

In addition, the evolution of the internal variables are approximated based on the backward Euler, i.e.,

αkn+1 = αkn + ∆λNβkn+1
. (27)

Moreover, after a straightforward manipulation, Eq.(26) reduces to

Ee
n+1 = Eetrial

n+1 −∆λNτ̄n+1 . (28)

Also, it can be shown that Re
n+1 = Retrial

n+1 . As a result, the return mapping algorithm comprises the solution of the
following non-linear system of equations Ee

n+1 −Eetrial

n+1 + ∆λNτ̄n+1

αkn+1 − αkn −∆λNβkn+1

f
(
τ̄n+1, βkn+1 ; ηn+1

) =

 0
0
0

 (29)

for ∆λ, αkn+1 and Ee
n+1. Remark: Notice that based on a fixed incremental displacement at the instant tn+1, that is

un+1, the deformation gradient Fn+1 is computed and so the relative density ηn+1. Therefore, the relative density is
fixed, not a variable, in the context of the return mapping algorithm, see Pérez-Foguet et al. (2001).
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4.3 Density-corrected consistent tangent operator determination - Dep

In this section we investigate the influence of the density-dependence models into the derivation of consistent tangent
operator. The relative density model dependence impose a correction in the tangent operator. A spatial version of the
corrected tangent operator is presented in the work by Pérez-Foguet et al. (2001). In fact, in the identification of Dep
the the linearization of the return mapping equations must consider the elastic trial strain also as a variable. This implies
that dEetrial

n+1 → dηn+1. This means that a coupled relation between dEetrial

n+1 and dηn+1 must be derived. The relation
between dEetrial

n+1 and dηn+1 should be consistent with the algorithm used. To identify such relation recall that in the
elastic prediction step we state that

Fn+1 = Fe
trial

n+1 Fpn. (30)

Based on the trial elastic state assumption and on the Eq.(23) and reminding that

Cetrial

n+1 = exp
(

2Eetrial

n+1

)
(31)

it is possible show, after a straightforward algebric manipulation, that

det
(
Fe

trial

n+1

)
= exp

(
Ee

trial

vn+1

)
. (32)

Thus, substituting Eq.(32) and Eq.(30) into Eq.(2) yields

ηn+1 = η̂ exp
(
−Ee

trial

vn+1

)
(33)

where Ee
trial

vn+1
= tr

(
Eetrial

n+1

)
and η̂ = ηo

det(Fpn)
. In addition the linearization of Eq.(33) yields

dηn+1 + η̂ exp
(
−Ee

trial

vn+1

)
dEe

trial

v = 0. (34)

Now, for the correct determination of the elastoplastic tangent operator

Dep =
dτ̄n+1

dEetrial
n+1

, (35)

one must add Eq.(33) to the system of equations shown in Eq.(29) and perform the linearization of this augmented system
of equations. Such linearization leads to following set of equations

dEe
n+1 − dEetrial

n+1 + d (∆λ) Nτ̄n+1 + ∆λNτ̄n+1

dαkn+1 − d (∆λ) Nβk |n+1 −∆λ dNβk |n+1

df
(
τ̄n+1, βkn+1 , ηn+1

)
dηn+1 + η̂ exp

(
−Eetrialvn+1

)
dEe

trial

v

=


0
0
0
0

 (36)

where

dNτ̄n+1 =
∂Nτ̄n+1

∂τ̄n+1
dτ̄n+1 +

∂Nτ̄n+1

∂αn+1
dαn+1 +

∂Nτ̄n+1

∂ηn+1
dηn+1 (37a)

dNβkn+1
=
∂Nβkn+1

∂τ̄n+1
dτ̄n+1 +

∂Nβkn+1

∂αn+1
dαn+1 +

∂Nβkn+1

∂ηn+1
dηn+1 (37b)

df
(
τ̄n+1, βkn+1 ; ηn+1

)
= Nτ̄n+1dτ̄n+1 +

∂f

∂αn+1
dαn+1 +

∂f

∂ηn+1
dηn+1 (37c)

and by assuming that some elastic parameter could depend on the relative density, τ̄ = De (η) Ee, we also impose that

dEe
n+1 = De

−1
(ηn+1) dτ̄n+1+

∂De−1
(ηn+1)

∂ηn+1
τ̄n+1dηn+1. (38)
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5. MODEL CASE 1 - ELLIPTICAL OR POROUS MATERIAL MODELS

Since the work presented by Doraivelu et. al. (1984) many contributions have been made regarding this class of
model. Some authors state that the use of the elliptical model should be used only when the relative densities are superior
to 0.7, but others authors advocate that its use can be extended to lower relative densities values. Despite the discussion
about the proper use of such kind of model, this model will be used here to illustrate the derivation of the consistent
elastoplastic density-corrected tangent operator for elliptical models. Elliptical or porous material models are described
by the following yield function functional form

f = AJ2 +BI2
1 = σ2

η. (39)

In this equation A and B are scalars that are, in many cases, dependent on the relative density and ση is the apparent yield
stress. J2 and I1 are respectively the second invariant of the stress tensor in the deviatoric space and the first invariant of
the stress tensor. In general

σ2
η = γσ2

y (40)

where σy is the initial yield stress of the fully dense material. Doraivelu et al. (1984) shown that the values ofA andB are
not arbitrary. However, there are a great variety of proposals for A and B in the literature. Zhdanovich (1971) proposes
that a Poisson dependence on the relative density, such that

ν =
1
2
ηn. (41)

The exponent n ' 2 has been used to describe such dependence. The γ multiplier is known as the geometric hardening
and can be also dependent on the relative density. When γ = 1 the material must behaves as a fully dense material and
for some value between 0 and 1 the material should presents no mechanical strength. This value, represented by ηC , can
vary for each author but is about the called tap density.

5.1 Proposal model

Let us propose that the porous material model could experience an isotropic hardening k in its dense matrix. So, the
proposal material model can be represented by an yield function as

f = AJ2 +BI2
1 = γ (k + σy)2

. (42)

Taking the square root in both sides of the Eq.(42) this function can be rewritten as

f̄ = Seq − γ
1
2 (k + σy) (43)

where

Seq =
√
AJ2 +BI2

1 (44)

plays the role of equivalent stress. Let us assume that isotropic hardening k of the dense material matrix can be represented
by

k (ε) = Hε+ (σ∞ − σy)
(
1− e−δε

)
(45)

where H, σ∞ and δ are material parameters that not depend on the relative density and ε plays the role of the isotropic
hardening strain.

5.2 Tangent operator

Once the model has been described in the previously section, it is possible now to identify the elastoplastic tangent
operator for the proposal model. This identification comes from the linearization presented in Eq.(35). After a straight-
forward algebra manipulation it is possible to show that

D = Dep =
dτ̄n+1

dEetrial
n+1

= Depstdηcor (46)

where

Depstd =

De (ηn+1)−1 + ∆λ
∂Nτ̄n+1

∂τ̄n+1
− 1

∂f̄
∂εn+1

√
γn+1

(
Nτ̄n+1 ⊗Nτ̄n+1

)−1

(47)

ηcor = I− ηn+1

[
De (ηn+1)−1 ∂De(ηn+1)

∂ηn+1
Ee
n+1 + fcNτ̄n+1 −∆λ

∂Nτ̄n+1
∂ηn+1

]
⊗ I (48)
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with

fc =
∂f̄

∂ηn+1

∂f̄
∂εn+1

√
γn+1

+
∆λ

2γn+1

∂γ(ηn+1)
∂ηn+1

. (49)

6. MODEL CASE 2 - SMOOTH THREE SURFACE Cap MODEL

This Cap model, originally proposed by Swan & Seo (2000), is modified in order to be consistent with the proposed
finite deformation description and to account for the dependency on the material parameters to the relative density of the
material. The Cap description presented here is very concise. More details can be found in Rossi & Alves (2008).

The smooth Cap model is composed by a exponential shear failure surface f1, a compression circular Cap f2 and a
tension circular Cap f3. These yield functions are given by

f1

(
τ̄ , χ̄D

)
=
∥∥S̄D∥∥− Fe (I1) ≤ 0 (50)

f2

(
τ̄ , χ̄D, ω

)
=
∥∥S̄D∥∥2 − Fc (I1, ω) ≤ 0 (51)

f3

(
τ̄ , χ̄D

)
=
∥∥S̄D∥∥2 − Ft (I1) ≤ 0. (52)

where ω is the center of the compression Cap, I1 = tr (τ̄), and the tensor S̄D is given by

S̄D = τ̄D − χ̄D (53)

where
∥∥S̄D∥∥ =

√
S̄D · S̄D, χ̄D denotes the back stress and (◦)D represents the deviatoric part of (◦). At this point, one

assumes Fe, Fc and Ft to be

Fe (I1) = α+ γ
[
1− eβI1

]
if Ic1 ≤ I1 ≤ IT1 (54)

Fc (I1, ω) = R2 (ω)− (I1 − ω)2
if I1 ≤ Ic1 (55)

Ft (I1) = R2
T − I2

1 if I1 ≥ IT1 . (56)

in which α, β and γ are material parameters, Ic1 denotes the intersection point between the tension Cap and the Drucker-
Prager exponential envelop and IT1 the intersection point between the compression Cap and the Drucker-Prager exponen-
tial envelop. Here, R and RT are the radius of the compression and tension Caps respectively. In this work we assume
that the powder can be modeled by an associative flow rule an that the normal dissipation hypothesis is valid. Thus, inside
of the framework of the existence of a local intermediate configuration, we introduce the modified plastic stretching D̄p,
which measures the rate of the plastic deformation, as

D̄p =
∑
j

λ̇j
∂fj
∂τ̄

(57)

and the Karush-Kuhn-Tucker conditions given by

fj ≤ 0, λ̇j ≥ 0 and fj λ̇j = 0. (58)

In this context, the stress space is defined by E = { τ̄ | fi (τ̄ , β, η) ≤ 0}. The loading conditions associated with the Cap
model are identified as: Hyperelastic loading (fj < 0, j = 1...3); Loading occurring through the shear surface (f1 = 0
and λ̇1 > 0); Loading occurring through the compression Cap surface (f2 = 0 and λ̇2 > 0); Loading occurring through
the tension Cap surface (f3 = 0 and λ̇3 > 0); Surfaces 1 and 2 are active simultaneously (i.e., f1 = f2 = 0 and λ̇1 > 0
and λ̇2 > 0); Surfaces 1 and 3 are active simultaneously (i.e., f1 = f3 = 0 and λ̇1 > 0 and λ̇3 > 0).

The evolution of the center of the compression Cap is given by

ω̇ = h′ (ω) tr
(
D̄p
)

(59)

where h′ is the tangent hardening modulus expressed as

h′ (ω) =
dh (ω)
dω

=
e−Dξ(ω)

WDξ′ (ω)
(60)

with D and W being material parameters and

ξ (ω) = ω −R (ω) . (61)

The kinematics hardening

˙̄χ
D = CIDD̄p, (62)

where C is the constant hardening parameter and ID = I− 1
3 [I⊗ I] .
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6.1 Consistent density-corrected tangent operators

1. Drucker-Prager exponential envelope f1 is active: The tangent operator relating the Drucker-Prager exponential
envelope, disregarding the kinematic hardening, can be derived by the linearization of the return mapping equations
related with this surface. It yields:

D1 = Dep1 =
dτ̄n+1

dEetrial
n+1

= Dep1stdη1cor (63)

with

Dep1std =
[
De

−1
+ ∆λ1

(∥∥τ̄Dn+1

∥∥−1 ID −Nn+1 ⊗Nn+1

)
+ γβeβI1n+1 (I⊗ I)

]−1

(64)

η1cor = I− ηn+1De
−1 ∂De

∂ηn+1
Ee
n+1 ⊗ I. (65)

2. Compression Cap f2 is active: In the powder compaction processes, the compression Cap plays a very important
role. In such forming process the material is confined inside a mold and then submitted to high compression
loadings. Therefore, the negative hydrostatic stress portion tends to be more prominent. Two are the requirements
imposed on this surface: the Cap must be centered in

(
I1 = ω,

∥∥S̄D∥∥ = 0
)

and that a smooth intersection with the
Drucker-Prager exponential envelope exists. The tangent operator, disregarding the kinematics hardening, yields

Dep2 =
dτ̄n+1

dEetrial
n+1

= Dep2stdη2cor (66)

with

Dep2std =

[
De

−1
+ 2∆λ2

[
ID + I⊗ I

]
− C1

∂f2

∂τ̄n+1
⊗ I− 1

∂f2
∂ωn+1

(
C2

∂f2

∂τ̄n+1
− 2∆λ2I

)
⊗ ∂f2

∂τ̄n+1

]−1

(67)

η2cor = −ηn+1

[
De

−1 ∂De

∂ηn+1
Ee
n+1 ⊗ I +

1
∂f2

∂ωn+1

∂f2

∂ηn+1

(
C2

∂f2

∂τ̄n+1
− 2∆λ2I

)
⊗ I

]
+ I (68)

where

C1 =
∆λ2

I1n+1 − ωn+1
C2 =

1 + 6∆λ2h
′
n+1

6h′n+1

(
I1n+1 − ωn+1

) (69)

3. Tension fixed Cap f3 is active: Similarly to the compression Cap, there are requirements imposed on this surface,
i.e, the tension Cap must be centered in

(
I1 = 0,

∥∥S̄D∥∥ = 0
)
, a smooth intersection with the Drucker-Prager expo-

nential envelope must take place and that this Cap remains fixed, that is, there are no isotropic hardening parameter
associated with this Cap. Again, disregarding the kinematics hardening and taking the linearization of Eq.(??)
together with Eq.(33) yields

Dep3 =
dτ̄n+1

dEetrial
n+1

= Dep3stdη3cor (70)

with

D =
{

De
−1

+ 2∆λ3

[
ID + I⊗ I

]}−1

η3cor = I− ηn+1De
−1 ∂De

∂ηn+1
Ee
n+1 ⊗ I. (71)

7. RESULTS

In order to attest the effect of the correction ηcor into the standard elastoplastic tangent operator Depstd it is proposed
in this section the simulation of a unitary sided body under axisymmetric assumption, Figure 1a), representing an iso-
static compaction and the simulation of the model under plane strain assumption, Figure 1b), representing an uniaxial
compaction. The discretization of the body as well as their boundary conditions are also displayed in Figure 1.

• Model 1 - Elliptical model: In this example we consider a material model as described by Eq.(43) and Eq.(45) with
A, B and γ given by the Doraivelu et al. (1984) model. The simulation consists in: Set the initial relative density is
assumed to be ηo = 0.7; Set the material parameters to be: ηC = 0.4, E = 10000MPa, ν = 0.1, H = 130MPa,
δ = 17, σ∞ = 715MPa and σy = 100MPa; Carry out the isostatic compaction by applying simultaneously
ur = uz = −0.112096 in 20 equally spaced steps; Carry out the uniaxial compaction by applying uy = −0.3 in 20
equally spaced steps.
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Figure 1. Model problem - a) Isostatic compaction - Axisymmetric model - b) Uniaxial compaction - Plane strain model.

• Model 2 - Smooth Cap Model: Set initial relative density set to ηo = 0.4; Set the material parameters to be:
E (η) = 3640η3.9, see Gethin et al. (1995), ν = 0.35, W = 1, D = 7 × 10−3MPa−1,ωo = −0.2MPa,
α = 5.883MPa, β = 10−3 and λ = 226.455; Carry out the isostatic compaction by applying simultaneously
ur = uz = −0.263194 in 100 equally spaced steps; Carry out the uniaxial compaction by applying uy = −0.6 in
100 equally spaced steps.

The Figure 2 shows the comparison between the convergence results expressed in terms of the residue norm ‖rn+1‖∞
versus the number of iterations niter in a one axis log graph. The results presented in this figure take into account the use
of the standard consistent elastoplastic tangent operator Depstd and density-corrected Dep = [Depstd]

−1
ηcor under the same

load step. More specifically, figure 2a) and b) shows the convergence results for the model 1 under isostatic and uniaxial
compression respectively and figure 2c) and d) shows the convergence results for the model 2 under the same boundary
conditions.

The residue vector is the classical one used in the finite element analysis context, r = fext − f int. In both cases the
criterion of convergence is the number of iterations to achieve the admissible error given by ‖rn+1‖adm∞ ≤ 10−6. In all
cases it is employed a Newton-Raphson method with line search.

8. CONCLUSION

This paper deals with the analytical derivation of the consistent density-corrected tangent operators for density-
dependent finite plasticity models in the framework of the Total Lagrangian formulation, multiplicative finite strain plas-
ticity, logarithmic strains and the exponential return mapping algorithms. It is clearly shown that the density dependence
of the material model implies in corrections on the standard elastoplastic tangent operators. Based on the results shown
it is possible note that if no density correction is performed on standard elastoplastic tangent operators the convergence
is affected, increasing dramatically the number the iterations to reach the specified admissible error, or even leading to
non convergence state. On the other hand, if the correction is taken into account then the convergence is slightly affected
during the simulation. The way the convergence is affected depends on the nonlinear constitutive model density evolution
dependence.
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