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Abstract. This work presents an externsion of the classical droplet combustion theory. Based on the infinite reaction
rate, the Shvab-Zel’dovich formaulation is applied. This formulation permits to study analytically problems with nonunity
Lewis number and the transport coefficients dependent on temperature. An extension for it is proposed in which different
constant pressure specific heat in each side of the flame is considered. Although the formulation admits varible transport
coefficient, nonunity Lewis number and different constant values for the constant pressure specific heat in each side of the
the flame, the problem has an analytical solution.
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1. INTRODUCTION

The quasi-steady behavior in the gas phase close to the droplet surface, compared to the liquid phase behavior, makes
the fluid-dynamical description of the droplet problem relatively simple. The sucess of the quasi-steady model is measured
by the determination of the linear deacreasing of the square droplet radius with time (d2 law) (Spalding, 1953; Godsave,
1953; Goldsmith and Penner, 1954; Kumagai and Isoda, 1956). The present work is an extension of the classical droplet
combustion theory; nonunity Lewis number, variable transport coefficients and different constant values for the constant
pressure specific heat in each side of the flame are considered. Even with these asumptions, the problem has an analytical
solution. To achieve this goal the Shvab-Zeldovich formalution is extended, Liñán formulation and the flamelet concept
are used to remove the chemical term, to make continuous the coefficients of the excess enthalpy and mixture fraction
equations and to write the excess enthalpy function in terms of the mixture fraction function.

The first descriptions of the droplet combustion problem were based on simplifications: constant values for transport
and thermodynamic properties, flame infinitely thin (infinite fast chemical reaction), no radiative energy loss, no soot
formation, no relative velocity with the gas phase, ambient pressure very below the critical value, negligible Soret and
Dufort processes. All these asumptions have been changed and more realistic models have been adopted (Faeth, 1977;
Law, 1982; Sirignano, 1983; Dwyer, 1989; Givler and Abraham, 1996; Bellan, 2000; Chiu, 2000; Sazhin, 2006). The
studies become more and more detailed and describe precisely the droplet combustion problem, but the simulation time
becomes longer and longer (Jackson and Avedisian, 1996; Kumar et al., 2002). Fact which forbidens the inclusion of
these analyses in numerical spray combustion description. The aim of this work is to present an analytical solution to the
droplet combustion problem, whose results may be used in spray combustion numerical codes.

Recently, an analytical solution to the droplet problem was suggested (Fachini, 1999a). The model considered
nonunity Lewis number for fuel and oxygen and variable transport coefficients, but a unique constant value for the con-
stant pressure specific heat. The comparison with the experimental results compiled by Puri and Libby (1991) revealed
that the vaporization constant is overpredicted but the flame standoff distance is larger by a factor of 2.

The theoretical model suggested by Puri and Libby (1991) is able to predict well the experimental results. They in-
cluded in the model variable thermodynamical properties and transport coefficient and reactionCO2+H2 → CO+H2O.
To keep the simplicity of the previous model (Fachini, 1999a), which has an analytical solution, and to incorporate the
effects of the constant pressure specific heat on the flame, the previous model is extended considering distinct constant
pressure specific heats in each side of the flame.

2. MATHEMATICAL FORMULATION

Formulation for the quasi-steady droplet combustion is presented elsewhere (Fachini, 1999; Fachini et al. 1999). Thus,
only essential parts of it will be explicitly presented. The unsteady processes characteritic in the gas phase far from the
droplet surface (Waldman, 1975; Crespo and Liñán, 1975; Fachini, 1998; Fachini et al., 1999), the soot formation (Jackson
and Avedisian, 1996; Kumar et al., 2002,), multicomponent diffusion effects (Aharon and Shaw, 1997), multicomponent
fuels (Fachini et al., 1999) and radiative heat transfer (Fachini et al., 1999) are not considered.

By considering the ambient conditions to be characterised by the temperatureT∞, densityρ∞, oxygen mass fraction
YO2∞. The transport coefficients (thermal conductivity and diffusion coefficient) are supposed to depending on tem-
perature,k/k∞ = ρDi/(ρ∞Di∞) = f(T/T∞). The constant-pressure specific heat for the gases mixture

∑
i Yi cpi

is variable. The nondimensional quasi-steady conservation equations, describing the gas phase around the droplet with
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radiusa at timeτ (a ≡ ā/ā0 = 1 at the timeτ = 0), are expressed by

x2%v = λ(τ) (1)
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The definition of the nondimensional independent variables are as following: the timeτ ≡ t/tc, and the radial
coordinatex ≡ r/ā0, in which tc is an estimation of the vaporization timetc ≡ ε(ā2

0/α∞), ε ≡ ρ∞/ρl is the ratio of the
gas density to the liquid density andα∞ ≡ k∞/(ρ∞cp∞) is the thermal diffusivity. The definition of the nondimensional
dependent variables (temperature, density, oxygen mass fraction, fuel mass fraction and velocity) are as following:θ ≡
T/T∞, % ≡ ρ/ρ∞, yO ≡ YO2/YO2∞, yF ≡ YF , andv ≡ V ā0/α∞. The parameters in Eqs. (2) are defined as: Lewis
numberLei ≡ α∞/Di∞ (i = F for fuel andi = O for oxidant),S ≡ LeOν/(YO2∞LeF ), note thats ≡ ν/YO2∞ is mass
of air to burn stoichiometrically a unit mass of fuel according to the one-step global reactionF + νO2 → (1 + ν)P . Heat
of combustionQ is defined asQ ≡ q/(cp∞T∞). The nondimensional reaction rates of the fuel oxidation is defined as
ω̇ ≡ ẇ(ā2

0/α∞)LeF /ρ∞ The parameterCp is the ratio of an average constant pressure specific heat to the same property
determined for the ambient atmosphere condition. Since the average constant pressure specific heat for the gases in the
fuel and the oxigen sides are differents,Cp is not the same in the two sides of the flame,

Cp ≡ cp/cp∞ =
{

CpF , a ≤ x ≤ xf

CpO, xf ≤ x

The nondimensional vaporization rate isλ = ṁ/(4πā0k∞/cp∞) and the nondimensional droplet radius,a = ā/ā0.
According tod2 law (classical theory) , the ratioβ ≡ λ/a is a constant value, known as vaporization constant.β depends
on the heat flux to the droplet imposed by the flame.

Equations (2) must be integrated from the droplet surfacex = a to the ambient atmospherex → ∞. The conditions
for these two boundaries are: atx = a:

x2f

LeF

∂yF

∂x
= −λ(1− yFs), x2f

∂θ

∂x
= λL + q− = λL′,

θ = θs, yF = yFs = exp[L̄(1− θb/θs)] (3)

and forx →∞:

θ − 1 = yO − 1 = yF = 0 (4)

The subscripts represents the droplet surface condition. The nondimensional latent heatL is expressed byl/(cpT∞) and
q− is the heat to inside the droplet. The modified nondimensional latent heatL̄ is defined as̄L = l/RTb = (L/θb)[γ/(γ−
1)]. The definition of the modified latent heat isL′ ≡ L + q′/λ.

In this work, uniform temperature profile is admitted inside the droplet and close to the boiling value,θ = θs < θb

andq− � 1. Thereby, the mass conservation equation for the liquid phase leads to

da2

dτ
= −2

λ

a
= −2β (5)

According to the type of the chemical kinetics adopted, at the flamex = xf , the properties are

θ − θf = yF = y0 = 0 (6)

The closure for the system of equations is provided by the dimensionless equation of state of the gas,%θ = 1.
The Shvab-Zel’dovich formulation with the excess enthalpyH ≡ (S +1)LeF θ/Q+yF +yO and the mixture fraction

Z ≡ SyF − yO + 1 is expressed by (Fachini, 1999; Fachini et al., 1999),
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in which the Liñán formulation was applied to transform the discontinous constant coefficients to continous ones:

Cp(H) =
{

CpF , Z > 1
CpO, Z < 1 , N(Z) =

{
(LeF − CpF )/S, Z > 1
(CpO − LeO), Z < 1 , Le(Z) =

{
LeF , Z > 1
LeO, Z < 1
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From the definition of the functionsH andZ, the physical variables are defined as following:

θ =
{

[H − (Z − 1)/S]Q/[(S + 1)LeF ], Z > 1
[H + (Z − 1)]Q/[(S + 1)LeF ], Z < 1 ,

yF = (Z − 1)/S, Z > 1
yO = (1− Z), Z < 1 (9)

The equations forH andZ satisfy the following boundary conditions at the droplet surfacex = a, which are deter-
mined by Eq. (3),

Hs ≡ H(a) =
(S + 1)LeF

Q
θs + yFs, Zs ≡ Z(a) = SyFs + 1,
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from Eq. (6), the conditions at the flamex = xf are given by

Hf ≡ H(xf ) = (S + 1)LeF θf/Q, Zf ≡ Z(xf ) = 1, (11)

and, from Eq. (4), for the ambient atmospherex →∞,

H∞ ≡ H(∞) = (S + 1)LeF /Q + 1, Z∞ ≡ Z(∞) = 0, (12)

The system of equations (7) to (10) has one eigenvalue: the vaporization constantβ (≡ λ/a) that is determined by
imposing the relation between the fuel mass fraction and temperature at the droplet surface. As part of the solution, the
droplet surface temperatureθs is found.

By integrating Eqs. (7) and (8) with the conditions speficied by Eqs. (9) to (11), from the droplet surface up to a
positionx, and writingH as a function ofZ (flamelet formulation), the following system of equations are found

dH

dZ
=

(∫ H
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Cp(H)dH + FHs +
∫ Z
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N(Z)dZ

)
/
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)
(13)
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=
∫ Z
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Le(Z)dZ + FZs (14)

From Eq. (14), the mixture fractionZ is a function of the position,Z = Z(x). SinceZs > Z(∞) and∂Z/∂x|a < 0,
thenZ decreases monotonically andx = x(Z) is found. The transport coefficientf is a function of the temperatureθ
and, from Eqs. (9) (13),θ = θ(H(Z), Z), thus the system of equations (13) and (14) is well posed and can be integrated.

As can be seen, Eq. (13) can be integrated independently from (14). Once knowingθs and the temperature pro-
file θ(H(Z), Z) = θ(Z), the value forZ(a) is specified and Eq. (14) is solved with the imposition of two boundary
conditions:Z(x = a) = SyFs + 1 andZ(x →∞) = 0. The eigenvalueβ ≡ λ/a is found.

Equation (13) has analytical solution. In the present analysis, the system of equations (13) and (14) are employed to
describe the droplet combustion problem. The integral terms in these equationas are∫ H

Hs

Cp(H)dH =
{

CpF (H −Hs), 1 ≤ Z ≤ Zs

CpF (Hf −Hs) + CpO(H −Hf ), 0 ≤ Z ≤ 1 (15)

∫ Z
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{

(LeF − CpF )(Z − Zs)/S, 1 ≤ Z ≤ Zs
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∫ Z
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Equation (13) are speficied for the fuel side of the flame (Z > 1) and for the oxiygen side (Z < 1). It can be written
as

d(H −Hi)
d(Zi − Z)

=
Cp(H −Hi)−N(Zi − Z)

Le(Zi − Z)
(18)
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in which

Hi =
{

1 + [(S + 1)LeF /Q](CpF θs − L)/CpF , (i = 1) Z ≥ 1
([(S + 1)LeF /Q][(CpO − CpF )θf + CpF θs − L + Q]/CpO − s, (i = 2) Z ≤ 1

Zi =
{

S + 1, (i = 1) Z ≥ 1
s + 1, (i = 2) Z ≤ 1 (19)

The solution of Eq. (18) is (Fachini, 1999a)

H −Hi = − N

Le− Cp
(Zi − Z) + Gi(Zi − Z)Cp/Le (20)

Applying the condition at the ambient atmosphere specified in Eq. (11) in Eq. (20) for the domainZ ≤ 1, the value
of the integration constant for the oxygen fuel sideGi = G2 (for Z < 1) is determined

G2 = − 1
(s + 1)CpO/LeO

1
CpO

(S + 1)LeF

Q
[(CpO − CpF ) θf + CpF θs − L + Q− CpO]

In the same way, applying the condition at the droplet surface (Z = Zs) on the functionH, the integration constant
Gi = G1 for Eq. (20) in the fuel side (Z > 1) is found

G1 =
(S + 1)LeF

Q

L/CpF

[S(1− yFs)]
CpF /LeF

The flame temperature can be calculated by any expression from Eq. (20). For compactness, the condition Eq. (11) is
applied to (20) in the oxygen side of the flame (Z < 1),

θf =
CpO + (CpF θs − L + Q− CpO)

{
1− [s/(1 + s)]CpO/LeO

}
CpF + (CpO − CpF ) [s/(1 + s)]CpO/LeO

(21)

The continuity condition of the functionH permits the determination an expression that relates the fuel mass fraction
and the temperature at the droplet surface (Z = Zs). Therefore, imposing this condition on Eq. (20), the following
expression is found for the fuel mass fraction at the droplet surfaceyFs
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]

(22)

The solution of Eq. (22) together with the Clausius-Clapeyron relation, Eq. (3), determines the droplet surface temperature
θs and fuel mass fraction on the droplet surfaceyFs However, if the approximationθs = θB is applied, Eq. (22) determines
directly the value ofyFs.

The determination of the other droplet combustion properties, the constant of vaporizationβ and the flame standoff
distancexf/a, is achived by the integration of Eq. (14). To performe that task is necessary to know the dependence of
the transport coefficientsf and the temperature as a function of the mixture fractionZ. In this work,f = θn is chosen
(n = 0.5). From Eqs. (9) and (20), the temperature as a function ofZ is

θ = θs −
L

CpF

[
1−

(
Z1 − Z
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)CpF /LeF
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(23)

for Z ≥ 1 and
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for Z ≤ 1. Therefore, by integrating Eq. (14) in the domainsZ > 1 andZ < 1, one finds
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(a) (b)

Figure 1. (a) Flame standoff distancexf/a and (b) vaporization constantβ as a function of theCpF for four values of
CpO.

(a) (b)

Figure 2. (a) Fuel mass fraction at the droplet surfaceyFs and (b) flame temperature constantθf as a function of theCpF

for four values ofCpO.

in which Z̃ ≡ (Z1 − Z)/[S(1− yFs)], Z̄ ≡ (Z2 − Z)/(s + 1) and the constantsAi andBi are

Ai =
{

θs, Z ≥ 1 (i = 1)
1, Z ≤ 1 (i = 2) ,

and

Bi =
{
−L/CpF , Z ≥ 1 (i = 1)
[(CpO − CpF )θf + CpF θs + Q− L− CpO] /CpO, Z ≤ 1 (i = 2)

3. COMMENTS AND CONCLUSION

In order to include a droplet combustion model (sub-grid model) in a spray combustion simulation, the model must
represents well the physics and be computationally economic. The aim is to find analytical expressions for the sub-grid
model which represent pratically no cost in the integration time. Based on that, it is presented a droplet combustion
model in which are considered the transport coefficients variable, nonunity Lewis numbers and different constant value
for the constant pressure specific heat in each side of the flame. This model with two ajusting parameters,CpF andCpO,
permits the experimental results to be better represented by the theoretical results. BecauseCpF can be about 5 to 10, a
first analysis points out that it has a strong influence on all droplet combustion properties: vaporization rateβ, standoff
distancexf/a, fuel mass fractionyFs and the flame temperaturaθf . However, sinceCpO is about 2, it is expected that
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its influence is not significant on all droplet combustion properties, but this is not observed in the results. The importance
of this model is on the analytical expression for the problem unkowns: vaporization rate, flame standoff distance, flame
temperature. This model is a extension of the previous one (Fachini, 1999a). Figures 1 and 2 present the results of the
suggested model.

The classic results,CpO = CpF = LeO = LeF = 1 andn = 0, the standoff distancexf/a is overpredicted.
The models which consider the constant pressure specific heat variable with temperature and composition are able to
predict wellxf/a. Based on this result, the present model was elaborated joining the possibility to solve analytically and
to reproduce the experimental results. Figure 1.a shows the dependence of the standoff distancexf/a on the constant
pressure specific heatCpF for the fuel side of the flame. ForCpF ∼ 10, xf/a ∼ 10 is a well predicted value compared
with results from detailed modelxf/a = 9.8 (Puri and Libby, 1991), which are not in good agreement with experimental
resultsxf/a ∼ 7 (Kumagai et al., 1971).

Figure 1.b exhibits the variation of the vaporization constantβ with the constant pressure specific heatCpF . As
observed forxf/a, the vaporization constantβ has a strong dependence onCpF . Also, the model is able to reproduce
well the experimental results.

Although the success on predicting these two droplet combustion properties, the present model fails in predicting the
fuel mass fraction at the droplet surfaceyFs, as seen in Fig. 2.a. The reson for that is not understood, a further analysis is
necessary explain this failure.

The increasing ofCpF makes the droplet combustion properties to deacrese, an expected results. However, the in-
creasing ofCpO leads to the increase of the flame temperatureθf , as seen in Fig. 2.b. An carefull analysis of Eq. (21)
shows that the choice of the value forCpO modifies the thermodynamic gas properties out of the flame as well as the
transport properties by the termCpO/LeO. It is worth to note thatCpO/LeO = DO/(k∞/ρ∞cpO) = 1/LeO effective.
Then, by doubling the value ofCpO, for exemple, twice more energy is stored in molecule internal energy modes, which
leads to decreasing the gas temperature, including the flame temperature. In the other hand, the increase ofCpO makes
a proportional reduction in the gases thermal diffusivity, which favors the mass diffusivity. The consequence of this is
an increase of the gas temperature because of the oxidant transport velocity to the flame is larger than the heat transport
velocity from the flame. The result depicted in Fig. 2.b demonstrates that the transport effect produced by the differents
values ofCpO dominates the thermodynamics effect.

4. CONCLUSION

The present model is able to reproduce well the experimental results concerning the flame standoff distancexf/a.
However, it does not predict well other droplet combustion properties.
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