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Abstract. With the growing market urge for new and improved products, the development time becomes shorter every
day. It already has become common sense that engineers have to deal with more efficient simulation models to avoid
using trial and error techniques, decreasing the number of prototypes produced and test proceduress. Dealing with
complex dynamic systems is a common procedure in the industries nowadays. Consequently, the use of rough
approaches for components, such as the stiff rolling elements bearings, diverges from the appropriate means of
numerical simulation. In order to fully understand the complexities of the dynamic behavior of rolling elements
bearings, its basic functionalities must be studied, i.e., the mechanical contacts linking its elements and the raceways.
Those contacts are the only vibration transmission points between the axis inside the bearing and its housing. Thus, the
need for more efficient simulation tools greatly increase the demand on the numerical models and approximation
methods used in the mechanical area. Hence, a non-stiff model is needed in order to fully understand the behavior of
the bearing in a dynamic environment. To comprehend the dynamic behavior of the whole system, each contact has to
be examined. Using a Multi-Level method to simulate the elastohydrodynamically lubricated (EHL) contacts; the
dynamic behavior of the oil film was analyzed under free vibration conditions. Some key influence factors on the
dynamic behavior were also analyzed. As a result, the oil film could be characterized as a nonlinear spring-damper
group and the stiff contact unconstrained, making the EHL contacts flexible linking elements on the bearings.
Nonetheless other approaches as the linear spring-damper model were investigated, but the accuracy of the linear
results was shown to be poor.
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1. INTRODUCTION

With the growing urge of the markets for new and improved products, each year the development time becomes
shorter. It already has become common sense that engineers have to deal with more efficient simulation models to avoid
the use of trial and error techniques, decreasing the number of prototypes produced and test procedures.

Dealing with complex dynamic systems is a common procedure in the industries nowadays. So, the use of rough
approximations for components, such as the rolling elements bearings, diverges from the appropriate means of
numerical simulation.

In order to fully understand the complexities of the dynamic behavior of rolling elements bearings, its basic function
characteristic must be studied, the mechanical contacts linking its elements and the raceways. Those contacts are the
only vibration transmission points between the shaft inside the bearing and the housing of it. The first study on the
properties of these contacts were made by H. R. Hertz and published on the work “Über die Berührung fester elasticher
Körper”. Due to this work, the general contact mechanics of elastic bodies was named after Hertz. Direct from his work
the nonlinear behavior of the contact can be attained.

The direct use of the dry contact stiffness, as presented in Villa (2007), can be a useful approximation to the
dynamics of the full bearing, but, doing so, the lubricant effects are neglected. Since the first studies on the lubrication
of highly loaded contacts, the damping and stiffness of the oil film are known to be effective over the contact. Due to
the influence of the elastic deformation on the oil film thickness this kind of lubrication was entitled
Elastohydrodynamic (EHL).

The first satisfactory numerical results for the point EHL contact were presented by Hamrock (1976). In his work, a
finite difference method was used for the steady state lubricated problem. But there was not until great improvement on
the computational power and the use of advanced methods that the transient EHL contact could be analyzed. In 1991
Venner introduced the Multi-Level method for the EHL point contact, using the Multi-Level Multi-Integration, MLMI,
to evaluate the elastic deformation due to the high contact pressure (Venner and Ludbrecht, 2000).

Based on a set of meshes with different grid sizes, this method can greatly reduce computational time by operating
the different error frequencies components on different discretization grids. Anyhow, a finite difference method is used
to evaluate the Reynolds equation on those grids.
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Most of the developments on the transient EHL contacts afterwards were in the surface discontinuities field. In
Venner and Ludbrecht (1994, 1996) the effect of surface topology was evaluated as a moving transverse ridge through
the contact or as waviness of the surface.

Using this new method, Wijnant (1998) first demonstrate the transient contact response due to harmonic excitation
and free vibration. On his work, the influence of the transient response is observed over the film thickness and most of
all the first linear fit of the dynamic response is introduced, achieving the first simulated values for the oil damping on
EHL contacts.

 In possession of the fitted values of damping and stiffness, Wensing (1998) observed the influence of the rolling
element bearing on a simple rotor system. Also in Wijnant and Wesing (1999) some comments on the contact dynamics
can be found. Some improvements on the transient EHL algorithm were also proposed by Goodyer (2001), focused on
algorithm optimization and studying some surface topology problems.

However none of those presented works deal with the nonlinearity of the elastic contact as presented by Hertz. In
this work, the authors want to introduce a nonlinear fit method for the contact force, in order to obtain the non linear
stiffness coefficients of the contact, despite of the linear viscous damper. The results will be compared with the linear fit
model, applied on the free vibration response.

2. EHL TRANSIENT MODEL

A Multi-Level algorithm, as presented in Venner and Ludbrecht (2000) and adapted to the transient elliptic load in
Wijnant (1998), was used to model the problem. The dimensionless form of the Reynolds equation used is shown in Eq.
1.
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In this case, H  and P are respectively the dimensionless film thickness and pressure,   and  are the fluid

properties viscosity and density,   is the contact elliptic ratio, given by the contact geometry, and   is a
dimensionless group given by:
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In this equation mu  is the sum of the contacting surface velocities, 0  is the viscosity at ambient pressure, R  is the

sum of curvatures, E  and K  are the first and second elliptic integrals according to Harris(1991),a is the contact

ellipse minor axis and hp  is the maximum pressure over the contact area.

Along with the Reynolds equation, the elastic integral has to be solved for the contact strain. The thickness equation
reads:
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Where the fourth term on the right hand side is the strain integral, the first term is the mutual approach of the bodies,
the second and third terms are the geometrical approximation for the elliptic body, where:
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In opposition to the surface topology evaluations, the principal variable is the mutual approach. Thus, the dynamic
behavior of the rolling element against a fixed raceway can be evaluated. The mutual approach, in the static condition,
is obtained from the force balance equation as the integral constant.
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For the transient case a equation of motion is needed. So, as presented in Wijnant (1998) and reproduced by
Goodyer (2001), the inertia term, related to the mass of the rolling element, is introduced in a dimensionless natural
frequency approach, as in Eq. 6.
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Where n  is the dimensionless natural frequency of the system. The Eq. 6 represents the free vibration mode of the

system. The influence of the inertia term tends to be small, due to the 2/1 n  factor. Thus, assuming a greater influence

of the load term in a harmonic loading condition, the static equilibrium equation can be rewritten as in Wijnant (1998):
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Where e is the excitation frequency and hA  the amplitude. The Eq. 7 is applicable mostly in a quasi-static

approach, assuming that the speed of changes in the contact is greater than the speed of the changes in the load, i.e.

en  . In other words, the changes in the oil film stabilize fast enough not to influence the harmonic response.

Also the pressure dependent relations of the fluid properties have to be evaluated with the transient model. The
Dowson and Higgins (1977) density-pressure relation was used. The Roelands equation for the viscosity-pressure
relation is applied, as presented in Larsson (2000).

2.1. Linear Dynamic Model

Considering the oil film a set of linear spring and damper, the EHL contacts becomes a linear dynamic system.
Figure 1 shows this simplified model of the problem, as initially proposed by Wijnant and Wensing (1999).
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Figure 1 – Approximated spring and damper linear model;

 In this case, the equation of motion can be rewritten as:
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The contact forces generated at the inner and outer raceways contacts are adjusted to stiffness and damping

constants, given by 1K  and 1C . For the sake of simplicity, the mutual approach 0H  will be replaced by u  as the

principal variable. For a dimensionless contact force, one might have:
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As the dimensionless contact force is given by the integral of the pressure over the contact area, a least-square

method can be use to approximate the evaluated forces to the dynamic model. Defining the squared quantity 2q , one

might have:
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Minimizing the relation for 1K  and 1C  the following linear system can be achieved:
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The approach proposed by Wijnant (1998) uses not the motion equation, but the harmonic vibration equation. In the

same way, the least square method results in a linear system of equation, as Eq. 11, substituting df  by

 TA eh  sin1 . In order to assimilate the influence of the inertia term, the first method is going to be used.

The least-square fitting method for the lubricant forces is commonly used in experimental methods for
hydrodynamic bearings, as presented in Zhao (2005) and Zhou (2004). However the nonlinear form is used. The next
section introduces the nonlinear fitting process for the EHL case.

2.2. Nonlinear Dynamic Model

In the same way that the dynamic force in Eq. 9 can be adjusted to a linear spring and damper model, it can be
adjusted to a nonlinear model, as proposed in Zhao (2005) and Zhou (2004). In this case, only one direction is
considered, i.e., the only possible motion is normal to the contact plane. Thus, the dynamic force is written as:
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Where 4B  is the mixed dynamic coefficient. In the same way as the linear method, a linear system can be found,

Eq. 13. Solving the linear system leads to a solution vector with all coefficients. As seen on Eq. 11 and Eq. 13, the
system is symmetrical and can be easily evaluated by straightforward computational methods.
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3. NUMERICAL SIMULATION

Along with the finite difference Multi-Level method for the evaluation of the Reynolds equation a hybrid relaxation
method was used as presented in Venner and Ludbrecht (2000). Both Gauss-Sidel and Jacobi models were used for the
discretization of the problem. Even though the mesh dependent relaxation triggering value proposed for choosing
between models produced fine values, making this a fixed value improves convergence on finer grids, as shown in
Nonato and Cavalca (2008).
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The need for two relaxation procedures comes from the dual behavior of the problem. As can be seen in Eq.1, when
the pressure is high, i.e., inside the contact area, the viscosity ratio becomes extremely high and the equation is
governed mostly by the advection operator. On the other hand, when the pressure is low, the Pouisseuille terms are
more effective over the oil film flow.

As given in Wijnant (1998), the dimensionless natural frequency of the EHL contact is related to the one in the dry

hertzian contact. In that case, the period of oscillation is given by nnT  /13.5 , so the values for the constant n
was chosen to be 0.5, 1 and 2 times the dry contact frequency of 5.13, for most of the simulations.

In order to characterize the EHL contact, the dimensionless parameters M and L introduced by Moes (1992) were
used. They are related to the imposed load and the lubricant parameters respectively. Also is necessary to specify the
elliptic ratio of the contact. As shown in Wijnant (1998), as well as in Nonato (2009), the effect of the elliptic ratio
tends to decouple both directions in the Reynolds and thickness equations, leading to a result similar to one of lower
load cases. Thus, all contacts presented in this paper will be evaluated using the elliptic ratio 1.

The motion equation was evaluated using a Newmark-ß method. Because the pressure is fully dependent on the

integrated variable 0H , the discrete equation has to be analyzed during the relaxation of the Reynolds equation. To

initiate the motion of the system a disturbance of 90% of the static equilibrium was induced in the suspended mass
position, i.e., the mutual approach.

4. DYNAMIC FIT RESULTS

From the numerical simulation, both position and velocity of the mutual approach were obtained for each step on the
time integration. The dynamic force is also obtained in each step by integrating the pressure over the contact area. Using

the linear system from Eq. 11, one might obtain the values of 1K  e 1C  for the linear model.

Figure 2 shows the transient dynamic forces over the contact and the mutual approach with both corresponding

linear dynamic fit. The modeled contact was 100M , 15L , 0.1  and 13.5n , or the same dry contact

frequency. The solid blue lines are the numerical simulation results and the dotted lines are the fitting results. To
evaluate the mutual approach using the fit data, two different Runge-Kutta implicit integrators were use, one of the
fourth and fifth orders, ode45, and one of the second and third, ode23, from the MatLab® commercial package.

a) b)

Figure 2 – a) Dynamic force and b) mutual approach linear dynamic fit for 100M , 15L , 0.1  and

13.5 n ;

Even being close to the simulated results, the least square linear dynamic model was not sufficient to represent the
mutual approach. Despite the fair frequency adjust on the force, the same behavior was not found on the mutual
approach. In order to quantify discrepancies of the fitting process, an error measuring quantity has to be introduced.

Using the mean value of the punctual difference of both results, the force error, fe  is defined. For this case

3104607.1 fe , 00594.01 C  and 2070.11 K .

The linear error is even greater in minor load cases or when the fluid compressibility has more influence than the
applied load. For instance, when 5M and 15L ; due to the viscous effects of the lubricant the predicted mutual
approach is less negative. In that case the contacting bodies are lifted apart by the lubricant and the dynamic behavior
has an inverse response. The static equilibrium occurs at 3807.00 H . The obtained dynamic coefficients were
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01028.01 C  and 5792.21 K . It is clear that with a negative stiffness and damping the dynamic system is

unstable.
To avoid incorrect fitting and improve the adjusted model the nonlinear dynamic terms were introduced. Using the

linear system of Eq. 6, the same case shown in figure 2 can be evaluated. To avoid using an excessive number of
parameters a sensitivity analysis was made. The table 1 shows the influence on the force error when removing one of
the coefficients at a time compared to the analysis performed with all of them.

Furthermore an error for the acceleration of the mutual approach was included. Using the fitted values and the
dimensionless frequencies, the acceleration can be checked with the one calculated throughout the numerical analysis.

Given by ue  , this error is also evaluated by the mean value of the punctual differences.

Table 1 – Sensitivity analysis of the nonlinear model, effect over the error when removing each of the coefficients;

Coef. All - 1K - 1C - 2K - 2C - 3K - 3C - 4B

fe 4,0598E-08 3,1971E-05 4,4172E-08 6,8039E-07 5,9783E-08 1,9215E-06 4,3791E-08 4,6021E-08

ue  2,7114E-05 1,6217E-02 2,9566E-05 4,4901E-04 3,8068E-05 1,2183E-03 2,9376E-05 3,1213E-05

The only effective influencing coefficients over the force error, when removed from the analysis, are 1K , 2K  and

3K . So, as predicted by Wijnant (1998), the oil film would have only a viscous damping. In this work, only the linear

damping coefficient is used.
Hence, the same case as presented in figure 2, using the nonlinear model results shown in table 2. Also for two

different cases of natural frequencies are present.

Table 2– Nonlinear fitting model results for 100M , 15L , 0,1 ;

n 1K 1D 2K 3K fe ue 

2,65 0,9108 0,0112 0,3330 0,0169 3,2120E-08 9,7913E-06
5,13 0,9293 0,0093 0,2858 0,0514 5,9053E-08 3,8751E-05
10,26 0,8933 0,0081 0,3396 0,0377 5,3282E-09 5,0883E-06

The results for the three frequencies had a fairly good relation, which indicates enough precision on the fitting
method. Some of the divergence comes from the time discretization of the numerical results, where the fixed
timestepping procedure can jeopardize the convergence. Figure 3 shows dynamic force and mutual approach for the
nonlinear model.

a) b)

Figure 3 – a) Dynamic force and b) mutual approach nonlinear dynamic fit for 100M , 15L , 0.1  and

13.5 n ;
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Also the influence of the initial condition has to be evaluated. Using three different initial conditions, 90%, 80% and
60% of the static equilibrium, the dynamic coefficients were obtained and listed on table 3.

It can be seen that even with great variation of the initial condition, the dynamic coefficients tend to close values and
the error are kept small. Once more the time-step is a critical factor, with greater deviation comes greater gradients on
the responses and worst discretization.

However, for all the cases the viscous damping had very similar values. It shows that the linear approximation to the
damping is very precise, but in the other hand, the third degree polynomial is not as accurate to represent the EHL
contact stiffness. This behavior can be expected as the dry contact stiffness does not behave as a polynomial and,
furthermore, can be modeled differently, as used in Fukata (1985) to describe the rolling element bearings orbits.

Table 3 – Nonlinear fit data for tree different initial conditions;

Initial
Condition 1K 1D 2K 3K fe ue 

90% 0,6694 0,0132 0,5387 -0,0475 8,7696E-09 6,6995E-06
80% 0,6833 0,0136 0,5200 -0,0393 1,1525E-07 4,6498E-05
60% 0,7311 0,0138 0,4568 -0,0119 3,9656E-07 1,2609E-04

Using the proposed model, the contacts present on a real rolling element bearing can be analyzed. Assuming a pure
radial load of 1500N on a deep groove ball bearing, which has 36mm of pitch diameter, a set of reasonable values for
the input parameters are 9912M , 75,11L , 1092,0 , for the main loaded contact with the inner ring.

With a smaller simulation time and larger number of points on the time domain, to avoid miss representativeness of
the results, the real load case was evaluated. Figure 4 shows the nonlinear fit for the dynamic force and the acceleration
of the contact. Table 4 shows the fitted values and errors of the problem.

a) b)

Figure 4 –Nonlinear fit of the a) dynamic contact force and b) acceleration for an inner ring-element contact on a real
deep groove ball bearing;

Also the mutual approach fit can be evaluated. Figure 5 shows a zoomed result for the deep groove ball bearing
case. The integrator precision is heavily influenced by the numerical time step. Even thought, the error of the fit model
is low, as in table 4, some divergence is noticeable.

Table 4 – Nonlinear fitted data for the deep groove ball bearing case;

1K 1D 2K 3K fe ue 

0,3652 0,0017 0,8098 -0,1509 1,1208E-10 9,2454E-07
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Figure 5 –Nonlinear fit of the mutual approach for both integrators;

5. CONCLUSION

With the proposed nonlinear model results, the characterization of the EHL contact forces is better depicted than the
previous linear results and highly approximates the results obtained from the numerical simulation. Thus, a more
reliable approach for the real EHL dynamic behavior on real contacts can be observed and, furthermore, quantified.

The aim of this work was completely fulfilled by the developed methods. The model achieved good convergence
levels and its representativeness is quite satisfactory. Despite minor errors introduced by the fix discretization on the
time domain, the fitted mutual approach, as the principal variable, corresponds closely to the numerical simulated
results.

The nonlinear model, as it is, can also be applied to the harmonic excitation results, given a wider range of
application on the dynamic estimation of EHL contacts. On any of the previous situation the contact is therefore
modeled as a flexible dynamic linkage and further vibration studies can be performed over the whole mechanical
system.
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