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Abstract. The problem of designing a pipe network can be stated as: find the pipes diameters of a given network that 

leads to a minimum building cost; when operating at given boundary conditions (nodal pressures and discharges) and 

respecting some prescribed pressures (necessary for the correct use of the network). However, this design can become 

very complex since the equations governing the analysis of pipe networks are nonlinear. Consequently, small changes 

in the diameters can lead to significant changes in the behavior of the network, which difficults an iterative design 

process. Therefore, the use of optimization methods for the design of pipe networks is an interesting alternative. 

However, many difficulties arise when classical convex numerical optimization techniques are applied to this problem. 

In this context, the use of metaheuristics for the design of pipe networks appears evident, since these methods present 

answers to most difficulties related to the use of classical optimization techniques. These methods don’t need 

information about gradients of the objective function; they can be successfully applied to problems with several local 

minima; and they can handle discrete design variables naturally. Among the methods grouped as metaheuristics, the 

Mixed Simulated Annealing and Tabu Search (MSATS) presents some characteristics which make attractive its use for 

the design of pipe networks, as already shown by other authors. This paper presents the description of the design 

process of pipe networks based in the MSTAS heuristics; together with some examples to demonstrate the application 

of the method. 
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1. INTRODUCTION  
 

The design of pipe networks is a classical problem in engineering practice. However, since the equations associated 

with the analysis of pipe networks are nonlinear, several complications arise when designing such networks. These 

equations are sensible to small changes in pipe diameters and the design of large networks may become a complex 

process, since changing the diameter of a single pipe may lead to very different pressures in the entire system. 

Many optimum design problems can be stated as optimization problems, and consequently be solved by 

optimization techniques (Arora, 2004; Nocedal and Wright, 1999). In the case of pipe networks, the objective function 

of the problem can be defined as the building cost. The optimization algorithm will then search for a network with 

minimum cost. Besides, constraints on minimum nodal pressures, necessary for the correct use of the network, are 

defined. The set of all solutions which respect these constraints are then called the feasible domain of the problem. 

Finally, the parameters to be modified by the algorithm are the pipes diameters, thus defining the design variables of the 

problem. The optimization algorithm will then change the design variables, in order to obtain an optimum solution for 

the problem which respects the constraints. 

However, most convex optimization techniques (Nocedal and Wright, 1999) can’t be successfully applied to the 

design of pipe network for a series of reasons. First, most convex optimization techniques need information about the 

gradient of the objective function and the constraints. However, the efficient evaluation of the gradient of the constraints 

of this problem is difficult, since the relation between the pipes diameters and the nodal pressures is defined by an 

implicit relation, given by a system of nonlinear equations. Second, the optimization problem defined by the pipe 

network design can present several local minima solutions. Since most convex optimization techniques generally 

converge to the closest local minimum, these methods may give solutions which are far from global optimum solutions. 

Finally, the pipe diameters available for construction are, in most cases, to be chosen from an array of discrete values. 

However, most convex optimization techniques were conceived for optimization problems with continuous variables, 

and handle discrete variables only after significant modifications. 

The optimization techniques commonly grouped as metaheuristcs, however, present good answers for the needs of 

the design of pipe networks. These methods don’t need the evaluation of gradients; may skip local minima by several 

different strategies; and can handle discrete variables naturally. In fact most of these methods were originally conceived 

for discrete variables. Consequently, the use of optimization methods such as Genetic Algorithms (GA) and Simulated 

Annealing (SA) prevail over the use of convex optimization methods for the problem here studied. However, it must be 

noted that these techniques may not find the real optimum solution of the problem in some cases, due to the 

probabilistic nature of the search procedure (Dréo et al., 2006). 

Several references in literature can be found describing the use of GAs to the problem of pipe network optimization 

(Savic and Walters, 1997; Gupta et al., 1999, Reca et al., 2008), since this is one of the most popular metaheuristics. 
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GAs present excellent results in finding promising regions of the feasible domain (i.e. regions were a “good” solution 

can probably be found), but may present, in some cases, difficulty in actually converging to a true solution of the 

problem. GAs work with several solutions at the same time; and new solutions are conceived basically by crossing 

characteristics of two solutions and applying mutations (Goldberg et al., 1987; Dréo et al., 2006). Consequently, when 

dealing with a network composed of several pipes, it may be difficult to find the exact optimum diameters of a given 

pipe, since it is difficult to change one design variable at a time. The Simulated Annealing (SA) technique, instead, may 

not be so efficient in finding promising regions of the feasible domain, since it works with a single solution at a time. 

However, for the same reason, it can, in some cases, succeed in finding solutions closer to the true solution of the 

problem, since the SA algorithm is able to modify one design variable at a time. 

Since the pioneering work of Kirkpatrick et al. (1983) on the SA, some works used this technique for solving the 

problem of pipe networks optimization (Reca et al., 2008). However, the recently proposed optimization technique 

called Mixed Simulated Annealing and Tabu Search (MSTAS) (Gil et al., 2002) distinguished itself from other 

metaheuristic when applied to the problem here discussed (Reca et al., 2008). This heuristic is the result from 

incorporating some concepts from Tabu Search (TS) into a basic SA algorithm. This may prevent the algorithm from 

visiting already visited solutions, by defining some tabu moves. Consequently, this approach can lead to more efficient 

algorithms than the SA or TS alone (Gil et al., 2002; Reca et al., 2008). 

Following the concepts presented by Reca et al. (2008) and Formiga (2005), this paper applies the MSATS to the 

design of pipe networks. It is important to note that the MSATS is not radically different from the SA. In practice, it 

turns out that only few modifications are made to a basic SA algorithm. However, this paper shows that a more efficient 

MSATS algorithm may be developed if more concepts from TS are used than just that of a Tabu List. This paper does 

not compare the MSATS with other heuristics other than the SA, and the reader is referenced to Reca et al. (2008) for a 

comparison with methods such as GA and TS. The purpose of this work is to described, in details, how the SA and the 

MSATS can be applied to pipe networks. Besides, a few modifications from the original algorithm from Gil et al. 

(2002) are proposed. 

Finally, it is important to note that the optimization problem used in almost every work on the optimization of pipe 

networks are only simplifications of the real problem of design a pipe network. The paper by Walski (2001) already 

pointed out these important differences, and even some considerations on the simplifications made during the analysis 

of such networks were discussed in Todini (2003). For a more detailed modeling of such problems the reader can 

consult Formiga (2005). 

 

2. MIXED SIMULATED ANNEALING AND TABU SEARCH 
 

2.1 Simulated Annealing 
 

The Simulated Annealing algorithm is based on a real process called annealing, which is used to rearrange the 

molecules inside a solid (Kirkpatrick et al., 1983; Dréo et al., 2006). In the real annealing technique, a solid is heated, 

thus imparting high energy to it. This energy allows the molecules to move, and consequently the molecules start to 

rearrange themselves inside the body. During this process, the molecules will likely move to an arrangement with less 

potential energy than the current arrangement, since this state will be more stable from the physical point of view. The 

material is then cooled slowly, thus reducing the total energy available in the system. This gradual reduction of the 

energy leads to a reduction in the movement of the molecules, until the material solidifies itself again and the molecules 

stop moving. At the end of the process, the solid will probably reach a state of minimal potential energy, since 

rearrangements which reduce the potential energy prevail over other rearrangements. This state of minimal energy 

corresponds to a more stable state, represented by an ordered arrangement of the molecules (a crystal, for example). 

Besides, the energy given to the system allows the molecules to sometimes move randomly, thus allowing them to skip 

local minima of potential energy. 

Applying these concepts to optimization problems leads to the Simulated Annealing algorithm (SA), first described 

by Kirkpatrick et al. (1983). In this approach, the design vector (the vector composed of the design variables) is 

analogue to the arrangement of the molecules of the solid in the real annealing technique. Thus, the design variables are 

analogue to the position of these molecules. In order to simulate a random move of the molecules, a perturbation is 

applied to the current design vector. This is made by moving the design vector to a neighbor state by randomly 

modifying it. This neighbor solution will, in general, have energy (the value of the objective function) different from the 

energy of the current design vector. If this energy is lower, the new design vector is taken as the new current solution of 

the problem. However, if the energy is higher there are two possibilities. First, if the temperature of the system is high, 

random moves to states of higher energy may be allowed. However, if the temperature is low, moves to states of higher 

energy will probably be discarded. This condition for accepting or not perturbations which increase the energy of the 

solution (a worsening in the objective function) is called acceptance rule. 

The acceptance rule can be checked, based on concepts from statistical physics (Dréo et al., 2006), by drawing a 

random number p in the interval [0,1] and accepting the new solution if 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

T

E

ep

∆−

≤ , (1) 

 

where –∆E is the change in energy (change in the objective function) and T is the current temperature of the system. 

Note that according to Eq. (1), worse solutions will be accepted more easily when the temperature is high, and will 

practically be inadmissible when the temperature is close to zero. Consequently, it is necessary to define the 

temperature at each stage and described how the temperature will change during the SA procedure. For this purpose, the 

geometrical law of decrease can be used, which is defined as (Dréo et al., 2006) 

 

1,    .1 <=+ αα kk TT ,  (2) 

 

where Tk+1 is the temperature at the next stage, Tk is the temperature at the current stage and α is a constant. 

From Eq. (2) it can be seen that an important aspect of the algorithm is the definition of an initial temperature for 

the procedure. It is desirable that at the initial stages of the algorithm, moves toward states with higher energy 

(worsening of the solution) be allowed. Consequently, the initial temperature must be defined accordingly. An adequate 

value for this parameter can be obtained empirically for some cases, but the procedure described by Dréo et al. (2006) 

may be recommended. In this procedure, an initial rate of acceptance τ0 is defined. Then, a number of disturbances are 

randomly applied to the initial solution, and the mean value of |∆E| is obtained from the corresponding values of ∆E. 

The initial temperature T0 is then deduced from Eq. (1), where p is substituted by τ0 and -∆E is substituted by the mean 

value -|∆E|. 

In the real annealing procedure, the temperature is decreased only after the system reaches thermodynamic 

equilibrium, for the current temperature. However, thermodynamic equilibrium is an abstract concept in the SA 

algorithm. One common way of assuming thermodynamic equilibrium in SA is when a given number of moves are 

accepted or when a given number of moves are attempted. Even if such number may be different for different problems, 

Dréo et al. (2006) suggest the following conditions for assuming thermodynamic equilibrium, considering the problem 

has N design variables: 12.N perturbations are accepted or 100.N perturbations are attempted. Note that different 

conditions may be defined for each problem, and the conditions given previously are only suggestions. 

Finally, it is necessary to define a termination criterion for the procedure. The procedure can be stopped when a 

given number of temperature stages (3, for example) are done without accepting a perturbation. This is analogue to 

reaching a state where the molecules do not move anymore. 

Considering the previous paragraphs, the basic SA algorithm can be summarized as: 

1. Start the algorithm with an initial solution; an initial temperature; a decrease rule for the temperature; and 

an acceptance rule; 

2. For the current temperature repeat until thermodynamic equilibrium is assumed: 

a. Apply a perturbation to the current solution, obtaining a trial solution; 

b. If the trial solution is better than the current one, take it as the new current solution. Else, take it 

as the new current solution only if it satisfies the acceptance rule from Eq. (1) for a random 

number p between in the interval [0,1]; 

3. Evaluate the new temperature according to its decrease rule from Eq. (2); 

4. If the termination criterion is satisfied, stop the algorithm. Else, return to step 2. 

 

2.2 Mixed Simualted Annealing and Tabu Search - MSATS 
 

The Tabu Search (TS) algorithm was first present by Glover (1986), and was originally conceived for solving 

combinatorial optimization problems. The concepts behind TS are extensive and this paper does not try to make full use 

of them. Instead, in the context of this paper, two main concepts are necessary: that of short-term memory and that of 

aspiration conditions. 

In the SA algorithm, it can happen that a perturbation brings the solution back to a state previously visited. This 

may be desirable at long term, since this allows the algorithm to return from regions with unpromising solutions by the 

same way it entered the region. In fact, important aspects of the SA theory are related to the possibility of returning to 

previous states (Dréo et al., 2006). However, at short term, allowing the algorithm to move to states already visited may 

be disadvantageous, since this allows the algorithm to move in circles and prevents an adequate exploration of the 

feasible domain. 

It is then desirable to avoid moving back during the search procedure, but without prohibiting the algorithm from 

moving to an already visited state when strictly necessary (when moving away from a local minimum, for example). 

The answer to this need is the concept of short-term memory, borrowed from TS. According to this concept, moves 

made in the N past steps are “remembered” and the corresponding reverse moves prohibited (stored in a Tabu List). 

However, the reverse moves are prohibited only during N steps, and after this time they are allowed again. Thus, the list 

changes continually, since one new tabu move is added to the list when a move is taken. Besides, at each step, 

prohibited moves older than N are deleted from the Tabu List. Incorporating a Tabu List into an SA algorithm was first 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

 

proposed by Gil et al. (2002), and leads to the development of the MSATS. This approach was also applied to the 

problem of optimization of pipe networks by Reca et al. (2008). 

The concept of aspiration conditions can be better explained by the following reasoning. Sometimes, the algorithm 

may find itself close to an optimum solution of the problem, but the Tabu List may prevent it from reaching this 

solution. This may happen since the necessary move may be currently prohibited. In order to avoid this undesirable 

effect, the concept of aspiration conditions (Dréo et al., 2006) can be used. In these cases, the algorithm may accept a 

move even if it is currently a tabu move, if this move leads the algorithm to a solution better than all those visited 

previously, which is aspirated by the search procedure. Consequently, the algorithm will not lose opportunities to 

improve the solution, even if the move needed is currently a tabu move. The use of this concept, which was not 

discussed in the original paper by Gil et al. (2002), may lead to important improvements in the MSATS algorithm. 

Considering the previous paragraphs, the Mixed Simulated Annealing and Tabu Search algorithm as here proposed 

can be summarized as: 

 

1. Start the algorithm with an initial solution; an initial temperature; a decrease rule for the temperature; an 

acceptance rule, and a size for the Tabu List; 

2. For the current temperature stage, repeat until thermodynamic equilibrium is assumed: 

a. Apply a perturbation to the current solution obtaining a trial solution; 

b. Check if the move that leads to the trial solution is a Tabu Move; 

c. If the move is a currently prohibited, accepts the trial solution only if it is better than the best 

solution obtained so far. Else, accept it or not according to an acceptance rule; 

d. If the trial solution is accepted and it improves the solution, put the reverse move in the Tabu 

List; 

e. If the Tabu List gets bigger than the maximum size allowed, delete the bottom entries of the list 

until its size becomes the admissible one; 

f. Store the best solution obtained so far; 

3. Update the temperature according to its decrease rule; 

4. If the termination criterion is satisfied, stop the algorithm and take the best solution obtained so far as the 

solution of the problem. Else, return to step 2. 

 

Note that the algorithm here proposed presents a significant modification from the one proposed by Gil et al. 

(2002), the use of aspiration conditions. Even if this is a simple modification, this may lead to significant improvement 

of the algorithm, as shown in a following example. 

In the MSATS algorithm, a reverse move is only included in the Tabu List if the corresponding move improves the 

solution. The reason for this is that the SA may accept random moves, which may not represent a promising search 

direction. Consequently, creating a Tabu List based on every accept move may give a Tabu List which does not “guide” 

adequately the search procedure. However, if only moves which really improve the solution are considered, the Tabu 

List will be composed of really pertinent moves. Therefore, the list will “guide” the search procedure adequately. 

 

3. THE PROBLEM OF PIPE NETWORK DESIGN 
 

3.1 Statement of the problem 
 

The problem of pipe networks optimization can be stated as: 

 

find d 

 

which gives 

∑
=

=
n
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subjected to the constraints 
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where d is the design vector composed of the pipe diameters, C is the total cost of the network, ci is the cost per length 

of the pipe i, li is the length of the pipe i, n is the number of pipes, gj is a pressure constraint, pj is the pressure at a given 

node, pj
min

 is the minimum allowable pressure at this node, m is the number of pressure constraints, dk is the diameter of 

a given pipe and n is the number of pipes to be designed. 

Equation (3) represents the fact that a minimum cost of the network is sought, by changing the diameters of the 

pipes. Equation (4), however, states that the pipes diameters must give the minimum pressures required to the use of the 

network. Finally, Eq. (5) just states that the diameters cannot be negative, since this is physically impossible. 

Optimization problems that are stated in the form of the previous equations can be solved by several optimization 

methods. However, some aspects of this problem restrict the range of available methods that can be efficiently applied. 

First, note that in order to evaluate the nodal pressures, it is necessary to solve a system of nonlinear equations. 

Consequently, using methods that need to evaluate the gradient of the objective function and of the constraints may lead 

to numerical difficulties. Second, the diameters available for the design come from the standard diameters produced by 

industry, and consequently the design variables of this problem are discrete values. Finally, this problem may contain 

several local minima, and convex optimization algorithms will likely give unsatisfactory solutions for the problem. As 

explained in the previous section, metaheuristics present answers to these difficulties, and consequently are frequently 

used for the solution of the problem of pipe networks design. 

However, if metaheuristics is used for this problem, it is convenient to transform Eq. (3) and Eq. (4) into a single 

equation. This new objective function will then be used to compare different solutions by a single scalar. Equation (3) 

and Eq. (4) can be transformed to an optimization problem without constraints by a penalization method (Nocedal and 

Wright, 1999), giving 
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where F is the new objective function of the problem, wc is a weighting factor for the cost and wg is a weighting factor 

for the constraints. The weighting factors are defined in order to allow the tuning of the importance of the cost and of 

respecting the constraints. The first part of F is the cost of the network, and consequently the new objective function 

will still decrease when the cost decreases. However, note that the second part of F is now composed of a function that 

will give positive values when the constraints are violated and zero when they are respected. Consequently, not 

respecting the pressure constraints will increase the value of the objective function. If the values of wc and wg are chosen 

appropriately, the minimization of F will give the network with minimum cost which respects the pressure constraints. 

Besides, this expression can be handled easily by metaheuristics since it gives a scalar. Note, however, that solutions 

which do not respect the pressure constraints are not forbidden, just avoided. 

The constraints defined in Eq. (5) were dropped since the design variables (pipe diameters) will now be chosen 

from an array of available diameters given by the engineer. Thus, it is not necessary to define bounds on the allowable 

values of these parameters. 

 

3.2 The design vector and perturbations 
 

As described previously, the design vector of the problem is composed of the pipe diameters. However, these 

diameters are to be chosen from an array of standard diameters defined by 

 

{ }NDDDD ,...,, 21=D , (7) 

 

where Di are the available diameters and ND is the number of available diameters for the design. The pipe diameters of 

the network can then assume the values given in D. However, note that defining too many available diameters leads to 

more complex optimization problems, and may consequently burden the optimization algorithm. Besides, each diameter 

Di has a cost per length ci, which is used to evaluate the total cost of the network. 

A given design vector of the problem will be 

 

{ } Dd ∈= in dddd ,   ,...,, 21 , (8) 

 

where n is the number of pipes in the network. The design vector d will be composed of the diameters available in D. 

In SA, the algorithm moves between neighbor solutions in order to reach an optimum design vector. Thus, given an 

arbitrary design vector d, in order to obtain a new design vector in its neighborhood N(d) it is necessary to apply a 

perturbation to d. A perturbation can be applied to d by the following procedure: 

 

1. Start the procedure with a design vector d and a vector of available diameters D;  

2. Drawn an integer random number p between 1 and n, randomly choosing a pipe from d to be modified; 
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3. If the pipe p has a diameter dp equal to D1, assign it the new diameter D2. Else, if it has a diameter equal to 

DND, assign it the new diameter DND-1. Else, the diameter will be equal to Di, so chose randomly between 

assigning it Di+1 or Di-1; 

4. Terminate the procedure with the design vector )(dd Nt ∈ . 

 

From the previous algorithm, note that the perturbed vector dt will be in the neighborhood of d. This is an important 

property to be respected when using the SA, since it may not be desirable to get dt too far from d when applying a 

perturbation. Allowing movements to states too far from the current solution would lead to a non systematic exploration 

of the solution space. 

 

3.3 The Tabu List 
 

As discussed previously, one concept from TS used in MSATS is that of short-term memory (Gil et al., 2002). 

Short-term memory can be included in the search algorithm by the use of a list of prohibited moves (in this case, 

perturbations), which can be defined by 

 










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



=
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T M
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where T is the Tabu List, M are the vectors representing the prohibited moves and N is the number of moves to be 

stored in T (the memory size). 

When a perturbation is applied to the design vector d, the difference between dt and the d defines a move, which 

can be evaluated by 

 

ddM −= tt , (10) 

 

where the subscript t indicates that the move is related to the perturbed vector dt. 

A new design vector dt will then be accepted only if its corresponding move Mt does not belong to the Tabu List T. 

Note that the acceptance rule from the SA must still be checked, as described previously. 

The construction of the Tabu List T proceeds as follows. If the new design vector dt is accepted according to the 

criterion of the short-term memory (the move Mt does not belongs to T), the algorithm proceeds to the check in the 

acceptance rule from the SA. If dt also pass this last check, it is then taken as the new current design vector d of the 

problem. However, the move –Mt is added to the top of the Tabu List T only if this move improves the solution of the 

problem. Note that the reverse move –Mt is added to T (not Mt), which means the algorithm will be prohibited to move 

back for some time. Moving in the same direction will still be allowed in the subsequent steps. When the number of 

tabu moves stored in T becomes bigger than N, the oldest entries of T are deleted. Consequently, the reverse of moves 

taken N steps before (or more) will be again allowed, and, if necessary, the algorithm will be allowed to move back. 

 

3.4 The analysis of the pipe networks 
 

Since the analysis of steady state flows in pipe networks leads to a system of nonlinear equations, solving this 

problem is many times demanding. Among the several methods currently used for solving this problem, the Gradient 

Method (Todini and Pilati, 1987) distinguishes itself since it is implemented in most analysis packages. However, in 

order to allow the development of a more efficient optimization routine, the authors decided to use an alternative 

method for the analysis of the pipe networks. This method is described by Kutas and Čiupailaitë (1997) and is 

sometimes called Finite Element Approach for the analysis of pipe networks, but the authors prefer to call it Fixed Point 

Method because of its clear resemblance to fixed point methods commonly used in literature. The Fixed Point Method 

is used in this work since according to the authors it is easier to translate into computational routines, gives satisfactory 

results and can be easily incorporated into an optimization routine. 

 

3.5 General algorithm 
 

The general algorithm for the design of pipe networks using the MSATS as here described is defined as follows: 

 

1. Start the procedure with an initial solution d1, an initial value for the objective function F1, an initial 

temperature T1, a size for the tabu list N, a constant α for the decrease of the temperature, and a counter s = 0; 

2. Update the temperature stages counter to s = s + 1; 

3. Do while the system does not reach thermodynamic equilibrium (i = 1,2,3,...): 
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a. Apply a perturbation to the current solution di giving a new trial solution dt 

b. Check if the move M = dt - di is a prohibited move currently in T; 

c. Evaluate the objective function Ft of the trial solution dt by Eq (6), and evaluate ∆F = Ft - Fi; 

d. If M is currently in T, accept dt only if Ft is better than the best solution obtained so far. Else, accept it 

or not according to the acceptance rule from Eq. (1); 

e. If the move is accepted and improves the current solution, put the move -Mt in the top of the Tabu List 

T; 

f. If the length of the list T is bigger than N, delete the bottom entries until the size of T reaches N; 

g. Store the best solution obtained so far; 

4. Update the temperature according to Eq. (2); 

5. If the solutions stop to change or the maximum number of temperature stages to be used is achieved stop the 

algorithm. 

 

4. NUMERICAL EXAMPLES 
 

The example from Fig. 1 is used for comparisons in this section. All pipes have a length of 50m, except the one 

from node 8 to node 16, which has a length of 100m. Node 1 has a prescribed pressure of 10m, while all other nodes 

have a demand of 5.10
-3

m
3
/s (5 L/s). The minimum allowable pressure in each node is of 5m. The available pipe 

diameters are 0.001m, 0.1m, 0.2m and 0.3m with costs per length respectively of 0, 5, 10 and 15 monetary units. The 

fluid is water at 15
o
C. The cost scale factor is 1.8182x10

-4
, the constraints scale factor is 50, the size of the Tabu List is 

21 and the initial temperature is 0.5. The other parameters necessary are defined according to the suggestions given by 

Dréo et al. (2006).  

Note that in this example, the pipe with diameter of 0.001m simulates a pipe with diameter equal to 0m, which is the 

same as not using a pipe in that position. Since defining a pipe with diameter equal to 0m leads to numerical difficulties 

during the analysis of the networks, this value is replaced by 0.001. Consequently, the cost per length of this diameter is 

taken as zero. Besides, in Figs. 2, 3, 4 5 and 8 the mean values and standard deviations are evaluated for 20 runs of the 

algorithm. 
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Figure 1. Pipe network with its nodes numbered.  

 

The first comparison is made for the MSATS considering and not considering aspiration conditions. The results of 

both approaches are shown in Fig. 2, from where it can be seen that considering aspiration conditions leads, for this 

case, to better results. This can be explained by the fact that when not using aspiration conditions, the Tabu List may 

prevent the algorithm from moving to a better solution than all those previously visited, and the algorithm may skip a 

promising solution of the problem. Besides, aspirate conditions can be easily incorporated in the MSATS and do not 

lead to increase in computational efforts. 

The second comparison is on the MSATS including the reverse of every move taken in the Tabu List; and including 

only the reverse of moves which improves the solution in the Tabu List. These results are shown in Fig. 3, and it is 

important to note that the second approach is the one proposed in this work, and in the work of Gil et al. (2002). It is 

interesting to note how a simple modification in the way the Tabu List is assembled may lead to significant changes in 

the performance of the MSATS. In this case, assembling the Tabu List by including the reverse of every move taken 

clearly leads to a degenerate algorithm. Consequently, it can be concluded that the MSATS presents a significant 

dependence on how the Tabu List is assembled. 

The third comparison is made between the SA and the MSATS as here proposed. Results for the mean values are 

shown in Fig. 4 and standard deviations are shown in Fig. 5. From Fig. 4 it can be seen that the MSTAS presented better 

results, mainly when few function evaluations were used. The convergence of the results for a higher number of 

function evaluations is expected, since both methods have the ability to find good solutions at the long range. 

Consequently, when allowing a high number of function evaluations, both methods will converge to the similar 

solutions. 
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The standard deviation of both algorithms behaved as expected, as show in Fig. 5. For a higher number of objective 

function evaluations this parameter is expected to decrease, since the algorithms start to obtain the same solution over 

and over again. Consequently the standard deviation decreases. Besides, the standard deviations for both the SA and the 

MSATS are very similar. 

 

 
Figure 2. Comparison of the results given by the MSTAS considering and not considering aspiration conditions, for 

the case of Fig. 1. 

 

 
Figure 3. Comparison of the results given by the MSTAS including the reverse of every move in the Tabu List, and 

including only the reverse of moves which improve the solution, for the case of Fig. 1. 

 

 
Figure 4. Comparison of the mean values given by the MSTAS and the SA, for the case of Fig. 1. 

 

The second example is that from Fig. 7. All pipes have a length of 50m. Node 1 has a prescribed pressure of 10m 

and node 9 has a demand of 10.10
-3

m
3
/s (10 L/s). The minimum allowable pressure in node 9 is of 5m, while there is no 
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minimum pressure for the other nodes. The available pipe diameters are 0.001m, 0.1m, 0.2m and 0.3m with costs per 

length respectively of 0, 5, 10 and 15 monetary units. The fluid is water at 15
o
C. The cost scale factor is 3.33x10

-4
, the 

constraints scale factor is 50, the size of the Tabu List is 12 and the initial temperature is 0.5. The other parameters 

necessary are taken equal to the suggestions given by Dréo et al. (2006). 

Figure 8 shows that in this case the difference between the MSATS and the SA is even more significant, being the 

results presented by the MSATS much better than the ones provided by the SA. This is an interesting example since the 

true minimum solution is known, and is composed of every combination of four pipes with diameter equal to 0.1m 

linking node 1 and node 9. 

 

 
Figure 5. Comparison of the standard deviation given by the MSTAS and the SA, for the case of Fig. 1. 

 

 

 
a) 

 
b) 

 
c) 

Figure 6. Three pipe network designs obtained with the MSTAS technique, considering the case from Fig. 1. Bigger 

diameters are of 0.2m, while smaller diameters are of 0.1m. The value of the objective function for all three solutions is 

0.8636. 

 
1 2 3

4 5 6

987
 

Figure 7. Pipe network with its nodes numbered. 

 

5. CONCLUSIONS 

 
For the cases here studied, the MSATS presented better results than the SA. The main reason for this improvement 

in performance may be explained by the fact that a Tabu List may help preventing the algorithm from moving in circles. 
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Besides, aspiration conditions can be easily implemented to the MSATS, allowing further improvement of the 

algorithm. 

The MSATS appears to be much dependent on how the Tabu List is assembled. It was shown that a simple 

modification on this procedure may lead to very different results. In the case here studied, including the reverse of every 

move taken to the Tabu List appears to degenerate the algorithm. Since the management of the Tabu List appears to 

present significant effects to the MSATS, it is expected that improvements may be obtained by using more sophisticated 

concepts on short term memory. The use of a Tabu List with variable size, for example, may allow further improvement 

of the MSATS. These improvements may enhance the ability of the MSATS to carry an extensive search for a solution 

in a given region of the feasible domain, when this region presents promising solutions. 

 

 
Figure 8. Comparison of the mean values given by the MSTAS and the SA, for the case of Fig. 7. 
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