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Abstract. The wish for a better understanding of the dynamic behavior of systems, as well as the growing interest in 
areas such as structural health monitoring and design of vibration control devices, shows the importance of the use of 
robust and reliable methods to determine the dynamic properties of systems. One possible way to achieve that is to use 
output-only techniques. The present paper begins describing the theoretical bases of an efficient method for output-
only system identification and an application example is demonstrated further. The studied system is a steel cantilever 
beam with a tip mass, which was instrumented and measured in the dependences of the Group of Applied Mechanics 
(GMAp) of the Federal University of Rio Grande do Sul (UFRGS). Through free vibration tests, in which were applied 
impact loads in the beam, its response is acquired. By using the Stochastic Subspace System Identification Method 
(SSI), the dynamic properties of the system are determined. Next, this beam is analyzed by finite element method and 
also through the theory of vibrations of continuous systems. Thus, the results obtained through the system identification 
method are compared with the numerical and theoretical results, showing that the dynamic properties obtained 
through system identification procedures are reliable. 
 
Keywords: System Identification, Acquisition and Data Processing, Dynamic Analysis, Experimental Analysis, 
Numerical Analysis. 

 
1. INTRODUCTION 
 

Growing demand in areas in which it is necessary the knowledge of the dynamic characteristics, such as structural 
health monitoring and design of vibration control devices, have been evidencing the relevance of the use of robust and 
reliable methods capable to determine the dynamic properties of systems, especially starting from the knowledge of 
output-only values. 

A numerical approach, usually through finite element method, represents an alternative for obtaining the response of 
systems when these are subjected to any dynamic load. However, some theoretical concepts involved in the calculations 
incorporate certain simplifications, as in the case of the damping, for instance, that cannot reflect the real behavior of 
the system. Thus, experimental procedures play a fundamental role, because they evaluate the relation between 
theoretical predictions and these results. Some aspects of the system behavior cannot be predicted in the totality and 
they are only clear through dynamic tests. So, it is noticed that theoretical-numerical and experimental procedures are 
complemental for the description and understanding of the dynamic behavior of a system, not being able one to be 
substituted by the other. In that way, system identification is inside this context, because it has as objective the solution 
of the inverse problem, i.e., the determination of a system that describes the relationship between an input and an output 
(Figure 1) or only a known output. In other words, system identification may be defined as the process in which is 
determined a mathematical model of a dynamic system starting from experimental data. 
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Figure 1. Representation of the relation between excitation and response of a system. 
 

The modern data acquisition systems are facilitating studies of structural health monitoring and design of vibration 
control devices. For such studies, the system identification is also directly related, because the spectral properties of the 
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structure should be obtained. Thus, dynamic tests should be carried out in order to obtain the modal parameters of a 
system. Some methods for the identification of dynamic properties of a system have been presented in the literature 
(Ewins, 1985; Juang, 1994; Maia and Silva, 1997). However, especially in cases of large structures, in which are not 
possible to employ standard testing equipments, the determination of the excitation may be difficult or even not viable. 
In those cases, it is practical and economical to use the excitation due to natural factors as wind, waves, or traffic, for 
instance, being called ambient excitation and the vibrations caused by those excitations called ambient vibrations. From 
the experimental point of view, this is the most practical method to excite and measure the dynamic parameters of many 
structures (Amani et al., 2004). For this reason, methods that are capable to determine the dynamic properties starting 
only from response data of the system are extremely necessary. These situations, in which the system is excited by a not 
measured load and output-only measurements are available, have been referred as Stochastic System Identification. 

In the last three decades, several researchers (Van Overschee and De Moor, 1993; Peeters and De Roeck, 1999) 
have been dedicating their efforts to the development of techniques able to produce reliable values of the dynamic 
properties of systems starting from output-only data. Among these, methods in the time domain stand out, because 
besides they are capable to identify same or very close natural frequencies, they identify a larger number of mode 
shapes than methods in the frequency domain (Inman, 1989). In contrast with these methods, which determine the 
modal data through Fourier transform, the methods in the time domain use a response values matrix, computing the 
dynamic characteristics numerically through the solution of an eigenvalue problem. 

Within such context, in the present paper an experimental study is carried out acquiring response data of a 
cantilever steel beam with a tip mass that was instrumented and subjected to impact loads. These response data were 
used to determine the dynamic properties of the beam, obtained through the Stochastic Subspace System Identification 
Method (SSI) initially presented by Van Overschee and De Moor (1993) for applications in Electrical Engineering. This 
method, developed in the time domain, is based on the classic realization theory and it allows the determination of the 
modal characteristics through a model in state-space directly starting from the response data, without the need of 
previous calculation of covariances between the outputs or of the Markov parameters of the system. Peeters and De 
Roeck (1999), using Van Overschee and De Moor (1993) algorithms, introduced the concept of reference sensor in the 
formulation, allowing the reduction of the dimension matrices leading to a reduction of the computational cost. 
However, care should be taken with the selection of those reference sensors, because the quality of the results can be 
harmed. Finally, the natural frequencies obtained through SSI are compared with both numerical results obtained using 
a Finite Element Software (ANSYS - Version 10) and theoretical results obtained using the vibration theory of 
continuous systems. 
 
2. STOCHASTIC SUBSPACE SYSTEM IDENTIFICATION (SSI) 
 

The identification method described starts from a discrete-time state-space model given in Equation (1): 
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in which k is the discrete time instant and t = k Δt, ( )kx

r
 is the state vector, ( )ky

r
 is the output vector, A is the state 

matrix and C is the output matrix. The vectors ( )kw
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r

 represent respectively the noise due to the disturbances 
and modeling inaccuracies and the measurement noise due to the system acquisition inaccuracies. They are both not 
measurable vector signals assumed to be zero mean, modeled as Gaussian white noise and with covariances matrices 
presented in Equation (2): 
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in which E[] is the expected value operator, δpq is the Kronecker delta and p, q are two arbitrary time instants. 

Thus, in stochastic representation, the input is now implicitly modeled by the noise terms considering that it 
behaves as a stationary white noise process with zero mean. The main property of those systems indicates that the 
output covariances can be considered as Markov parameters of the deterministic linear time-invariant system, 
constituting the solution to the stochastic identification problem: the output covariance sequence can be estimated from 
the measurement data; so if the estimated output covariance sequence can be decomposed in a similar way, the state-
space matrices are found. Starting from this idea some identification methods were proposed. 

However, due to its formulation, the Stochastic Subspace System Identification Method (SSI) avoids this previous 
computation of covariances between the outputs. It is replaced by projecting the row space of future outputs into the 
row space of past outputs. The idea behind this projection, which apply robust numerical techniques such as QR 
factorization, is to retain in the past all the information that is useful to predict the future. 
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It is useful in the development of the SSI method to gather the output measurements in a block Hankel matrix with 
2i block rows and N columns, in which N is the number of time samples. The first i blocks have r rows, the last i have l 
rows. The Hankel matrix can be divided into a past reference and a future part, given in Equation (3): 
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Subscripts p and f refer to the past and future, respectively. Another division is obtained by adding one block row to 

the past references and omitting the first block row of the future outputs, according to Equation (4): 
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The projections play an important role in the stochastic subspace system identification. The notation and definition 

of this projection is defined in Equation (5): 
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in which †)( o  denotes the Moore-Penrose pseudo-inverse of a matrix. 

Introducing the robust numerical QR factorization in the Hankel matrix Equation (3) into Equation (5) yields a very 
simple expression for the projections ref

iP , presented in Equation (6): 
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The main theorem of stochastic subspace identification states that the projection ref

iP  can be factorized as the 

product of the extended observability matrix Oi and the Kalman filter state sequence iX
)

, according to Equation (7): 
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The projection matrix has rank equals to n because it is the product of a matrix with n columns and a matrix with n 

rows [Equation (7)]. A reliable tool to numerically evaluate the rank of a matrix is the singular value decomposition 
(SVD). After omitting the zero singular values and corresponding singular vectors, the application of the SVD to the 
projection matrix can be carried out such that the extended observability matrix and the Kalman filter state sequence are 
obtained by splitting this decomposition in two parts, as shown in Equation (8): 
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in which nxliR∈1U  and nxNR∈1V  are orthonormal matrices and ( ) nxn
R+∈ 01S  is a diagonal matrix containing 

the positive singular values in descending order. The order of the system is the number of non-zero singular values. 
 

In order to obtain the system matrices, two algorithms can be used: 
a) Algorithm 1: Using the states 

Using the Hankel matrix, another projection can be defined, as shown in Equation (9): 
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The extended observability matrix Oi-l is obtained after rejecting the last l rows of Oi, and the state sequence 1+iX̂  is 

computed according to Equation (10): 
 

ref
i

†
i 111 −−+ = POX i
)

 (10) 
 

Finally, the system matrices A and C can be evaluated from the linear equation system of Equation (11): 
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b) Algorithm 2: Using the extended matrices 
The matrices A and C can be obtained directly starting from the extended observability matrix presented in 

Equation (8). 
Defining the matrix 1−= ii OO , obtained discarding the last l lines of Oi and the matrix iO  obtained discarding the 

first l lines of Oi, Equation (12) is obtained: 
 

i
†
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The matrix C is simply the first l lines of Oi. 

 
After obtaining the system matrices they should be used for a modal analysis of the structure. The dynamic 

behavior is characterized by their eigenvalues and eigenvectors through its transformation for the continuous time, as 
shown in Equation (13): 
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in which )( qdiag λ=Λ  is a diagonal matrix containing the discrete-time eigenvalues. The eigenvalues occur in complex 
conjugated pairs and they can be written as Equation (14): 
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in which ξq is the damping ratio of the mode q and ωq is the corresponding natural frequency to that mode. 

The mode shapes at sensor locations Φq are the observed parts of the eigenvectors of the system Ψ and they are 
obtained as shown in Equation (15): 
 

CΨΦ =  (15) 
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Thus, the modal parameters ωq, ξq and Φq, are obtained from the identified system matrices, A and C. 

 
There are several variants of the stochastic subspace identification method, differing by the multiplication of a 

weighting function in the projection matrix ref
iP , before the singular value decomposition, determining the state-space 

basis in which the model will be identified, as presented in Equation (16): 
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Three versions or variants (Van Overschee and De Moor, 1993) of the Stochastic Subspace System Identification 

Method (SSI) are presented: PC (principal component), UPC (unweighted principal component) and CVA (canonical 
variate algorithm). Table 1 shows the weighting functions of these variants, in which I is the identity matrix. 
 

Table 1. Weighting functions of the SSI variants. 
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According to results obtained in previous papers (Fadel Miguel and Menezes, 2006; Fadel Miguel et al., 2006 and 

Fadel Miguel, 2007), in which a comparison among the two algorithms and the three versions was made, in the present 
paper the authors opted to use the second algorithm, which uses the extended matrices, and the CVA version. 
 
3. EXAMPLE: CANTILEVER STEEL BEAM WITH A TIP MASS 
 

In order to demonstrate the efficiency of the Stochastic Subspace System Identification Method (SSI) described in 
the previous section, experimental dynamic tests in a cantilever steel beam with a tip mass, which was later identified 
using SSI, were carried out in the dependences of the Group of Applied Mechanics (GMAp) of the Federal University 
of Rio Grande do Sul (UFRGS). Next, the results of the first five natural frequencies obtained with SSI are compared 
with the frequencies obtained using the finite element software ANSYS. Besides, these values are also compared with 
the theoretical natural frequencies obtained using the continuous system vibration expressions. It should be emphasized 
that SSI also allows the identification of the damping ratios of the system, which is only possible with an experimental 
modal analysis. 

More examples demonstrating the efficiency of the SSI, including the determination of the mode shapes, may be 
found in Fadel Miguel and Menezes (2006), Fadel Miguel et al. (2006) and Fadel Miguel (2007). The use of SSI as a 
first step for structural damage detection may be found in Fadel Miguel et al. (2007), for instance. 
 
3.1. Experimental Analysis 
 

The studied system is a cantilever steel beam of rectangular section with a tip mass. The material and geometrical 
properties of the tested beam are presented in Table 2. 
 

Table 2. Material and geometrical properties of the tested beam. 
 

Free length (L) Base (b) Height (h) Density (ρ) Young’s modulus (E) 
47cm 2.5cm 0.115cm 7618.5kg/m3 197.19GPa 

 
The following equipments, shown in Figure 2, were used to acquire the dynamic response of the system: a 

piezoelectric accelerometer of Brüel & Kjaer, type 4332, with mass of 30.2 grams and more 0.2 grams of its support; a 
signal conditioning / amplifier; an acquisition board PC - Card DAS 16/330 of ComputerBoards and a notebook with 
the software Matlab - version 7, with the toolbox for data acquisition. 
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Figure 2. Instrumented beam and equipments used for data acquisition. 
 
 

Fifteen free vibration tests were carried out with this beam with a tip mass (which is composed by the accelerometer 
and its support mass). In some of them just one impact load was applied. In each test, a different excitation point was 
chosen in order to increase the deformation energy of other modes besides the fundamental. In other tests a sequence of 
impact loads was applied, also in different points of the beam. Examples of responses obtained for each one of these 
cases are shown in Figure 3. The responses were obtained using an acquisition rate of 2000Hz during 10s and 15s and 
also using an acquisition rate of 1000Hz during 20s. 
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Figure 3. Response of the beam subjected to impact loads. 
 
 

In order to reduce the number of data and to turn the identification more accurate in the ranges of frequencies of 
interest, the output data are filtered with an eight-order Chebyshev type I lowpass filter (Peeters and De Roeck, 1999). 
Next, the identification is carried out using the Stochastic Subspace System Identification Method (SSI) presented in 
Section 2. In this paper the authors chosen to use the second algorithm, which uses the extended matrices, and the CVA 
variant. For the selection of stable poles, stabilization diagrams were obtained, as may be seen in Figure 4. 
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Figure 4. Stabilization diagram. 
 
 

The fifteen response signals obtained in each one of the tests were used in the system dynamic properties 
identification. Table 3 shows the obtained mean values of all identifications with each one of the signals for the first 
five natural frequencies and damping ratios and their respective coefficients of variation. 
 

Table 3. Mean values of the first five natural frequencies and damping ratios identified with SSI and their respective 
coefficients of variation. 

 

Mode Natural 
Frequency (Hz) 

Coefficient of Variation of 
the Natural Frequency (%) Damping Ratio Coefficient of Variation of 

the Damping Ratio (%) 
1st 2.86 0.58 0.0205 12.71 
2nd 22.04 0.33 0.0047 43.61 
3rd 64.75 0.30 0.0068 48.36 
4th 131.68 0.10 0.0024 37.14 
5th 214.62 0.50 0.0076 55.91 

 
As it can be observed in Table 3, the coefficients of variation of the natural frequencies are relatively low, 

suggesting that the method converges for the real frequencies of the system. Moreover, as already expected, these 
coefficients of variation are much smaller than the obtained for the damping ratio, because the values of damping are 
very low. In spite of the values appears to be high, they are inside an acceptable range, as it is known that damping is 
the most difficulty dynamic parameter to be quantified. 
 
3.2. Numerical Analysis 
 

In order to compare the natural frequencies obtained using the SSI with numerical calculations, at this stage, a 
numerical modal analysis of the system was performed using the ANSYS software - version 10. The system was 
discretized in 47 beam elements and one more mass element to take into account the mass of the accelerometer and of 
its support (tip mass). 

The values of the first five natural frequencies obtained with the ANSYS software may be seen in Table 4. A 
comparison between these results and the ones using the SSI method can be seem later in Table 6. 
 

Table 4. First five natural frequencies obtained with ANSYS software. 
 

Mode Natural Frequency (Hz) 
1st 2.88 
2nd 21.42 
3rd 64.07 
4th 130.35 
5th 220.55 
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3.3. Theoretical Analysis 
 

The determination, in an analytical way, of the natural frequencies of transverse vibration of a beam can be made 
using the vibration theory of continuous systems. In this case, the differential equation of the motion is expressed by 
Equation (17): 
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in which w(x,t) is the displacement in the transverse direction to the beam axis of the mean line of the section x in the 
time t; t is the time; x is the position in the beam (from 0 until the total length L); E is the Young’s modulus; I is the 
inertia moment of the cross section; ρ is the density and A is the area of the cross section. 

The variable separation method is used to solve this differential equation. Thus, the solution may be expressed by 
Equation (18): 
 

( ) ( ) ( )tTxXt,xw =  (18) 
 

Substituting Equation (18) in (17) and solving the two resulting differential equations, the expressions (19) and (20) 
are obtained: 
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In which a, b, C1, C2, C3 and C4 are constants that are determined from two initial conditions and four boundary 
conditions and β is presented in Equation (21): 
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Therefore, the natural frequencies ωn are expressed by Equation (22): 

 

( ) 4
222

AL
EIL

A
EIcn

ρ
β

ρ
ββω ===  (22) 

 
Because the differential equation contains partial derivate of fourth order, it requests four boundary conditions (two 

in each extremity) to determine natural frequencies and mode shapes. 
In the case of the cantilever beam with tip mass in study, taking into account the mass of the accelerometer m 

present in the free extremity, the boundary conditions are: 
- Fixed extremity: 

displacement = w = 0 
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in which m is the mass of the accelerometer plus its support, equal to 0.0304kg (tip mass). 
 

Deriving Equation (20) and substituting the boundary conditions, Equation (23) is obtained: 
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Solving Equation (23) for the first five mode shapes, it is obtained: 
 β1L = 1.53948946 
 β2L = 4.19510184 
 β3L = 7.25594416 
 β4L = 10.34984186 
 β5L = 13.46302290 

 
Substituting these values in Equation (22) and dividing the results by 2π, the first five natural frequencies (in Hz) of 

transversal vibration of the beam, taking into account the additional mass in the free extremity caused by the 
accelerometer and its support (tip mass), are obtained. These frequencies are presented in Table 5 and they will be 
compared with the ones obtained using the SSI method in Table 6. 
 

Table 5. First five natural frequencies obtained using the vibration theory of continuous systems. 
 

Mode Natural Frequency (Hz) 
1st 2.88 
2nd 21.42 
3rd 64.07 
4th 130.35 
5th 220.56 

 
3.4. Comparison of the Results 
 

Table 6 presents a comparison of the results of the first five natural frequencies obtained through SSI, ANSYS and 
the vibration theory of continuous systems. 
 

Table 6. Comparison among the results of the first five natural frequencies. 
 

Mode SSI (Hz) Numerical 
(Hz) 

Theoretical 
(Hz) 

Difference: SSI - 
Numerical (%) 

Difference: SSI - 
Theoretical (%) 

1st 2.86 2.88 2.88 0.70 0.70 
2nd 22.04 21.42 21.42 2.81 2.81 
3rd 64.75 64.07 64.07 1.05 1.05 
4th 131.68 130.35 130.35 1.01 1.01 
5th 214.62 220.55 220.56 2.76 2.77 

 
As it may be observed in Table 6, the numerical and theoretical results are practically identical and they are also 

very close to the results obtained by the system identification method, showing a maximum difference of 2.81%. It 
should be pointed out that these values are the average identified frequencies for 15 response signals. Moreover, some 
responses identified certain modes better than others. 
 
4. CONCLUSIONS 
 

This paper presented the use of the Stochastic Subspace System Identification Method (SSI) for the determination of 
the dynamic parameters of a cantilever steel beam with a tip mass, starting from the knowledge of only output data of 
the system obtained experimentally through impact loads applied to the beam. 

The results obtained through SSI were compared with both the results obtained numerically using the finite element 
software ANSYS - version 10 and the analytical results obtained using the vibration theory of continuous systems. 

As it could be observed, the first five natural frequencies obtained using the SSI are very close to the ones obtained 
using the numerical and theoretical methods. The maximum difference was only 2.81% and the maximum coefficient of 
variation was 0.58%, showing that the SSI is really very efficient in determining the natural frequencies of the system. 
The maximum damping ratio variation was 55.91% at the 5th mode. However, as mentioned previously, such variation 
is not high, since damping is the most difficulty dynamic parameter to be obtained. 
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