Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil
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Abstract: The aim of the present work is to calculate the uncertainty associated with volumetric error components in a
Moving Bridge type Coordinate Measuring Machine (CMM). The methodology developed consisted in equationing the
components of the volumetric error using homogeneous transformations techniques; application of the law of
uncertainty propagation, according to the recommendation of ISO GUM, 1993, in the obtained synthesization
equations and measurement of the geometric errors and Abbé offsets by means of the direct calibration method.
Instruments such as the laser interferometer and the mechanical square standard were used. After measurement,
mathematical models regarding each geometric error and Abbé offset were written and the law of uncertainty
propagation was applied, again, for each of the obtained equations for determining the uncertainty. The mathematical
models considered all the variables of influence and correction factors. As conclusions it may be stated that at any
point in the work volume of the CMM, the components of volumetric error of X, Y and Z axes present uncertainty

values close to 2,7, 4,0 and 2/, respectively.
Key words: Standard uncertainty; geometric error; Abbé offset.

1. INTRODUCTION

Every result of measurement is only an estimate of true value. This is due to the influence of several factors that
interfere in the measurement process, such as variations associated to the measurement instrument, to the operator, tc
the environment and other conditions. The difference between conventional true value and indicated value in a
measurement is denominated measurement errors. In many measurement processes the conventional true value is
unknown; therefore, the measurement error is calculated by the difference between the result of measurement and the
indicated value through calibration.

According to its behavior, the measurement error can be classified as systematic or random. When none of the
causes that provoke the random errors is predominant, one can say that its occurrence and behavior coincide with the
normal probability curve or Gaussian distribution curve. Therefore, it can be assumed that the random errors follow the
law of normal distribution. However, not all of the sources of errors in a measurement process present normal
probability distributions. There are, for example, rectangular, trapezoidal and triangular distributions.

Systematic effects can be corrected without great difficulties; nevertheless, after the correction, a doubt will still
remain about how well corrected the value obtained in a measurement is. By adding this doubt to those of systematic
and random effects, the conventionally so called measurement uncertainty (ISO GUM, 1993) can be obtained.

The word uncertainty means doubt, and thus the doubt about the validity of the result of a measurement is called
measurement uncertainty. The uncertainty of the measurement result reflects the lack of exact knowledge of the
measured value. At the present time, it is not enough to express the numerical value of the measured errors, arising thus,
the need to indicate quantitatively the quality of the result of a measurement. In other words, adding to the result of the
measurement a statement about the reliability associated to it, that is, the measurement uncertainty.

According to the (ISO GUM, 1993), the measurement uncertainty can be defined as being the parameter, associated
to the result of a measurement that characterizes the dispersion of the values that could reasonably be attributed to the
guantity. Such parameter may be the standard deviation or multiple of it, or the half-width of an interval corresponding
to a given level of reliability.

2. MEASUREMENT UNCERTAINTY IN CMMs
The evaluation of measuring instruments, such as Coordinate Measuring Machines through measurement

uncertainty, is a rather difficult task due to the large number of factors that can contribute to the uncertainty, as well as
the machine versatility, which allows measuring several metrological features of a workpiece (Balsamo, 1999).



The Coordinate Measuring Machines are fast, aceuflaikible and reliable quality control means. Rekeless, the
performance of these machines has been limitedebgral factors, which act together, combining carplvays
throughout the working volume of the machine, gatieg the called volumetric error. The largest cibuation to the
volumetric error is constituted by geometric err@Bosch, 1995). These errors have their originhe geometric
deviations of the different components of the Meiagu Machine, and they appear during the moveménthe
coordinate axes, due to the interaction among dhgonents.

In order to study geometric errors, the CMM movélgments are assumed as rigid bodies. The posifiarrigid
body in space can be defined by six degrees oflémee Since each degree of freedom can be assotiagederror, six
geometric errors are associated to each preferexim of the CMM, specifically, one position errdwo straightness
errors and three rotation errors (pitch, yaw ar,reumming up a total number of 18 geometric esrd hree more
errors must be added due to the impossibility odraging three perfectly orthogonal axes, namelfiagbnal errors,
which depend on the relation between componentstéftre, a full amount of 21 errors can be deteehiftom three
Cartesian axes CMMs. Complex combinations of geometrors in the work volume of the CMM generabe t
components of the volumetric error.

It is known that inspections using CMMs are carmed from coordinate point{, Yi andZi) on a given surface.
The coordinates of the points, which are measugedthbans of an optical-electronic system, are ugethé CMM
software to identify the geometric features of therkpiece. The real coordinates of the points i@ @MM work
volume can be determined if the measured coordiraaid their respective errors are known, Eq. (1).

XReaI = XMachine_ Ex

Yreal = YMachine ~ EY 1)
ZReal = ZMachine -Ez

where: Xyachine Ymachine @NdZyachine @re the coordinates of the measured ppXis., Yrea@dNdZgeq are the ideal or true
coordinates ané,, E andE, are the error components associated to each cabedi

The uncertainty associated to the real coordinggs, Yrea @NdZges) can be assumed as being equal to zero and
the uncertainty associated to coordinate& andZ of the measured points can be considered equbktancertainty
obtained for the components of the volumetric etffar EyandEz Eq. (2).

u(XMaChine) = U(EX)
U(YMachine) = U(Ey) (2)
u(ZMaChine) = U(EZ)

Therefore, the uncertainty of three-dimensional sneament can be determined from the uncertaingisscéated to
the spatial points that define the sought dimeradid@ature. Such uncertainty is referred to asetldienensional or
volumetric and is related to a region in space whsisape and size are defined by the combinatiatheofvarious
existing uncertainty sources, Fig. 1.

Figure 1. Representation of three-dimensional uaogy.

This work presents a methodology to estimate thasmrement uncertainty associated to the compordritse
volumetric error of a moving bridge CMM, aiming, tine future, at the determination of the measur¢macertainty
associated to the measurements performed with thasiines. All experimental runs for the acquisitad error data
were conducted on a Moving Bridge CMM at the Meigyl Laboratory, University of Sdo Paulo, BrazilgF2).



The machine consists of a cast aluminium strucititie the shape of a bridge that moves with relatmma granite
flat surface. The workpieces are attached to titesfirfacdoy means of screws, clamps and fixtures. The tlefase is
mounted on balls over vee-blocks on the steadytsirel of the machine. Three sets of aerostaticiftgsaprovide the

movement of axeX, Y andZ over the slideways. The bearings require dry dadnccompressed air to produce the

layer that sustains the moving parts of the strnectu

Figure 2. Moving Bridge type CMM.

2.1. Geometric model

The error synthesization model used to estimaterm@ioty measurement associated volumetric comgsreFrors
was developed by Valdés (2003). This model wasimbdaby means of homogeneous transformations, @aciponent
of the volumetric error can be described as the efimifferent parts that are related to the geoimetrrors of the
machine and to the corresponding Abbé offsets(E8§). This model is based on the straightforwasdnaf application
and adaptation of the homogeneous transformatmréy kind of CMM and on the efficient diagnosisligbof the
error synthesization method.

Ex=Pog x)+ Ry x) + RZ x) + [Ort(xy)+YaW(x] s, +

+[Ort (xz) + Pitch(x) + Yaw(z) + Roll( y))(=Z = Z,5) + Roll( y) [Z,, ®)
Ey = Pog y) + RY(x) + Ry(z) +[Ort(xy)+ Yaw(y] [{ X 55 + X ) = Pitch(y ) (Z,, + .

- [ort(yz) + Roll( x) + Pitch( y) + Pitch(z)[(-Z - Z,s) )
Ez= Pog(z) + RX(z) + Ry(z) - Roll( y) [{ X3 + X ) —[Roll( x) + Pitch( y)| [¥s, (5)

where:
Ex, EyandEzare the error components associated to each cabedi
X, YandZ are the coordinates;
Pos(x), Pos(yandPos(z) are the positioning error at aXsY andZ, respectively;
Rx(y)andRx(zare the straightness error of aXiglirectionY andZ, respectively;
Ry(x)XandRy(z)are the straightness error of aXidirectionX andZ, respectively;
Rz(x)andRz(y)are the straightness error of aXidirectionX andY, respectively;
Pitch(x), Pitch(y)andPitch(z)are the angular error Pitch at aXisYandZz, respectively;
Yaw(x), Yaw(yandYaw(z)are the angular error Yaw to axs YandZ, respectively;
Roll(x) andRoll(y) are the angular error Roll at adsandY, respectively;
Yaa, Xo3, Z12 andZys are the fixed offset;
Ort(xy), Ort(xz)andOrt(yz)are the orthogonality errors;

The input quantities, for once, may also be comsill@s measures that depend on other quantitieseTValues
and their respective uncertainties may be obtafred a single observation or repeated observatidats supplied by
the manufacturers of the instruments, observepemence, literature, previous measurements, edidr standards,
reference materials or calibration certificates, diccording to the method used for evaluationhef humeric value of
the uncertainties, these can be classified in: &yp&aluation and type B evaluation.



The combined standard uncertainty can be calcufabed the individual standard uncertainties of vagiables that
interfere on the measurement process, through &rawn as "law of propagation of uncertainties".
In the equations (3 - 5) the law of propagatiomie¢ertainty was applied, and equations (6 - 8)inbth

e[ OEX ’ ) 0Ex ) ) 0Ex ) ) oEx ) ) 0EX ’
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2.2. Determination of the uncertainty associated tthe geometric errors

2

Uy *

(6)

(7)

®)

The aim of the present work is the calculationtef measurement uncertainty associated to the védicnagrors
components in a CMM, at 20°C reference temperatdeeh geometric error was measured individually and
mathematical model was developed for each oneehthn order to subsequently apply the law of pgapan of
uncertainties. The CMM, instrument and measuringogeused remained in the room where the measutewas
made during the necessary time to reach the therqualibrium. A detailed description of the modahdie observed in
Valdés (2005).

The results obtained during the estimate of theettamty associated to the geometric errors, inemsarement
position, are summarized in the tables. The uniceytaalues regarding the other errors are notgesl because they
are similar to the obtained values. For each ewatuarror a Table is presented to show the exmessof the
sensitivity coefficients and of the standard uraiety of each influence variable, as well as, trstridhution type, the
degrees of freedom (D.F.) and the calculated valustandard uncertainty for the referred variafileese values,
combined with standard uncertainty, effective degref freedom, coverage factor and expanded umugrtevere
presented for evaluated geometric error.

a) Measurement uncertainty of orthogonal errors

Equation (9) allows estimating the uncertainty a&ged to the measured orthogonal errors usingrtéehanical
square standard and a LVDT type transducer.

Ort =L ypr +Csqt Ruypr + L Lirs LATE 9)

where: Ort is the orthogonal errorL is the reading taken by LVDTC,, is the correction due to error of the

LVDT

mechanical squareR,,, is the resolution of the LVDTL is the conventional true valuez,, is the coefficient of



thermal expansion of the mechanical square (gfaaitel AT, is the difference between the mechanical square

temperature and the reference temperature.
Next, it has been applied a set of proceduresifalyais of the standard uncertainties associatéitetoariables that
influence the analyzed dimension. By applying the bf propagation of uncertainties in the Eq. (bB) can write:

2 2 2
u; (Ort) i (OSD j (ULLVDT )2 +(06C[: J (UCSq)Z +(0;5DT j (uRLVDT )2 +
q

LVDT

D ) D )
+ [aquJ (uaSq)2 + [aA—-quJ (UAqu)2

Similar results of the uncertainty associated ® thuare errors were obtained for all axes. Theepiee of small
differences can be attributed to the operatorithat charge of the carriage movement, becausevhkiated machine
is manual. If the operator is not trained and ewely careful, he/she may produce strengths in thectibn of the
measured displacement, and this may consequeigiythk measurement results. Table 1 presentsattaerdgarding
the calculation of the uncertainty of the orthodaareors.

(10)

Table 1. Orthogonal erroOftxy) measurement uncertainty analyslsZ00 mm).

Source of Uncertainty | Probability Sensitivity Degrees  of Standard uncertainty
uncertainty | type distribution coefficient freedom.

Livor A Normal 1 10 5,0*E-4 um

Csq B Rectangular 1 00 7,0*E-6 um

R.vot B Rectangular 1 o0 4,1*E-5 pm
Combined standard uncertainty)(in pm 5,0*E-4

Effective degrees of freedomef) 193 ( >100)
Coverage factongy, 95 %) k=2

Expanded uncertaintyJp) in um 0,001

b) Measurement uncertainty of positioning errors

Equation (11) allows determining the uncertaintyog$ated to the measurement of positioning erfihis equation
is based on the fact of that the positioning eisodefined as being the difference between theimgadalue of the
machine and the indicated value by the laser, winidhis case is the standard. One can still ino@ate to the model
all the influence variables and the correctiondegt

According to ISO/TR 16015 (2003), the uncertainggariated to the measurements of lengths due tondhe
effects must consider the uncertainty associatadifterential expansion between the measurand hadtandard, the
uncertainty associated to the measurement of teanper and the uncertainty associated to the vaniabf room
temperature compared to the reference temperatur€lE).

Epos =M + Roym + R+ Thermaleféct (11)
Epos =M + Ropw + R +a LAT +aelLATe (12)

where:Epys is the positioning erro is the value indicated by machinBgy,, is the resolution of the machin®, is
the resolution of the laseAT, is the difference between the room temperaturetlamdeference temperaturAJT: is
the difference between the scale temperature andeference temperatureyz and a| are the coefficients of thermal

expansion of the scale (glass) and the laser besspectively.

Still, the laser interferometer system has theqipie of measurement based on the wavelength ofighe So,
room temperature variations cause changes in tivelamgth of the light and thus, errors in the measents are
inserted. The calculation of the laser correctioefficient must be done for that the uncertainty be estimated.
Equation (13) sets a relation between wavelengtiguency and velocity of light, wherd:is the wavelengthy is the
velocity of light and f is the frequency

A== (13)



The velocity of light is constant in vacuumt,bihrough the air, it varies as a function ofteimperature, pressure
and humidity. Since laser frequency is constamt vtavelength will change with the variation of thedocity of light.
The distanceD shown in the measurement display of the laserywutresponds to the number of wavelengtts,

multiplied by a compensation fact@, and the wavelength in the aDﬂ,A, as follows:
D =NI[C O, (14)

The compensation fact@ can be calculated by means of the equation belbis.the wavelength of movement
and can be calculated using Eq. (15), whtie the humidity andP is the pressure.

12
= L_G -999000 (15)
N +10
—6 _
N = 03836301p [ 1+ 10° (P(0817-00133T) | _, (o0 o3y, (e°-°57625f) 6
1+0.003661T

Applying the law of propagation of uncertaintiesdqg. (12), one can rewrite it as Eq. (17), whidbwa$ estimating
the uncertainty associated to the positioning error

2 2 2
(B = T ) | | o o G o) o[ S22+

AR,y R
oE,,. | RC;; ’ aERL ’ .
[ b S 55

Table 2 presents the data regarding the calculafitime uncertainty of the X-axis positioning egor
¢) Measurement uncertainty of straightness errors ad pitch and yaw angular errors

The mathematical model that represents the stragbterrors, as well as, pitch and yaw angularsmwb all the
axes, is given by Eq. (18).

R=e+R_+C_ +Thermaleféct (18)

Table 2. Positioning error®0s(x) measurement uncertainty analys{s{00 mm).

Source of Uncertainty | Probability Sensitivity Degrees of Standard
uncertainty type distribution coefficient freedom uncertainty
M A Normal 1 4 8,1*E-2 um
Rumac B Rectangular 1 1,2*E-6 um
R B Rectangular 1 00 5,8 *E-3 um
ac B Rectangular 6,4 *E-3 Y16 o0 2,0*E-10°C™
C. B Rectangular 6,4 *E-3 pie o0 5,2*E-7°C*
AT B Rectangular 1,4*E-16 phe o0 0,4°C
Combined standard uncertainty)(in um 8,1*E-2
Effective degrees of freedomef) 4,04
Coverage factongg 95 %) k=2,78
Expanded uncertaintyJp) in pm 0,2

Adding the terms related to the thermal effects applying the law of propagation of uncertaintie€g. (18), one
can write Eq. (19).

=0 o[ 2] b o[ | o o 2 )

(19)



where:R is the errorgis the indicated value by lasd®; is the resolution of the laset; is the coefficient of thermal
expansion of the laser beadh] is the variation of the room temperature regardimgreference.
The data for calculation of the uncertainty asdeci@o theX-axis straightness errors are presented in Tahd3la

Table 3. Straightness errd®X(y) measurement uncertainty analys{s275 mm).

Source of Uncertainty Probability Sensitivity Degrees of Standard
uncertainty type distribution coefficient freedom uncertainty
e A Normal 1 4 0,2 um

R B Rectangular 1 00 0,6*E-2 um
C. B Rectangular 1,8*E-6 pte o0 4,6*E-5°C™
AT B Rectangular 1,7*E-10 puhe o 1,2°C
Combined standard uncertainty)(in pm 0,2
Effective degrees of freedomef) 4
Coverage factongy, 95 %) k=2,78
Expanded uncertaintyJp) in um 0,6

Table 4. Straightness errd®X(z) measurement uncertainty analys{s{00 mm).

Source of Uncertainty Probability Sensitivity coefficienf Degrees of Standard
uncertainty type distribution freedom uncertainty
e A Normal 1 4 0,2 um

R B Rectangular 1 00 0,6*E-3 um
C. B Rectangular 3,3*E-7ute o0 2,8*E-9°C*
AT B Rectangular 1,1*E-19 phe o 0,3°C
Combined standard uncertainty)(in pm 0,2
Effective degrees of freedomef) 4
Coverage factongg 95 %) k=2,78
Expanded uncertaintyJp) in um 0,6

The found uncertainty values for tKeaxis straightness errors have been similar inh&llmeasurement positions
and the Tab. 5 and 6 shows the data regardingatloalation of the uncertainty of th&axis angular errors (pitch and
yaw).

Table 5. Angular erroRitch(x) measurement uncertainty analys{s200 mm).

Source of Uncertainty [ Probability Sensitivity coefficient| Degrees  of Standard
uncertainty type distribution freedom uncertainty
e A Normal 1 4 1,6*E-7 um
R B Rectangular 1 00 1,4*E-7 pm
C. B Rectangular | 7,8*E-6 ut@ 00 2,2+e-9°C*t
AT B Rectangular | 1,3*E-11 ufi¢ 00 0,25°C
Combined standard uncertainty)(in um 2,1*E-7
Effective degrees of freedomf) 12,4
Coverage factongg, 95 %) k=2,17
Expanded uncertaintyJp) in pm 4,6*E-7

Table 6. Angular errorfaw(x) measurement uncertainty analys{s200 mm).

Source of Uncertainty [ Probability Sensitivity coefficient| Degrees  of Standard
uncertainty type distribution freedom uncertainty
e A Normal 1 4 8,7*E-8 um
R B Rectangular 1 0 1,4*E-7 um
C. B Rectangular 1,2*E-8 pte 00 2,2*E-9

AT B Rectangular | 7,3*E-15 ufi@ 00 0,27
Combined standard uncertaintyg)(in um 1,7*E-7
Effective degrees of freedomf) 51,5
Coverage factongy, 95 %) k=2,01
Expanded uncertaintyJp) in um 3,4*E-7




d) Measurement uncertainty of roll angular error

The mathematical model of the roll angular erroaswgement is given by Eq. (20), where: Roll isriieerror; el
is the indicated value by the electronic lev@ly is the resolution of the bubble levét;, is the resolution of the
electronic level and\T is the variation of the room temperature regardivegreference.

Roll = el + Ry, + Ry + Thermaleféct (20)

By applying the law of propagation of uncertaintie€q. (20), one can obtain the Eq. (21):

R P T S [ R = @

The uncertainty values associated to ¥axis roll error measurement, Tab. 7, are very snaid thus, the
contribution of this portion / part in the final cgrtainty is practically insignificant.

Table 7. Angular erroRoll(x)) measurement uncertainty analy${s200 mm).

Source of Uncertainty Probability Sensitivity Degrees of Standard
uncertainty type distribution coefficient freedom uncertainty
el A Normal 1 4 5,7*E-7 um
Rye B Rectangular 1 00 2,8*E-7 um
R B Rectangular 1 00 1,1*E-5 um
AT B Rectangular 1,4*E-5 pun o 0,4°C*
Combined standard uncertainty)(in pm 1,2*E-5
Effective degrees of freedomef) >>100
Coverage factongg 95 %) k=2
Expanded uncertaintyJp) in um 2,4*E-5
e) Measurement uncertainty of fixed offsets
The mathematical model of the fixed offsets measerd is:
FO=1+Rgy +! Lirgy AT (22)

where:FO is the fixed offsetl is the measured lengtla,, is the coefficient of thermal expansion of mechahiule;
Rgm is the resolution mechanical rule aAd is the room temperature variation. By applying ldne propagation of
uncertainty in the Eq. (23), one can write:

FO :%) u) {a%] b {azL J b +(0A6TL J W f (23)

The Table 8 shows the data regarding the calculatidhe uncertainty of the offs&t.,.

Table 8. Fixed offsetZ;,) measurement uncertainty analysis.

Source of Uncertainty Probability Sensitivity Degrees of Standard
uncertainty type distribution coefficient freedom uncertainty

| A Normal 1 4 0,2 mm

R B Rectangular 1 00 0,6 mm

Qru B Rectangular 0,01 mng o 2,5*E-8°C
ATp/m B Rectangular 1 mie o 0,1°C
Combined standard uncertainty)(in mm 0,6

Effective degrees of freedom,f) 420 (>>100)
Coverage factongg, 95 %) k=2
Expanded uncertaintyJf) in mm 1,2




2.3. Components of uncertainty of volumetric error

The value of the volumetric error components wesdneted by means of the application of the dewsdop
synthesization equations. The volumetric error comgmt inX-axis direction EX) was calculated in variousY planes
at fixed Z coordinate values. It was noticed that on theedasurfacesEx presented variation between 15 and 55 pm.
This component showed similar behavior at the atalll planes, with a slight growing tendency alorith wthe
increasing of coordinateé.

Next, uncertainties associated to the componerttseofolumetric erroEx were calculated (Fig. 3). It was observed
that uncertainty values varied from 2,79 to 2,86 @md presented similar behavior at the differerati@ated planes.
The greatest influences upon the total uncertaifthe volumetric erroEx component were the orthogonality errors
between axeX-Y and X-Z and Y-axis roll error. This fact is assured by the comabion of error values and their
uncertainties with values and uncertainties ofdixdfsets, which are, in this cas,, Zs andYi,, respectively. The
uncertainty values associated to the measurememthofgonality errors and roll error were largecdfmpared to the
other errors, which were measured with the lagerferometer.

2,90

N
]
UEX (um)

02,80-2,90
m2,70-2,80

Figure 3. Uncertainty measurement of volumetric ponentEx, to Y=150 mm.

On the other hand, the values of the volumetriorecomponents irY-axis direction Ey) was estimated at various
planesXY, for Z offsets of 125, 150, 175, 200, 225, 250 and 275 imine surfaces that describe the behavior of this
component presented significant magnitude, takialges in the interval from —125 to —3@@n. The increment of
coordinateZ produced a considerable increase of compomgntwhich is essentially due to the influence of
orthogonality errors of axeéandZ. Componenty presents similar behavior over all evaluated plahe uncertainty
associated to the volumetric error comporienpresents nearly constant values, which vary betwe®0 and 4,08m
(Fig. 4). Componeniy presented the largest uncertainty values at neéereemperature. This fact may be attributed to
several factors: the synthesization equation of toemponent presenting a high number of influenagables; the
orthogonality error magnitude between aXeendZ and fixed offse¥,,, as well as the uncertainty associated to them.

uEy (um)

m4,02-4,04
[04,00-4,02

Figure 4. Uncertainty measurement of volumetric ponentEy, to Z=150 mm.

The volumetric error component fraxis direction was calculated for differefiX planes, a® assumed values
between 0 and 350 mm at 50 mm steps. The surfaaesgléscribe the behavior of this component presevlues in
the interval from —7 to @im. The uncertainty associated to the volumetriorasomponenEz presents small and nearly
constant values, which vary between 1,98 and gro@Fig. 5).

Such values are smaller than the calculated uriogrttor Ex andEy because of the reduced number of influence
variables in the synthesization equationbaf Moreover, there are orthogonallity errors in théerred equation. The
fractions that presented the greatest influence tmtal uncertainty of componefiz were angular errorRoll(x) and
Roll(y). Mean and standard deviation valueg€afuncertainty are similar at different planes.



2,00

H
(o]
©
UEz (um)

01,99-2,00
m1,98-1,99

Figure 5. Uncertainty measurement of volumetric ponentEz to Y=150 mm.

Mean and standard deviation of uncertainty valss®aated to componerx, EyandEz at the considered planes
have shown that uncertainty has homogeneous behaVierefore, it can be said that at any pointim work volume
of the CMM, the components of volumetric error grgsuncertainty values close to 2,8, 4,0 anduQrespectively.

3. CONCLUSIONS

In the end of this work, the following conclusiomsy be presented.

The procedures described in ISO GUM have beenigifito determine the uncertainty associated tmepoments
of the volumetric error at any point of the workwme of the evaluated machine at givemditions. By determining
the effects of variables in three-dimensional utaiety information was obtained.

The uncertainties associated to the componentseofdlumetric errorix, EyandEz) at 20C were homogeneously
perceived at several planes. It values close to&208and 2,qum, respectively.

The Measuring Machines performance is affecteddweral factors due to its structural complexity,nsach that
the calculation of the uncertainty becomes a vieingttask.

The positioning errors are affected by a larger Ineimof uncertainty sources when compared to theraeometric
errors.

The uncertainty associated to the temperature ti@midnas been a factor that contributed signifigafior the
uncertainties associated to the angular error meamnt of CMM. For positioning, straightness anthagonal errors
the uncertainty associated to the variability obsw@wement was more significant.

The values of uncertainties associated to the talesafiects are higher than those calculated foemthfluence
variables, however pondered by very small coeffitseare little significant for the total uncertyirof the evaluated
geometrical error.

Although the uncertainties associated to the coiefits of thermal expansion have also been pondeyethe
coefficients that vary with the used value as statidthey have not been relevant because were towehn than other
considered uncertainties.

The influence variables which contributed more gigantly in the uncertainty of the components loé tvolumetric
error were: magnitude of the fixed offsets anddftbogonality errors, as well as the uncertaingoamted to them.
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