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Abstract. This paper presents the theory and hypotheses used in the development of a particle method for dynamic 

structural analysis. The method was implemented by the authors and the validation of the code was carried out through 

comparison with analytical results. 

This method is based on the Moving Particle Semi-implicit Method (MPS) that was first developed to simulate the 

behavior of incompressible fluids. The main strategy of the MPS is to replace the differential operators in the governing 

equations by a model of interaction between particles. As a meshless method, it is very effective in the simulation of the 

hydrodynamic problems that involve large deformation and fragmentation of free-surfaces, complex shaped bodies or 

moving boundaries. 

In the recent years, the developments of the method extended its application to the analysis of elastic structures, making 

possible the analysis of dynamic systems and the coupling of hydrodynamics and structural analysis to investigate 

hydro-elasticity problems. 

For dynamic analysis of elastic structures, the elastic structures are discretized as particles and the theory of small 

displacements is considered. By using the particles interactions model, the governing equations of the dynamic of the 

elastic bodies are solved by the gradient and laplacian operators originally developed for fluids, with some 

adaptations, and a newly defined rotation operator. As a result, the dynamic interaction between two particles can be 

related to the behavior of normal and tangential springs between the particles, and the rotation of the particles is taken 

into account. 

The qualitative and quantitative validations of the method are carried out herein considering dynamic systems present 

in numerous engineering problems, such as mass-spring systems, forced or not, and vibrations. Simulation of 2D 

models were analyzed and compared to analytical models, which showed consistent results. 
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1. INTRODUCTION  
 

The main objective this article is to present the development of a particle method for simulation of elastic bodies, 

which, once fully implemented and validated, should be incorporated to hydrodynamic problems allowing analysis of 

fluid-structure interaction in real time. Particles methods are those that discretize the domain to be studied by particles 

that interact among themselves and behave according to the governing equations of interest. They are based in 

Lagrangian description and replace the differential operator by a particle interaction model. Particle methods don´t need 

mesh and allow the analysis of problems with large deformation of interfaces, large displacements and fragmentation 

easily. 
In fluid dynamics, it is often necessary to analyze the interactions between fluid and structures. In such cases, when 

using the traditional numerical methods of finite differences or elements, the meshes are distorted near the interfaces 

and the modeling of the phenomena becomes difficult when displacements are very large. The numerical methods that 

do not use meshes do not present these short comings. Furthermore, the generation of meshes for the analysis of 

structures with complex geometries may require a considerable processing, which is not required in meshless methods. 

The Moving Particle Semi-Implicit Method (MPS) is one of these methods, which was originally developed for 

incomprehensible flows with free surface by Koshikuza and Oka (1996). This method uses a semi-implicit algorithm to 

perform the simulation. 

Another particle based method for analysis of solids without using meshes is the Smoothed Particle Hydrodynamics 

Method (SPH), approached by Monaghan and Gingold (1983). This method is able to simulate elastic-plastic solid and 

compressible flow. Parshikov and Medin (2002) have presented the results of the SPH used to analyze elastic materials, 

in the work they show the bi-dimensional impact of two rubber cylinders. Chikazawa et al. (1999) have used the MPS 

method for fluid-structure interaction and simulated sloshing in a elastic tank represented by a structure composed by 

particles. A new particle method for elastic visco-plastic structure, using the concepts of MPS method developed for 

fluids, was proposed by Chikazawa et al. (2001). In this study, the governing equations of elastic structures are 

interpreted by interactions between particles. This method is combined with MPS to analyze the fluid-structure 
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interaction problems involving large deformations at the interfaces. Song et al. (2003) applied the MPS method in 

dynamic analysis of elastic solids. In this study, the author simulated the impact of elastic bodies and checked the 

convergence of the method according to the time-step and the material used in simulations. The same method is 

evaluated by Koshizuka et al. (2001), who examined the fracture of elastic bodies and the problem of fluid and structure 

simultaneously. 

The present study shows an implementation of MPS for dynamic analysis of elastic solids in two dimensions and 

validation of the model by using simple simulation for modal analysis of bending of double-supported beam. 

Comparison with the results presented in previous studies is also shown.  

 

2. THEORY 

 

2.1. Governing Equations 
 

The method is based on the dynamics motion equations of solid mechanics and on the linear theory of elasticity. The 

constitutive model is Hooke's law, which describes the behavior of elastic, linear, homogeneous and isotropic solid. The 

MPS method replaces the differential operators in the governing equations by particles interaction models presented in 

following equations and calculates the field forces independently and explicitly. 

Equation (1) presents the two-dimensional equation of motion used as a basis for the MPS method analysis.  
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Where εεεεkk e εεεεij are the components of strain tensor, E, δδδδij is the Kronecker’s delta and u is the particle displacement 

vector. Lames’ coefficients for 2D problem are given by  
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Where E and ν are respectively Young’s modulus and Poisson coefficient of the material. 

The numerical model considers the continuous solid as a set of particles that interact according to given laws of 

motion. The motion of each particle is represented by spatial coordinates, speed, angle and angular velocity. A rotation 

of particles should be considered to ensure the conservation of angular moment in the discretized formulation. Equation 

(4) shows the dynamic equation of angular moment conservation. 
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Where I is the moment of inertia and θ is the rotation angle, that should be twice the angle in the rotation tensor. 

 

2.2. MPS Differential Operators 

 
In MPS method, the differential operators are represented by the interaction between a particle i and its neighbors j 

(Figure 1). For a given particle i, the influence of a neighbor particle is a function of the distance between them (rij) and 

is given by the weigh function wij and by the effective radius that limits the range of influence, re.  

i

j

re
rij

l0

 
Figure 1: Position of particles and influence radius 
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Equation (5) shows the calculation of wij and Figure 2 shows its behavior in the bi-dimensional problem. 

( )

( )







>

≤−
=

eij

eij

ij

e

ij

rr

rr
r

r

w

,0

,1

 

(5) 

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
w

ij

rij/re

 
Figure 2: Weight function [source: Koshikuza and Oka (1996)] 

Now, the differential operators of interest are modeled by the weighting of influence of neighbor particles. The 

divergent operator is shown in equation (6) and equation (7) shows the rotational operator. 
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Where tij e sij are the normal and tangential vectors between particles, respectively, d is the dimension of the 

problems and ni is the particle density defined in equation (8). 
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2.3. Relative Displacements between Particles 
 

In the present study, an explicit time integration scheme has been adopted. This approach considers the relative 

displacement between particles, caused by external disturbance excitation. Thus, the strain tensor E of each particle is 

calculated explicitly using the relative motion between particles in each time-step. Therefore, the connection between 

each pair of particles can be interpreted as a normal spring and a tangential vector to the position between them, as is 

shown in Figure 3. 

 
Figure 3: Representative interaction between two particles 

The displacements, stresses and strains are calculated in the plane defined by the rotated vector rθij, the current 

position of particle i and the current position vector rij, as it is shown in Figure 4.   

The vector rθij is obtained by a rotation of angle θ of the position vector r0ij. This angle comes from the angular 

acceleration calculated in the last time-step in consequence of angular moment conservation. Equations (9) shows how 

the rotation of vector is done in 2D from the rotation angle θij. 

The relative displacement (∆u) between particles is defined by the difference between the rotated position vector rθij 

and the current position vector rij and is decomposed in two directions: normal to the position vector (∆un) and 

tangential to the same vector (∆us) (Figure 4). These components will define the normal and tangential stresses. 
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Figure 4: Representation of the displacement between particles 
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The components of displacements cause a strain of the position vector (rij) also decomposed in these two directions, 

being εεεεn and εεεεs, calculated by equations (10) and (11) respectively.  
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Finally, the stress tensor can be calculated, as shown in equations (12) e (13). 
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The first term of the motion equation (1) represents the volumetric deformation and is described using the divergent 

of displacement. Is this case, the divergent operator of MPS is used to calculate the term, as it is show in equation (14). 
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2.4. Algorithm 

 

As mentioned before, the motion is calculated by an explicit algorithm. In other words, in each time-step, the stress 

tensor is calculated from the relative displacement between two particles and generates the accelerations for nest time-

step, from what the new displacements will originate. 

The figure shows the flow chart of the algorithm for solving the problem. From the initial conditions of each 

particle, it begins to calculate its motions, which will lead to the strain, stress, translation and rotation. After that, it can 

be calculate the accelerations that will give the motion corrections for the next time-step. At this point, the existing 

external forces are considered for the next time-step. 
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Figure 5: Algorithm for particle method applied to elastic solids  

 

3. VALIDATION 
 

3.1. Block falling in elastic base 

 

The next example is presented to show the behavior of the implemented method. In the simulation, a block is 

excited with initial velocity of 1 m/s against an elastic base clamped in both extremities. The elastic base has Young’s 

modulus of 1 MPa and Poisson’s coefficient of 0.3. Initial distance between particles is 0.01 m. 

 Figure 6 shows the result of simulation. The restoration of the elastic base pushes the block up and, because the 

block does not collide in the center of the base, a rotation appears. 

 

 
Figure 6: Simulation of a falling block in elastic base 
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3.2. Collision of elastic rings 
 

As mentioned before, Song at al. (2003) have simulated a dynamic collision of two-dimensional elastic rubber rings. 

The same simulation was carried out using the algorithm presented in this study. The intention was to compare the 

results obtained by both models. The simulation is shown in Figure 7 and Table 1 shows its parameters. 

 
Figure 7: Simulation of collision between two elastic rubber rings 

    

 

Table 1: Parameters of collision simulation 

Simulation  

Number of Particles 128 

Distance Between Particles 0.0083 m 

Initial Conditions V=2.0/-2.0 m/s 

Time-Step 1.0e-6 s 

Material 

Young Modulus 2 MPa  

Poisson Coefficient 0.48 

Density 940 kg/m3 

 

Both simulations have the same parameters, however the arrangement of the particles of both models are different. 

Songs et al. utilize a radial arrangement of particles and this study provides a grid position of particles. The comparison 

shows good agreement of two-dimensional results, as it is shown in Figure 8. 
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Results Results obtained by Song at al. 2003
 

Figure 8: Results of dynamic analysis of two-dimensional impact 

 

3.3. Transverse vibration of flexural beams 

 

The two dimensional case was validated with a simple modal analysis (Figure 9). The first and second mode shape 

frequency vibration of double-supported beam is analyzed and compared with analytical results. In the simulation, the 

first vibration mode is excited with gravity, so the amplitudes can also be compared and second mode with a sinoidal 

velocity field along the beam. Equations (15), (16) and (17) show the formulation to calculate the natural frequency in 

radians/s and in hertz and period (in seconds) of vibration, respectively. 

g
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Figure 9: Double-supported beam model 
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The analytical formula to calculate the maximum vertical deflection (Figure 9) is given in equation (18). 
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The values of λ for double-supported beam problem are π and 2π for first and second vibrating mode, respectively.  

The dimensions of the problem are shown in Figure 9. And the material properties are Young’s modulus E = 10 

MPa and Poisson coefficient of 0.3. 

Table 2 shows the results of natural frequency and amplitude for the first shape mode. The plotted results can be 

seen in the graphic presented in Figure 10. The result shows good agreement despite deviations that can be considered 

as numeric errors and simplifying assumptions. 

Table 2: Results of flexural beam simulation in first mode shape 

Model Natural period (s) Frequency (rad/s) Maximum displacement (mm)

MPS (16x2 cm) 0.0225 279 -0.318

MPS (16x2 cm) 0.0225 279 -0.318

MPS (16x2 cm) 0.0225 279 -0.314

MPS (16x2 cm) 0.0225 279 -0.314

Analytical 0.0249 252 -0.253

First mode results
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Figure 10: Vibration of 2D flexural beam 

For the second mode, Table 3 show the results obtained compared to analytical values for natural frequency and 

period, it shows an error of 0.001s, given probably by numerical and assumptions deviations. 

 

Table 3: Results of flexural beam simulation in second mode shape 

Modelo Natural period (s) Frequency (rad/s)

MPS 0.008 744

Analytical 0.007 891

Second mode results
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