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Abstract. In this research, a theoretical study of the nonlinear response of a two degree of freedom typical airfoil 
section using a MR device to change the structural damping is presented. The Bingham model of the MR damper, 
which describes the viscous-plastic behavior of the device, is integrated to the structural model of the aeroelastic 
nonlinear dynamic system that results from the Aeroelastic Theory. The objective of the present work is to obtain the 
dynamical response and a qualitative behavior of a two degree of freedom airfoil subjected to a incompressible flow 
represente by a linear equation, taking into account structural nonlinearities. In the present investigation, the MR 
damper is connected in the plunge degree of freedom. 
The differential aeroelastic equations of motion for the aeroelastic system are reformulated into a system of four first-
order autonomous ordinary differential equations. The term bifurcation is used to describe qualitative changes that 
occur in the orbit structure of a system as a consequence of parameter changes,this qualitative changes is showed in 
this work by the evolution of Phase Portraits. Numerical simulations show that the coupled nonlinearities can generate 
a variety of motions, including chaotic motions. 
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1. INTRODUCTION  
 

Aeroelasticity is the dynamic interaction of structural, inertial, and aerodynamic forces. Conventional methods of 
examining aeroelastic behavior have relied on a linear approximation of the governing equations which describe both 
the flow field and the structure. The success of linear flutter analysis is attributed to negligible nonlinear effects, yet 
aerospace systems inherently contain structural and aerodynamic nonlinearities which are critical for many 
circumstances (Dowell et al. 2008). 

The tendency to increase structural flexibility, operating speed and, mainly, reduction of weight, certainly increases 
the likelihood of the flutter occurrence within the aircraft operational envelope. Moreover, combat aircraft can 
experience, during their operational life, dramatic reductions in the flutter speed that can affect their survivability 
(Marzocca et al., 2001, 2002a, 2002b; Librescu et al., 2002, 2003a, 2003b). Conventional methods of examining 
aeroelastic behavior have relied on a linear approximation of the governing equations of the flow field and the structure. 
However, aerospace systems inherently contain structural and aerodynamic nonlinearities and it is well known that with 
these nonlinearities present, an aeroelastic system may exhibit a variety of responses that are typically associated with 
nonlinear regimes of response, including Limit Cycle Oscillation (LCO), flutter, and even chaotic vibrations (Dowell et 
al., 2008). These nonlinearities result from unsteady aerodynamic sources, such as in transonic flow condition or at high 
angle of attack, large deflections, and partial loss of structural or control integrity. Aeroelastic nonlinearities have been 
identified in (Lee et al., 1999) and analyses, focusing on LCO behavior and flutter boundaries, have been performed on 
similar airfoils. 

It is well known that the Magnetorheological fluid (MR) consists of a based fluid, with micron magnetic particles in 
suspension that, in the presence of a magnetic field, these magnetic particles is lined up in parallel to the field, forming 
a species of "chain". When the structure it  is submitted to a vibration, these "chains" break, wasting energy and, the 
magnetic field cause the resetting of this current. The continuous breaking and reconstitution of chains, allow the fluid 
to waste energy of the system (Lyu et al. 2000). To describe the behavior of MR damper, the Bingham model it is 
adopted (Dyke et al, 1996; Tang et al. 2004).   A modified form of this model had been used in (Kecik and Warminski, 
2007). It is noticed in its work that the increasing of these rates may diminish the amplitude of the motion in the 
resonance regions. (In Litak et al, 2008) control the chaotic motions of a quarter car model using a nonlinear spring. 
Controlling the current applied to the MR damper, show the qualitative change of kind of motions trough bifurcations 
diagrams and Poincare sections and uses Melnikov theory to estimate the critical amplitude of the road surface profile 
above which the system can vibrate chaotically. 

In this paper, the effects of coupled nonlinearities in the pitch and linear plunge degrees of freedom of an airfoil 
placed in an incompressible airflow are studied using a numerical time-marching scheme. 
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2. MATEMATICAL MODEL 

 
A classical airfoil section with two degrees-of-freedom, pitch and plunge, will be used to show the effect of the MR 

damper in the aeroelastic system. The schematic for this aeroelastic system, a typical section, is shown in Fig. 1,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 – 2-DOF pitching and plunging airfoil section 
 
 
where the springs represent the structural bending and torsion stiffness of the airfoil section. This model is known as the 
typical section, which can represent a 2-D wind tunnel model, or a finite section of a wing. The equations of motion are 
formulated by the using of the Newton’s laws and generalized aerodynamic forces (Fung, 1969; Hodges and Pierce, 
2002). The nonlinear aeroelastic governing equations are: 

h h hmh S c h K h Qα+ + + = − 

                                                                                                                                  (1)  

( )I Sh c M Qα α αα α α+ + + =

                                                                                                                                (2) 
  
where h (y, in the Fig. 2) is the plunge displacement and α is the pitch angle displacement. In the equations above, is 
presented the function ( )M α  that represents the structural nonlinearity considered in the model to obtain nonlinear 
motions (Marzocca, 2002a, 2002b; Librescu et. al. 2003a, 2003b; Lee et. al. 1999) and have the following expression: 
 

3( )M α α εα= +                                                                                                                                                       (3) 
 

The terms hQ  and Qα represents the aerodynamic lift and moment, that are derived by assuming the forces in each 
degree of freedom in equilibrium. The aerodynamic lift and moment have the follow equations for unsteady 
aerodynamics (Fung, 1969): 

2 2 2
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hQ C bU a d C U h ab C bU
b

τ
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  = − − + + − − − −  
  

∫




                  (4) 

2 2
0 0

2 2 2 2 2

1 1( )
2 2

1 1 1 1( )
2 2 2 16

L

L L L

hQ a C b U a d
b

abC U h ab a C b U C b U

τ

α α

α α α

ρ φ τ τ α α τ

ρ α ρ α ρ α

−∞

    = − − + + −    
    

 + − − − − 
 

∫


 



  

                                                 (5) 

where ( )φ τ is the Wagner function and has approximated by Jones (1940) as 
 

0.0455 0.3( ) 1 0.165 0.355e eτ τφ τ = − −                                                                                                                      (6) 
 
It should be remarked that in Eqs. (4) and (5), the coupling of plunging and pitch motions, referred to as 

aerodynamic coupling, appears explicitly. The unsteady aerodynamic lift and moment are separated into circulatory and 
noncirculatory components. The integral terms appearing in Eqs. (4) and (5) correspond to the circulatory effect and are 
expressed, in the time domain, in terms of Wagner’s function. The remaining group of terms belongs to the 
noncirculatory effects, and is referred to as added mass. These account for the inertia effects in the fluid, and are 
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functions of the motion and the geometry of the airfoil section. In this work, we introduce only the structural non-
linearity, which was presented in Eq. (3). It is known that these expressions of the lift and of the moment have 
aerodynamics non-linearities, but we decided to use the model of steady and linear  aerodynamics, which will be 
presented below. 

Magnetorheological fluid (MR) consists of a based fluid, with micron magnetic particles in suspension that, in the 
presence of a magnetic field, these magnetic particles is lined up in parallel to the field, forming a species of chain. 
When the structure it  is submitted to a vibration, these chains break, dissipating the vibrations energy of the system and 
the magnetic field cause the resetting of this chain. The continuous breaking and reconstitution of this chains, allow the 
fluid, in the magnetorheological device, to dissipate energy of the system (Lyu et al. 2000).   

A Magnetorheological device is a linear damper completely filled with MR fluid, where is possible to change the 
current applied to the piston, producing the magnetic field necessary for performance of MR damper. The behavior of 
the MR fluid and the mechanical schema of the MR damper are presented to follow. 

 
 
 
 
 
 
 
 
 

Figure 2 – Mechanical schema of MR damper and rheological behavior of MR fluid in the damper orifice. 
 
To show the effects of the addition of a Magnetorheological damper (MR) in an airfoil to decrease the effect of the 

structural nonlinearity, we consider the application of the damper on the plunge degree of freedom, that is, in the 
vertical motion in the airfoil. The mathematical model of the MR damper is defined as: 

 

( )y fieldζ ζ ςϕ= +                                                                                                                                                        (7) 
 
where ( )y fieldζ  is the yield stress induced of the magnetic field and ς  is the fluid viscosity. This model consists in two 
elements: an element taken as the same type of Coulomb friction, placed in parallel with a linear viscous damping, as is 
shown in the Fig. 3   
 
 
 
 
 
 
 
 
 

Figure 3 – Idealized layout of the MR damper 
 

A lot of authors have considered this mathematical model of MR damping in your works, known as the Bingham 
model, (Dyke et al, 1996; Tang et al, 2004; Kecik and Warminski, 2007; Stanway et al, 1985; Stanway et al, 1987). For 
velocities different of zero, the force generated by the device is given by: 
 

0( ) sgn( ) ,MR dF x f x c x= +                                                                                                                                        (8) 
 

where, c0 is the coefficient of viscous damping and fd is the force related to the rheological behavior, linked to the strain 
that is produced by the fluid and both depend of the current (magnetic field) applied to the damper. This model does not 
capture some phenomena resulting from this kind of damping at speeds very close to zero, but at speeds equal to zero, 
the mathematical model captures the signal change of force generated from the accelerations and displacements, when 
they change the signal. Then we can say that the model responds well to analysis of global responses to damper, but do 
not characterize adequately the device for applications of control.  

A more complete model, which more accurately captures the nonlinear phenomena caused by this type of device is 
the Bouc-Wen model (Wen, 1976) adapted for MR dampers. The Bouc-Wen model is extremely versatile, can exhibit a 
wide variety of hysteretical behaviors and have easy numerical handling. 

The equations of this model are: 

( )MRF x

Wire 

Axis of the 
piston 
 

MR Fluid Coil 

Piston 

Acumulator 
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0 0 0( )F c x k x x zλ= + − +                                                                                                                                       (9) 
 
where the evolutionary variable z is governed by 

 
1n nz x z z x z Axγ β−= − − +                                                                                                                              (10) 

 
By adjusting the parameters of the model γ, β and A, we can control the linearity in the unloading and the 

smoothness of the transition from the pre-yield to the post-yield region (Spencer Jr. et al 1996). The Bouc-Wen model 
predicts the force-displacement behavior of the damper well, and it possesses force-velocity behavior that more closely 
resembles the experimental data. However, similar to the Bingham model, the nonlinear force-velocity response of the 
Bouc-Wen model does not roll-off in the region where the acceleration and velocity have opposite signs and the 
magnitude of the velocities are small. 

To start the studies in this kind of problem, we use the simplest model of two that were presented, the Bingham 
model, by presenting equations of easy handling and ease of integration with the mathematical model of airfoil section, 
so the equations of the airfoil section with the model of the MR damper in the plunge degree of freedom are shown 
below 
 

( )h MR hmh S K h F h Qα+ + + = − 

                                                                                                                         (11) 

( )I Sh M c Qα α αα α α+ + + =

                                                                                                                              (12) 
 
where the term ( )MRF h  in the Eq. (11) represents the Bingham model which is given by the Eq. (8), cα  is the 

damping coefficient in pitch motion, m is the mass of the airfoil, Iα is inertia moment of the airfoil, S  is the static 

moment about elastic axis, hK is the stiffness in plunge motion. 
To facilitate the analysis and understanding of the problem, through some mathematical manipulations, the 

equations of motion become dimensionless, this is, we work with displacement and the time without physical 
dimensions. Then, the dimensionless equations are the following 

2

3 2( ) h h
MR

Qh x F h h
bα

α α

ωµ µ α µ
ω πρ ω

 
+ + + = − 

 
 

                                                                                              (13) 

2 2 3
4 2 4 2

Qr x h r
b b

α
α α α α

α α

εµ α µ ζ α µ α α
πρ ω πρ ω

+ + + + =

                                                                                   (14) 

where hω is the natural frequency in plunge motion, αω is the natural frequency in pitch motion, µ  is the airfoil-mass 

ratio (apparent mass) and ( )MRF h is the dimensionless MR damping. Using the values for the parameters given in 
(Shahrzad and Mahzoon 2002, Rubillo et al, 2006), as are shown in Table 1, we obtain the following equations 
 

2
112.8 1.92 (0.2 ( )) 1.97 (5.568 0.0942)MR

Uh h F h h
b α

α α
π ω

 
′′ ′′ ′+ + + + = − + 

 
                                      (15) 

2
3 11.92 3.84 0.2 3.84 4.24 (1.4845 0.0084)Uh

b α

α α α α α
π ω

 
′′ ′′ ′+ + + + = + 

 
                                       (16) 

 
where the linear viscous damping in the pitch degree of freedom is considered. 
 

Table 1 (Shahrzad and Mahzoon, 2002) 
µ = 12,8 ε = 30 ωα = 88 ωh = 34,6 rα = sqrt(0,3) xα = 0.15 
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Taking the vector [ ]1 2 3 4

T Th h x x x xα α  = 


 as vector of state variables, we obtain the following 

equations for the system: 
 

( )

( )

1 2

2 3 2
2 4 4 3 2 1 1

3 4

2 3 2
4 4 4 3 2 1 1

0.0361(0.2 ( )) 0.0078 0.0561 1 0.2018 1.1871 0.002

0.0723(0.2 ( )) 0.1552 0.0079 0.1511 0.1579 0.1669 0.00248

MR

MR

x x

x x F x x x U x x U

x x

x x F x x x U x x U

=

= + + − − − − +

=

= − + − + + − + −









      (17) 
where coefficients of Bingham model of the MR damper are given by: 0 48 14c i= +   e  62 1.5df i= +  and i is the 
applied current to the damper. (Maślanka,2007) 

With these equations, it is possible to start the numerical simulations, which were performed using the Runge-Kutta 
routine, found in the software MatLab©. 

 
3. NUMERICAL SIMULATIONS AND RESULTS  

 
In this item, we show the numeric simulations and results obtained for this problem. Through computational 

routines, we obtain the behavior of the system in time and the phase portraits to show the effect of this kind of damper 
in our problem. We show the phase portraits to emphasize the semi-active control of the LCO’s, phenomenon that 
appears in the model without this kind of damping. 

Below, we show the response of the model when the current applied to the MR damper is zero, for a speed U = 15 
m/s, Fig. 4, below the flutter speed for the model without damping and with the structural nonlinearity. Since this 
nonlinearity does not influence the in flutter speed of the system. (Mahzoon and Shahrzad 2002, and Rubillo et al, 
2006) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 4. Time History and Phase Portrait, U = 15 m/s, (a) Pitch; (b) Plunge 
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It was observed that in this case the system seeks to equilibrium without need of the action of the MR damper. After 
a certain time interval, the system displays LCO with very low amplitudes in pitch and plunge, dispensing the operation 
of the damper.  

When the system exceeds the flutter velocity, which is 17.22 m/s, (Mahzoon and Shahrzad 2002, and Rubillo et al, 
2006) where a bifurcation occurs, the amplitudes of the LCO will present a high magnitude, which can be dangerous to 
the integrity of the aircraft. In this case then becomes necessary to apply a current in the damper to increase the 
damping to bring these oscillations to the equilibrium. In Figure 5, shows the behavior of the system at a speed above of 
the flutter speed without the MR damping (U = 20 m/s). 

In Fig. 5, we can see the effect of MR damper in the amplitudes of the LCO in Pitch degree of freedom, note that, 
with increasing current applied to the MR damper, the magnitude of the LCO presents fall in the range of 101. For i = 
0.1A, we can consider that the system is in equilibrium, showing very small oscillations. For the Plunge degree of 
freedom, when applies to i = 0.06A, the system presents a very small oscillation, as the Fig. 6 show.  

When the flow speed reaches 25 m / s, the system presents the LCO amplitude more largest than the previous case, 
because the aerodynamic forces that act on the system becomes more higher, causing this phenomenon. Thus, need is a 
bigger current applied to the MR damper. This is done and is shown in Fig. 7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 5. Evolution of Phase Portrait of Pitch degree of freedom, U = 20 m/s, (a) i = 0A; (b) i = 0.06A; (c) i = 0.08A; 
(d) i = 0.1A; (e) LCO’s Amplitude comparison. 
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Figure 6. Time History and Phase Portrait, U = 20 m/s, Plunge degree of freedom 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Evolution of Phase Portrait of Pitch degree of freedom, U = 25 m/s, (a) i = 0A; (b) i = 0.13A; (c) i = 0.0.16A; 
(d) i = 0.2A; (e) LCO’s Amplitude comparison. 
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considered as the equilibrium of the system. This shows that the amount of energy needed to control the LCOs found is 
very small, how we can perceive by the values of current applied to MR damper. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Time History and Phase Portrait, U = 25 m/s, Plunge degree of freedom 
 

For the Plunge degree of freedom, when applies to i = 0.13A, the system presents a very small oscillation, as the 
Fig. 8 show. 

When it increases the value of current applied to the  MR damper with the objective of controlling the amplitude of 
LCOs, it should not be thought that these phenomena do not happen more. We can say then that the LCOs appear at 
speeds greater than the speed with which the flutter phenomenon occurs, for each value of current applied to the MR 
damper. Thus, nothing can be said about the speed at which the phenomenon will occur, but the information shown 
previously, makes possible the "postponement" of this event, so that the studied instability happening in higher speeds, 
increasing so the flight envelope of each aircraft in which could be used this type of device. 

It should be noted that in this paper, is made a feasibility study of the use of this device in aeroelastic systems, for 
which a real implementation of this study, would need a closed loop control with the objective of finding the "best" 
current to be applied to the device, to get the best responses of the system in each situation in which it can operate. 

 
4. CONCLUSIONS 

 
In this work, is shown the application of a MR damper in a aeroelastic system that has an structural nonlinearity. 

This nonlinearity causes the nonlinear behavior analyzed, the appearance of LCOs. Putting the MR damper on the 
Plunge degree of freedom, it became possible to control the amplitudes of these phenomena, through of the increase of 
the applied current to the MR device. 

From the information shown at work, it can said that the damper is able to control these LCOs and also that the 
phenomenon will occur at higher speeds where the aerodynamic forces overlap the loads generated by the MR damper. 
it also concludes that a closed loop control becomes essential in this problem, since the choice of current to be applied 
to the damper is not a decision that may be made without information about the behavior of the structure, velocity of 
flow and the loads that the system is exposed. 
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