
Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

 

DYNAMICAL MODELING AND CONTROL DESIGN OF A FLEXIBLE 

RADAR ANTENNA 

 
Agenor de Toledo Fleury, agfleury@fei.edu.br 
Centro Universitário da FEI  

Av. Humberto de Alencar Castelo Branco, 3972 – 09850-901, São Bernardo do Campo, S.P. 

Escola Politécnica da Universidade de São Paulo 

Av. Prof. Mello Moraes, 2253 – 05508-900, São Paulo, SP  

 

Fabrizio Leonardi, fabrizio@fei.edu.br 
Centro Universitário da FEI  

Av. Humberto de Alencar Castelo Branco, 3972 – 09850-901, São Bernardo do Campo, S.P. 

 

Fabiano Armellini, armellini@allagi.com.br 
Allagi Engenharia Ltda 

Av. Brigadeiro Faria Lima, 1461 - Cj 124 –01452-002 - São Paulo - SP 

 

Abstract. A radar antenna is basically composed of a primary source mounted at the focal point of a parabolic 

reflector. The radar illumination rule is established so that the desired beam shape is attained as precisely as possible. 

The mechanical movement of the set reflector-pedestal must be designed to fit the desired volume of radar exploitation. 

This work deals with the design of a 4.2m-diameter large, flexible, rotating radar antenna prototype, , already 

operating in Mogi das Cruzes, SP, under the supervision of the Brazilian Omnisys/Atech joint venture. A Finite 

Element structural model of the reflector-pedestal has been proposed, analysed and compared to experimental data to 

generate a model suitable for control design. Based on this model, some control approaches have been used to get 

good answers for the antenna in the presence of wind or other type of perturbations. 
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1. INTRODUCTION 

 

In a broad sense, radars may be classified as electronic sensors that use electromagnetic waves to detect objects and 

measure relative positions in space. Object positioning is accomplished by determining distance and attitude in relation 

to the radar equipment, which requires three coordinates: azimuth (around the vertical axis), elevation (around the 

horizontal axis) and the straight distance from the pointing equipment. This distance-azimuth-elevation set of 

measurements constitutes a spherical coordinate system with the radar antenna focal point in the origin, as shown in 

Figure 1. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 – Radar as the center of a spherical coordinate system. 

 

Distance between target and radar is determined using the Pulse-Echo Principle in which a high power 

electromagnetic pulse is sent in a given direction and target distance is calculated by the signal delay (echo) from the 
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target. The other coordinates, azimuth and elevation, are given by the angular position of the antenna-radar set relative 

to a fixed reference. 

This work deals with velocity and position control of a large radar antenna using a two-axes gimbal of the type 

elevation over azimuth. Each axis performs independent motion driven by a DC brushless motor. Both are digitally 

controlled by a central processing system. The antenna-radar set described here is the mechatronic part of a large project 

that qualified Atmos (the spinoff of the Atech-Omnisys joint venture) to design and build weather radars to Brazilian 

authorities. The paper is based on the MSc work by Armellini (2006) where a detailed description can be found. Here, 

some basic concepts on radar design are addressed, the essential requirements for mechanical and control design are 

presented and results for taking into account the flexibility of a large rotating structure are shown and discussed.  

  
2. RADAR DESIGN CONCEPTS 

 

The quality of information received by an antenna depends on its angular velocity, pointing accuracy, radar pulse 

parameters and electronic gain, angular aperture, antenna lobes and beam shape features. These electronic parameters 

and the antenna polarization define the radar structural properties: reflector shape (parabolic or semi-parabolic, for 

example), geometry (diameter and curvature of the dish) and primary source location over the reflector (focal distance, 

vertical or horizontal or circular polarization). One of the major difficulties in nowadays development design projects is 

to combine mechanical and electrical designs to guarantee information accuracy with increasing antenna gains. Gain 

increase leads to larger reflectors and, consequently, to mechanical structures of complex dynamic behaviors which 

present several complex flexibility and vibration issues to be dealt with (Armellini, 2006). It is a task of the control 

system to attenuate them. 

There are several different configurations for the antenna support and movement. For this project, a standard two-

axis elevation-over-azimuth (EL/AZ) positioner was adopted. This configuration, also known as theodolite assembly, is 

shown in Figure 2. 

  

 
 

Figure 2 – Elevation over azimuth (EL/AZ) assembly. 

 

For radars in general, positioner motion and velocity control represents a crucial feature since the radar must sweep 

all the aerial space around itself with a very narrow illuminating beam. For weather radars, in particular, trajectories 

must be prescribed and accurately tracked for cloud and other meteorological phenomena real detection.  

 

3. ANTENNA CONTROL BACKGROUND 

 

Radar design has evoluted in parallel to control systems. In the 30‟s, mechanical servomechanisms were used to 

multiply input torques necessary to move the antenna at the output axis while making null the angular error. Modern 

configurations, as the one shown in Figure 3, still use the same basic idea. 

Each pointing mechanism is controlled by an independent loop. For the task of control, azimuth and elevation loops 

are somewhat identical. They differ on the mechanical parameters like inertias and stiffness, displacement bumps or 

controller gains. Both loops have an internal circuit as required for DC brushless type motors. The scheme in Figure 3 

shows also a special block to take into account the existence of safety interlock circuits associated to temperature 

sensors, locking keys and so on, necessary to protect the equipment against equipment damage and human hazard.  
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Figure 3 – Control loop scheme. 

 

On the other side, as antennas grow larger, the importance of system flexibilities grows in parallel. These 

flexibilities are due to dishes, gimbals, support structures, axles and cannot be neglected in a good design. Baek (2006) 

reinforces this statement when modeling an azimuth driving servo system carrying a flexible antenna. Major part of the 

elastic Degrees of Freedom (DOF) are assigned inside the gimbals (axles and gears) and a simple beam model is 

adopted for the antenna when trying to match model responses to experimental modal analysis results. Gawronski 

(2006) proposes that the most important measure of control performance is the error while tracking under wind gusts 

and compares parameter sensitivities for a rigid antenna under a PI controller and a large flexible dish using a LQG 

strategy to conclude that the first approach gives better simulation results. This is not surprising since flexible modes 

require much more accurate controllers. Problem is how to design a large mechanical system that can be considered 

rigid in all circumstances. 

In this work, the weather radar is modeled as a flexible low order system and unknown parameters are adjusted to 

cope with the structural analysis results. Based on this model, PID and LQ controllers for the azimuth axis are designed 

and their performances compared. 

 

4. NUMERICAL AND EXPERIMENTAL STRUCTURAL ANALYSIS 

 

The prototype weather radar antenna is a 4,2m diameter parabolic dish built of aluminum alloy. All other parts are 

made of steel, including counterweights, as can be seen in Figure 4. The radar set is installed at the top of a 12m-high 

steel tower, as shown in Figure 5. This Figure gives an idea of the test site, located in Mogi das Cruzes, SP. The 

building at left, in Figure 5, houses all the electronic modules inside a climate controlled room. 

 

 
 

Figure 4 – Lateral View of the Prototype Weather Radar (Armellini,2006) 
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Figure 5 – Test site in Mogi das Cruzes, SP (Armellini, 2006) 

 
A Finite Element model of gimbals and dish, not including tower, has been implemented on an ANSYS 8.1 package. 

The resulting model has somewhat 45,000 nodes and 246,000 DOF‟s (Armellini, 2006) and the main frequencies and 

modes between 0 and 50 Hz were achieved. Numerical analysis showed 13 frequencies below 20 Hz, the first on 5.4 

Hz, corresponding to elevation axis torsion mode and the second on 9.6 Hz relative to the azimuth axis torsion mode. 

These two modes are shown in Figure 6. 

 

 

(a) (b) 
 

 

Figure 6 – First 2 Vibration Modes: (a) torsion of the elevation axis; (b) torsion of the azimuth axis 

 
The Experimental Modal Analysis was performed with the radar set installed at the tower. First mode has been 

confirmed at 5.5 Hz but surprisingly the apparatus has shown 2 modes around 1.2 Hz in the azimuth direction and in the 

North (azimuth and elevation) direction. This fact seems to be associated to the tower resonance frequencies, but a 

deeper investigation still remains to be performed.   

 

5. AZIMUTH CONTROL SYSTEM DESIGN 

 

In what follows, azimuth and elevation dynamics are assumed independent, which allows one to treat the system as 

two different problems. In this scenario, interactions between the two axes are modeled as disturbances. This work deals 

only with the azimuth angle control since this is considered the critical axis (Baek, 2006). 

The dynamic model includes some uncertain parameters, therefore the controller must be robust to these modeling 

uncertainties. QFT controllers are recommended compensators for cases like this (Houpis, 1999). However, since the 

current model is only a preliminary one and available data do not allow outlining uncertainties correctly, robustness was 
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not considered explicitly. In spite of this, one tried to provide some degree of implicit robustness regarding the real 

application. 

As a constraint to the problem, the compensator must have a specific structure since the real system is equipped with 

a PID controller. To provide an optimal solution, one decided to design a Linear Quadratic Regulator (LQR) and then 

map the resulting control law to a PID structure which, under some circumstances, can approximate the optimal control 

law.  

To investigate a system, it is mandatory to build a complete and rigorous model. However, the model normally can 

be less detailed for control purpose if the controller is robust in presence of modeling uncertainties. Based on this 

assumption, one adopts a linear model to represent all antenna dynamics. In order to represent the antenna flexibility, 

spring and damper elements have been associated to every degree of freedom. Figure 7 presents a simplified scheme for 

the radar, where „m‟ identifies the degree of freedom of the motor, „g‟ the gimbal and „a‟ the antenna. 

 

 
Figure 7 – Physical Model of the Radar System. 

 

Equation 1 shows the linear mathematical system associated to the model above, disregarding the inertia moments 

of the mechanical gear box. Some of the model parameters were obtained from the structural simulation. The motor 

parameters are well known, but the other parameter values have been adjusted in order to match responses of the known 

system behavior, as the natural frequencies of the first vibration modes. 
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(1) 

 

The parameter values used for system simulation and design are those shown in Table 1. 

 

Table 1. Parameter  values. 

Antenna moment of inertia Ja
 

660  kg.m
2
 

Antenna stiffness Ka 5.8625e+6  N.m/rad 

Antenna damping Ba 886.7  N.m.sec/rad 

Gimble moment of inertia Jg
 

1500  kg.m
2
 

Gimble stiffness Kg 9.59e+6  N.m/rad 

Gimble damping Bg 5.25539e+3  N.m.s/rad 

Motor moment of inertia Jm
 

3.78e-3  kg.m
2
 

Motor stiffness Km 34125  N.m/rad 

Motor damping Bm 1.1357486  N.m.sec/rad 

Motor constant of torque KM 0.56  N.m/A 

Motor emf constant KE 0.45  V.sec/rad 

Motor resistance Ra 0.56  

Motor Inductance La 3.78e-3  H 

Mechanical reduction N 464.4 
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With these values, the state space model derived from Equation (1) results badly conditioned because of the high 

numeral range of the elements in the dynamic matrix. This occurs mainly due to the reduced values of the motor 

parameters compared to the antenna ones, fact that brings numerical problems reflected in the ratio of the smallest to the 

largest value of system eigenvalues. To improve system conditioning, the fastest pole, about 1000 times faster than 

others, was removed from the model and the slower one was moved to the origin, once the system output is the angular 

position. 

Figure 8 shows the Bode diagrams of the model with those adjustments (7 states), in comparison to the original 

model (8 states). Notice that there is no loose of relevant information in the range of frequencies of 0,1 rad/sec to 1000 

rad/sec, that is, in the range of practical interest. 
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Figure 8 – Bode Diagrams of the Reduced Order and Original Models. 

 

 

An integrator in the direct path is necessary if system output must track a constant reference signal with null 

stationary error. However, to reject a constant disturbance signal with no stationary error either, it is necessary to 

provide the controller with an internal integrator, even if an integrator already exists in the plant model. In this 

application, since both, the servo and the regulatory problems, are important, a new integrator is added to the plant for 

the design purposes. In a SISO system, this integrator can be added to plant input or to plant output, but in multivariable 

cases it is recommended to add it (or them) to the output in order to avoid that the state feedback push it (or them) out of 

the origin. The new state space representation becomes 
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or, simply 
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The state space model then becomes controllable, so it is possible design an optimal control law 

)()( txKtu using the linear quadratic regulator (LQR) theory. In this work, the LQR design is performed in 

frequency domain by means of the Kalman Identity (Doyle, 1981). Use of this identity makes possible to obtain the 

penalty matrices 
C

T

C CCQ  and IR   that lead approximately to the pre-specified frequency response. 

An approximation for the Kalman Identity, where the free parameters are Cc and , is given by: 
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the frequency response will exhibit a constant decay ratio of -20dB/dec, since  
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Note that  remains as the unique parameter for adjusting the frequency response. Once the decay ratio is also 

-20dB/dec around the crossover, there is some robustness associated to the design (Cruz, 1996). 

 

In his work, Mukhopadhyay (1978) shows the equivalence between the PID control law, given by 
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and the complete state feedback control law of a system augmented with integrators to its output is given by 

 
t

ydtikxpku
0

.. . (8) 

 

The author shows that the inverse, or in other words, the mapping of Equation (8) in the PID structure of Equation 

(7), is only possible when the number of outputs is exactly half of the number of states. However, it is possible to obtain 

an approximate solution, in the least square sense, using a pseudo-inverse or generalized inverse (Noble, 1977). The 

equivalences are given by  
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In this case, system order is 7, much more than order 2, and, therefore, one will reach just an approximate behavior. 

The achieved PID parameter values are 
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Since the PID control law is just an approximation of the state feedback control law, the frequency response diagram 

should be verified a posteriori. Figure 9 shows the frequency response plots for comparing the LQR to the PID 

controller. Note that the crossover frequency was increased and the decay ratio in the high frequencies was reduced. In 

any way, even with PID, the robustness can be considered reasonable once the system exhibits 16 dB of gain margin 

and 66 degrees of phase margin. 
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Figure 9 – Frequency response (LQR x PID). 

 

Figure 10 shows the closed loop Bode diagram. From this figure, it is clear that the system results underdamped 

with a stopband of 1 Hz, approximately. 
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Figure 10 – Closed loop frequency response. 

 

The time domain performance of the PID controller is shown in figure 11 and 12. A reference signal filtered by the 

function F(s) has been used in the input in order to reduce the overshoot whenever the setpoint is abruptly changed. A 

step change of 0,1 rad ( 5,7º) in the setpoint has been applied at the simulation start and a 10V step disturbance has 

been added to the control signal after 5 sec in order to represent a constant torque wind. 
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Because of the filtering block in the reference sign, the radar system takes about 1.5 sec in order to the antenna 

position accommodates in its new value. On the other hand, the load disturbance is rejected at the steady state and the 

antenna positioning is reestablished in about 1 sec. 
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Figure 11 – Time domain performance of the PID controller. 

 

Figure 12 shows the control effort necessary during the maneuver described with the reference signal and for the 

rejection of the step type signal. The maximum voltage applied to the DC motor, about 28 Volts, suggests that PID 

controller design is compatible with the physical constraints of the problem. 
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Figure 12 – Control effort. 

 

To evaluate the parametric robustness of the designed control system, random changes in all model parameters have 

been made and simulated. Time domain responses remained quite satisfactory even in these cases. 

 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

 

6. CONCLUSION 

 

This work has shown some relevant aspects of the mechatronics design of a large radar-antenna set for weather 

applications. Although the control system seems to be the core of the radar design, control design is but one of the main 

concerns related to a consistent project (Armellini, 2006).  

For this prototype system, cheap controllers, as a PID or a LQR strategy, could be designed and implemented. The 

approach described in this paper allowed the transformation of a LQR controller to a high performance PID controller.  

The prototype is operating at the test site but many things remain to be proceeded as the structural analysis and the 

field control experiments. Field data acquired after installation of the weather radar on the tower is strongly disturbed by 

tower harmonics, which turns the carrying on of experiments no elementary task. 
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