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Abstract. All the time we are exposed to sounds. There are some pleasant such as music but also unpleasant as aero- 

traffic noise. In both cases it is desired to obtain control over the present sound. This means that research into 

behavior of sound sources is fundamental. Near-field Acoustic Holograph (NAH) is considered an important part in 

this research. With NAH it possible to visualize and even propagate sound-fields to any desired plane via pressure 

measurements in the near-field of sound sources. Description of the NAH theory, as other radiation problems, has its 

basis on the solution of the Helmholtz equation, whose result is a complex pressure field. This has been the subject of 

several studies which proposed different approaches of the NAH theory, usually dedicated to stationary events. 

However many industrial applications require processing in the time domain for moving source pass-by noise or time-

evolving system analysis. Typically the treatment involves the wave-number domain, where filtering makes it accurate, 

and a real-time visualization of the wave-number spectrum would be helpful to better understanding the phenomena. 

The aim of this work is to describe how the theory of NAH in current use may be implemented in a LabVIEW™ 

environment in order to obtain a continuous visualization of the pressure field on the source plane. 
 

Keywords: Aeroacustics, Nearfield Acoustic Holography, real-time processing, wavenumber domain, LabVIEW™ 

programming 

 

 

1. INTRODUCTION 

 

Noise level has become an important issue in current projects of the transportation industry. The legislation in most 

of the countries has been increasingly severe with the emitted noise level, aiming to enhance comfort and quality of life 

to operators, customers and people who live nearby the operational sites. In some fields, such as aeronautical, the 

concern with noise levels should override the legislation searching for quieter products, an important factor of selection 

to airliners and other customers. 

In this context, acoustics is present on two fronts: first, in the aircraft design, when, for instance, selected parts of the 

structure are reinforced to reduce vibration and hence noise levels; second, in the improvement of a product, seeking to 

identify and locate unpredicted noise sources. The latter, related to this work, is usually addressed by imaging methods 

that differ in accuracy and cost. Zani (2003) describes the main methods available today, which are summarized in 

Table 1, transcribed from the same reference. 

Willians et a.l (2000) explores in interesting way an application of holography in revealing sound-transmission paths 

from the engine to the interior space of a turboprop airplane. The study is performed through the determination of the 

normal velocity over a large area of the aircraft fuselage. 
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Figure 1: Aeronautical application of NAH – Willians et a.l (2000) 

 
Table 1: Major acoustic imaging methods according to Zani (2003). 

 
 Main advantages Main limitations Privileged application field 

Pressure 

cartography 

- Simple and low cost method 

- Wide range of frequencies (a few hertz 

to tens of  kHz) 

- Very low resolution 

- Requires long time 

acquisition 

- Not convenient unless 

for stationary sources 

- Method little widespread 

- Not convenient unless for 

measurements on anechoic 

chamber 

Intensimetry - Fairly high resolution 

- Low cost method 

- Wide range of frequencies (250Hz – 

3kHz) 

-Provides the noise 

level at a distance of 

the object (rather than 

at the source) 

- Fairly long 

acquisition (point by 

point) 

- Not convenient unless 

for stationary sources 

Buildings, automobile, 

measures in transmission 

(tests of acoustic 

transparency) 

Calculation of sound power 

Beam-

forming 

- High resolution in high frequencies 

- Wide range of frequencies (up to 

20kHz) 

- Functional for stationary sources or not 

- Quick measures 

- Measures of relative 

levels 

- Low resolution at low 

frequencies. 

Tests of complete vehicles 

in wind tunnel, outdoors 

mapping, in long distance 

from the object, location of 

mobile sources (airplanes in 

flight, noise passage of 

trains, etc.) 

Stationary 

holography 

- High resolution 

- Fast computation of many parameters 

(Pressure, power, speed, intensity, etc.) 

- Expensive method 

- Limited to stationary 

sources 

Automobile 

Calculation of sound power 

Non-

stationary 

holography 

- High resolution 

- Functional for stationary sources or not 

- Fast computation of many parameters 

(Pressure, power, speed, intensity, etc.) 

- Provides mapping at every moment 

(8192 times per second, for example) 

- Expensive method 

- Requires a large 

number of 

microphones 

Engine on test bench 

Cartography readjustment 

with respect to the 

crankshaft angle 

Calculation of sound power 

 

This article describe how the theory of NAH, usually dedicated to stationary events, may be explored in current 

computational environments to study non-stationary phenomena. The routine was developed in LabVIEW™ and is able 

to reconstruct the acoustic pressure field on the source plane continuously over the time, allowing variations in the 

sources to be perceived almost instantly. In this approach, all the data processing is performed in the wavenumber 

domain and brought to the time domain only to be displayed on the screen. 
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2. THEORETICAL DEVELOPMENT 

 

A detailed development of the theory of NAH may be found in Maynard (1985), as well as in Veronesi and 

Maynard (1987). This section aims to summarize the main points employed in the developed of the proposed routine. 

NAH involves finding the solution for the Helmholtz equation [Eq. (1)] with a specified Dirichtlet ψD or Neumann 

ψN boundary condition. As a simplification, the present work uses ψD(x,y) on the plane z = 0 as the boundary condition. 

Therefore, the solution of the Helmholtz equation is a two-dimensional convolution integral presented in Eq. (2) with 

Green’s function (GD), for an infinite plane boundary, given by Eq. (3). 

 

² + k² = 0, with k=2π/λ, where λ is the characteristic wavelength of the radiation (1) 

 

( , , ) ( , ) ( , , )D Dx y z x y G x x y y z dx dy 



          (2) 

 

3( , , ) (1 ) 2ikR

DG x y z z ikR e R  , where 2 2 2R x y z   . (3) 

 

Since the domain (kx, ky) is referred to a k space, and (x,y) is in real space, the application of convolution theorem to 

Eq. (2), using Fourier and inverse Fourier transforms, resumes to the expression for the pressure field, given by Eq. (4). 

The continuous, infinite two-dimensional Fourier transform of a function f(x,y) is given by Eq. (5) and its inverse is 

indicated by F
-1

. 

 
1 ˆˆ( , , ) [ ( , ) ( , , )]D x y D x yx y z F k k G k k z   (4) 

 

( )ˆ( , ) ( , ) x yi k x k y

x yf k k f x y e dxdy
  


    (5) 

 

The Fourier transform of GD in Eq. (3) is obtained analytically and resumes to Eq. (6) 

 

2 2 2 2 2 2

2 2 2 2 2 2

exp( ),
ˆ ( , , )

exp( )

x y x y

D x y

x y x y

iz k k k k k k
G k k z

z k k k k k k

    
 

    

 (6) 

 

It is observed that points (kx, ky) outside the radiation circle, given by k
2
= kx

2
+ ky

2
, indicates an exponential decay of 

evanescent waves, while points inside the radiation circle indicates the z-direction phase change of propagation plane 

waves. Assuming that ψ(x,y,zH) is known, Eq. (7) is developed and allows the reconstruction of the evanescent and 

propagating waves. 

 
1 1ˆˆ( , ) [ ( , , ) ( , , )]D x y H D x y Hx y F k k z G k k z    (7) 

 

According to Veronesi and Maynard (1987), “Once the source field ψD has been determined, all other properties of 

the field may be calculated […]. It should be noted that […] ψD(x,y) need not correspond to a physical source surface.” 

Actually, it is possible to generalize to the field between any two planes, one at z and the other at z0 located between 

zero (source plane) and z, the two-dimensional convolution integral, given by Eq. (2), therefore,  

 

0 0( , , ) ( , , ) ( , , )Dx y z x y z G x x y y z z dx dy 



           (8) 

 

“Since z>z0>0 and zero is the actual source plane, then the reconstruction processes may be referred to as the 

inverse propagation of a wavefront back toward the source.” (Veronesi and Maynard, 1987) 

 

2.1. Finite and discrete conditions 

 

The formulation previously described for the NAH problem assumes infinite planes and continuous fields. However, 

numerical evaluation of the formulas related to Fourier transforms, Eq. (2) or Eq. (5), requires finite, discrete 

operations, whose limitations are evaluated either by experimental data acquisition or by computation time and 

capacity. To make the numerical computation possible, some assumptions must be made. 
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First, the sources of the wavefield are such that the boundary data ψD(x,y) are negligible outside of some finite 

domain (–L/2<x<L/2 and –L/2<y<L/2) in real space, reading to Eq. (9). 

 
/ 2

/ 2
( , , ) ( , ) ( , , )

L

D D
L

x y z x y G x x y y z dx dy 


          (9) 

 

As a second assumption, the pressure field ψ may be well described with a discrete, as well as finite, set of numbers. 

This can be “a data set from experimental measurements at lattice points in real space or the coefficients of a 

superposition of basis functions” (Veronesi and Maynard, 1987). We adopt in this work that the LxL real space domain 

is shared into N
2
 patches of size (L/N)x(L/N), labeled with integers l,m = 0,1,…,N-1, and “the discrete set of data 

ψD(l,m) is assumed to be the average of the actual boundary field over the patch” (Veronesi and Maynard, 1987). 

Following the assumption of the previous paragraph, Eq. (9) reads: 

 
1 1

2 2

2 2
0 0

( , , ) ( , ) ( , , )
l m

l m

N N
x y

D D
x y

l m

x y z l m G x x y y z dx dy 
 

 

 
 

         (10) 

 

( 1 2 2)lx l N    , where ∆ = L/N. (11) 

 

( 1 2 2)my m N    , where ∆ = L/N.  (12) 

 

Finally we assume it is sufficient to evaluate the field ψ in any plane z at discrete points (xp,yq), defined by Eq. (10) 

for integers p,q = 0,…N-1. Also, defining variables u = xp – x, v = yq – y, Eq. (13) is obtained with integers l,m,p,q = 

0,…,N-1. For ψ(x,y,z) = ψ(xp,yq,z), the radiated field may be expressed by Eq. (14), which is the discrete and finite 

version of the Rayleigh integral [Eq. (1)]. 

 
2 2 ( 1 2) ( 1 2)

2 2 ( 1 2) ( 1 2)
( , , ) ( , , ) ( , , )

l m

l m

x y p l q m

D p q D D
x y p l q m

G x x y y z dx dy G u v z dudv G p l q m z
       

       
             (13) 

 
1 1

0 0

( , , ) ( , ) ( , , )
N N

D D

l m

p q z l m G p l q m z 
 

 

    (14) 

 

The discrete convolution in Eq. (14) is readily evaluated and inverted using the convolution theorem and Fourier 

transform (usually the Fast Fourier Transform algorithm). Most treatments of the discrete, finite convolution theorem 

assume that both arrays to be convolved are either periodic or zero for indices outside the range 0,…, N-1. However, in 

the discrete convolution in Eq. (14), one of the arrays, ( , , )DG p l q m z  [Eq. (13)] may be evaluated for all integers 

l,m,p,q, once the Green’s function GD(u,v,z) may be analytically obtained over an infinite domain. Concerning this 

feature, the discrete convolution theorem can be modified to extend the sequence ( , )D l m  , which is defined only for 

integers (l,m) in (0, N-1), over a (2N)x(2N) domain, by adding zeros (process know as Zero Padding). Hence the new 

sequence reads: 

 

( , ), 0 0
( , )

0, 2 2

D

D

l m if l N and m N
l m

if N l N and N m N




   
  

   
 (15) 

 

The discrete Fourier transform DFT{ f } of array (l,m) in (0, 2N-1) is defined (for μ,v = 0,1,…, 2N-1) by Eq. (16) and 

its inverse expressed by Eq. (17). 

 

 
2 1 2 1

( )( )

,
0 0

( , )
N N

i N l mv

v
l m

DFT f f l m e  



 
 

 

    (16) 

 

 
2 1 2 1

( )( )

2,
0 0

1
( , )

4

N N
i N l mv

l m
v

IDFT F F v e
N

 




 

 

 

    (17) 

 

Thus, the finite discrete convolution (14) reads to Eq. (18) Where DG  is given by Eq. (19). 
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   ( , , ) [ ( ) ]D Dp q z IDFT DFT DFT G z     (18) 

 

( , , ) 0 0

( 2 , , ) 2 0
( , , )

( , 2 , ) 0 2

( 2 , 2 , ) 2 2

D

D

D

D

D

G l m z if l N and m N

G l N m z if N l N and m N
G l m z

G l m N z if l N and N m N

G l N m N z if N l N and N m N

    


    
  

    
      

 (19) 

 

2.3. Application 

 

In order to simplify the problem formulation, the projection (zF), the hologram (zH), and the source (zS) planes are, 

initially, considered infinite and continuous. The assumption of zH = zS can also be made, with the holographic images 

showing the reconstructed pressure field on the source plane. Hence, as input data to the program, the function 

(x,y,zH,t) is given as function of time and position (x,y) on the hologram plane (zH).  

The next steps consist in applying a Fourier Transform, to obtain in the frequency domain – Eq. (20) – and a 2D 

spatial Fourier Transform over a selected frequency (ω0), taking the function from spatial domain (x,y) into the 

wavenumber domain (kx,ky), as presented in Eq. (21) 

 

0

ˆ ( , , , ) ( , , , ) i t

F Fx y z x y z t e dt  


   (20) 

 

( )

0 2 0 0
ˆ( , , , ) ( , , , ) ( , , , ) x yi k x k y

x y F D F Fk k z F x y z x y z e dxdy    


 



     (21) 

 

Then the propagation from the zF to the zS can be evaluated using the Green’s function G(kr,d,ω0), and since zH = zS, 

we obtain Eq. (22) where d is the distance between the planes and the wavenumber kz is given by Eq. (23) 

 

0 0 0 0( , , , ) ( , , , )exp( ) ( , , , ) ( , , )x y F x y S z x y S rk k z k k z ik d k k z G k d          (22) 

 
2 2 2 2 2 2

0 0 ( )z r x yk k k k k k      (23) 

 

Green’s function depends on the relation between the values of kr and k0. If kr is larger than k0, we have G(kr,d,ω0) 

as a real exponential equation, related to the evanescent waves. Otherwise, Green’s function is a complex exponential, 

which behaves as a sinusoidal function, related to the propagating waves. This can be expressed as, 

 

 

 

2 2 2 2

0
2 2 2 2

exp ,

( , , )

exp ,

r r

r

r r

id k k k k

G k d

d k k k k



  


 
   


 (24) 

 

However, what concerns for the pressure field reconstruction is the inverse propagation of the data from zH to the 

plane of source zS. This is obtained using the inverse Green’s function: 

 

0 1

0 0 0

0

( , , , )
( , , , ) ( , , , ) ( , , )

( , , )

x y F

x y S x y F r

r

k k z
k k z k k z G k d

G k d

 
    



   (25) 

 

A filter is added to reduce the influence of evanescent waves with very intense values, using a Veronesi’s filter, 

which depends on the relation between values of kr and a parameter kc chosen by the user, with typical value kc = 

0,6kmax. This can be expressed as: 

 
1

0 0 0( , , , ) ( ) ( , , , ) ( , , )S r x y F rx y z W k k k z G k d       (26) 
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  

  

exp 1
1 ,

2
( )

exp 1
,

2

r c

r c

r

r c

r c

k k
k k

W k
k k

k k





 
 


 




 (27) 

 

Now that we have the data filtered and already treated with the inverse propagation, it is possible to submit 

0( , , , )x y Sk k z   to an inverse SFT-2D, giving the pressure field on the source plane, namely, the holographic images, 

represented here by, 

 

( )1

0 2 0 0
ˆ ( , , , ) ( , , , ) ( , , , ) x yi k x k y

S D S x y S x yx y z F x y z k k z e dk dk    


 



     (28) 

 

Equation (26) shows that the Veronesi’s filter and Green’s function are expressions that multiply the function 

0( , , , )x y Sk k z  . It seems, at least theoretically, the order in which the two terms are inserted in the expression is not 

important. However, the routine built in LabVIEW first presents the filter signal, and then makes the inverse 

propagation. This is the sequence shown in Figure 2. 

 

 
 

Figure 2: Program block diagram for each holographic image. 

 

All the steps given in Figure 2 are related to one holographic image, this is why all the theory previously described 

is the same as for stationary NAH. It means that the “illusion” of continuity is produced by showing several images of 

stationary NAH in a short period of time. 

 

3. PROGRAM IMPLEMENTATION 

 

Let us start describing the main part of the program (“kernel”) that executes the manipulation of the acquired signal in 

the wavenumber domain. It is related to Eq. (7), being responsible for filtering (Veronesi, Tikhonov, etc) and inverse 

propagation processes (Green's function). The last one leads to the reconstruction of the wavenumber spectra on the 

source plane and is characterized by a function in space that multiplies the signal already filtered, regarding whether the 

wave is propagating or evanescent. All this is exemplified by the “data treatment” box in Figure 3, which also shows the 

main steps between the acquired signal and the holographic image in a simple manner.  

 
 

Figure 3: Sketch showing the data treatment (kernel) layout and some primary tools suitable to the solution of the 

holographic image visualization. 
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Initially a Short-time Fourier Transform (STFT) is performed over the signal, followed by a Fast Fourier Transform 

(FFT), the data treatment, and eventually by another space transformation (inverse FFT), after which it is possible to 

visualize the holographic images. The idea is to take data from time domain into wavenumber domain, where the kernel 

is evaluated, and return to exhibit the complex pressure filed on the source plane. It is important to remind that while the 

STFT is executed over the signal of each microphone, the FFT is over the signal of the antenna as a whole (Spatial 

Fourier Transform) and it is performed for a pre-defined frequency. 

Differently of what was exposed in item 2, the source and measurement planes are considered finite and discrete. 

The FFT function of LabVIEW is capable to perform properly the discrete transformation. However it is interesting to 

attenuate the discretion on the exhibition of holographic image, which is performed here through data interpolation. 

Also it is necessary to smooth the effects of truncated information (Veronesi and Maynard, 1987 as well as Pascal, 

2005). That is carried out by adding a mesh of zeros around the data of the measurement plane (zero padding). Figure 4 

gives a more complete diagram of the process executed by the routine. 

 

 
 

Figure 4: Program block diagram for each holographic image. 

 

As previously stated, the routine performs the NAH process in sequence. This way, the whole structure described in 

Figure 4 is inside a while routine, so that each loop receives the signal acquired and return a holographic image. What 

makes the visualization looks like a “time-continuous” one is the rate of images plotted, i.e., how fast a loop is closed. 

Iwamura and Matias (2007) describes in details the routine developed, assessing the resources available in the 

LabVIEW™ environment and the approaches employed.  

 

4. RESULTS AND DISCUSSIONS 

 

The routine was developed to acquire, process and display data almost in real time. As it was not possible to set up 

an experimental arrangement to test the routine developed, we propose some numerically experiments to verify the 

program capacities. 

However, building a source function to simulate the acquisition data in NAH is not as evident as it might seem at the 

beginning. Some features, as the distance between the source and each microphone, must be calculated, as well as phase 

changing, due to a different time-delay depending on the microphone position in the mesh.  

The available source signal is based on a sinusoidal signal conformed by a hyperbolic secant function. The 

hyperbolic secant function was chosen because it is a decreasing curve similar to a negative exponential one, with the 

advantage of being an even function with a smaller derivative. The signal read by the microphones from each source is 

expressed by Eq. (29) where (x, y) are the microphone location on the antenna plane. 

 

 0

0

sin 2 .( ) ( , )
( , ) .sec

( , )

f t t R x y
S x y h t t

R x y c




   
    

  
 (29) 

 

Term t0 in Eq. (29) is equal to the initial delay, defined in the program as 7s. The third term in the secant function is 

related to the position of the microphone in the antenna, and R(x,y) is the distance between the microphone and the 

source. Two sources are employed in the tests simulating signal emission for a squared array of 256 microphones 

displaced 8 cm from the source. Tests were run in a PC Pentium® IV with 512 Mb of available RAM memory. 
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4.1. Influence of Veronesi Filter 

 

The theory of NAH succeeds in achieving a resolution greater than other stationary methods due to the processing of 

evanescent waves. However it is necessary to control the signal retropropagation to avoid the amplification of 

interferences on the measurements. In this work it was chosen the Veronesi filter to work on this topic. According to 

Pascal (2005a), filtering parameters are usually determined experimentally and only recently some methods have been 

proposed to determine them automatically (Williams, 2001). 

The next two figures correspond to a pair of sources located at (0,2;0,4) and (0,3;0,3), delayed 2s. Figure 5 shows 

the acoustic pressure field on the antenna plan and on the source plan, without any filtering process and taken almost in 

the same instant of the previous figures t ≈ 5,4s. The hologram of the field retropropageted permits to identify clearly 

the two noise sources; however, the pressure amplitude on the source plan is almost 17 times higher than pressure on 

measurement plan, which is positioned only 6 cm ahead. These results corroborate with the statement of filtering 

necessity. 

It is observed the similarity among the images and, at the same time, the great differences in the amplitude values. In 

fact, the similarity is consequence of the amplitude limits adjustments and a calibration is necessary to determine the 

best filtering parameters. Here it is not possible to point the more adequate parameters, but Figure 5 to Figure 7 will 

give an idea of how filtering influence the results. 

 

  
 

Figure 5: Pressure field on the antenna plan and on the source plan without filtering. 

 

  
 

Figure 6: Pressure field on the source plan, for kc = 0,6kmáx and S = 0,2 (Left) 

Pressure field on the source plan, for kc = 0,89kmáx and S = 0,2 (Right). 

 

  
 

Figure 7: Pressure field on the source plan, for kc = 0,39kmáx and S = 0,22 (Left). 

Pressure field on the source plan, for k = 0,6kmáx and S = 0,9 (Right). 
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4.2. Influence of the parameter of the STFT function 

 

Developing a STFT function specifically was considered beyond the scope of this work and the STFT function 

available in LabVIEW™ is employed (see Iwamura and Matias (2007) for more information) 

Some input parameters are requested to define the window and sampling of the STFT. Generally, the higher are the 

values of theses parameters the lower is the processing speed. The window type does not seem to interfere much in the 

processing and throughout the tests the rectangular window was used, since it is the simplest one. 

The greatest differences on time-processing occurs when time-increment is decreased without changing the window 

length or the opposite, increasing window length without increasing the time-increment proportionally. The frequency 

interval also increases considerably the time-processing. Doubling its value would result, for instance, in a time-

processing 10% higher. We have successful used a simple rule to define these parameters: the frequency interval was 

half of the time increment and this was half of the window length. 

The quality of the results should decrease only when the length window or the frequency interval is reduced to a few 

tens. However the amplitude may vary with the parameters and would require different calibrations. 

Eventually, Pascal (2005a) suggests the utilization of Hanning window to perform the STFT in order to avoid 

distortions. Though, a further study would be necessary to determine the influence of window type in this routine. 

Figure 8 brings the same configuration of the hologram of Figure 6 for comparison. 

 

 
 

Figure 8: Hologram produced utilizing a Hanning window. Instant t ≈ 5,4s, kc = 0,6kmáx and S = 0,2. 

 

 
4.3. Boundary effects 

 

The application of zero padding is intended to minimize processing errors due to data discretizion and finite aperture 

of the hologram. These are named Wraparound error by Maynard (1985). Here some distortions on positioning a source 

on the boundary of the hologram are illustrated in Figure 9. Other boundary effects due to the pressure field truncation, 

not approached here, are illustrated in Pascal (2005a). A method to deal with these errors is proposed in Thomas and 

Pascal (2005) and may be easily implement in the routine. 

 

 
 

Figure 9: Distortions due to the boundary effects circled in red. 
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5. FINAL CONSIDERATIONS 

 

The numerical tests performed indicate the routine is already adequate to run experimental trials. Little 

modifications will be necessary to include the acquisition subroutine and to adjust its output data to the format 

compatible to the rest of the program. Maynard (1985), Bös and Kurtza (2005) might be useful for designing the 

microphone array and setting the experimental arrangement. 

The STFT function might be rewritten to optimize the visualization frame rate, which currently is about 10 images 

per second without using interpolation. The interpolation tool is another function that could be developed specifically 

for this routine in order to enhance its performance. Other improvements that could be implemented are a subroutine to 

save input data for future studying or even processing, an indicator of frequency spectrum captured by the microphones 

and an interface that allowed modifying the selected frequency while acquiring data. That would require calculating the 

green and the filtering matrices during the data processing, what may decrease the image frame rate if not well 

implemented. 

Eventually calculation of other parameters of the acoustic field (e.g. power, magnitude and speed) as well as filters 

(Tikhonov) could be added. This could increase the utility of the program for areas beyond the acoustics, such as 

materials and structural dynamics. The efforts to develop the routine in modules will also contribute to simplify the 

implementation of these modifications. 

 

6. LIST OF ABBREVIATIONS 

 

DFT  Discrete Fourier Transform 

FFT  Fast Fourier Transform 

IDFT Inverse Discrete Fourier Transform 

NAH Nearfield Acoustic Holograph 

RT-NAH Real-Time Nearfield Acoustic 

Holograph 

SFT  Spatial Fourier Transform 

STFT Short-Time Fourier Transform 

TC-NAH Time Continuous Nearfield Acoustic 

Holograph 
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