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Abstract. This work is part of an ongoing research aimed at establishing a quasi-comprehensive foundation of Boltz-
mann equation in order to support a numerical implementation of the Lattice Boltzmann Method (LBM). It has focus on
providing basis for the preliminary studies on differential equations mostly suitable to describe multiphase flow models
and, at a further stage, to help foreseeing solutions to morecomplex flows like a particulate immersed in a fluid under
the action of a magnetic field. Notwithstanding the goal stated above, this work has the sole purpose of fostering the
connection by allowing an interchange of techniques consisting in applying methods of the macroscopic domain to the
field of statistical physics so as to retrieve the very well known type of formula obtainable through the use of transport
equations. That means transport equations commonly used under a stated principle governing experimentally observed
phenomena only meaningful for applied sciences and engineering, to be used in the microscopic domain and described
in terms of the phase space. This may be undertaken by establishing parallel quantities based on the similarity of roles
they play in their original domains. The simplest example that could be mentioned is the Liouville equation describing
the dynamical behavior of the density function along a system trajectory. It may be derived accordingly by applying the
conservation principle to the number of points of a given ensemble in place of the mass of a labeled system, without
mentioning any feature related to canonical transformation or joint probability density functions. Besides fostering the
comparison of different approaches, the proposed method ofinterchanging techniques wills also bring about discussion
of key issues related to fluid dynamics and statistical physics/mechanics.

Keywords: microscopic description; macroscopic; lattice Boltzmann; statistical mechanics.

1. INTRODUCTION

The most suitable way to introduce the present work is by calling the expressionthe Triumph for the Mechanics, which
can be found in the textbook on classical physics written by Caruso and Oguri (2006), which embodies the conception that
it is possible to explain the molecular chaos from the order and certainty. This conception is fostered by the fact that the
description of the Brownian motion, for instance, consisting in random displacements of particles immersed in a liquid,
can be supported by the Newton Laws applied to the collisionsbetween the constituent particles of the liquid and those
immersed.

On the other hand, the apparent order observable from a macroscophic system and its physical properties are implied
by an underneath chaos, and this is easily conceived when onethinks of a steady motion of a piston as a result of the
pressure the confined gas exerts on the boundaries of a cylinder, allowing us to conceive that such a steady motion results
from chaotic molecular collisions, i.e. one can deduce macroscopic fluid flow and interpret the resulting effects from the
microscopic models by assuming probabilities instead of certanties and partial or uncorrelated states in every part ofthe
domain.

The two preceding paragraphs contribute to strengthen the acceptance of the underneath relationship between the con-
cepts of the kinectic theory, a branch of statistical physics, and macrocopically observable physical phenomena. However,
besides the relationship between the steady motion rendered by a macroscopic volume of gas and the associated system
comprising a very large number of molecules (say,1020) moving in a rather irregular way, connections can also be es-
tablished for the interchange of principles and methods between the domains of study pertaining to Fluid Mechnics and
Statistical Physics.

The last type of connection also provides hints about a suitable establishment of the Boltzmann equation aimed at
achieving the optimization of the computational effort androbustness of the numerical implementation of the Lattice
Boltzmann Method (LBM) which is based on the molecular theory for fluid flows.

2. BASIC PRINCIPLES AND RELEVANT EQUATIONS

The relevant equations for this work pertains to continuum mechanics, classical mechanics with phase space-related
concepts and kinetic theory. They will be written in this order.
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2.1 CONTINUUM MECHANICS

As this work has its focus on the comparison of kinematic features of transport equations for hydrodynamic variables
of a macroscopic flow, while in the domain of continuum mechanics, and the ones forn-body distribution functions, while
in the domain of statistical physics, the key equations willbe written with no mention of any adhoc model usually applied
to describe the microestructures.

2.1.1 Reynolds’ transport equation

The Reynolds transport theorem and associated equation will be directly applied to the purpose of this work. Although
this equation can be in classical textbooks like Batchelor (2006) and Slattery (1972), it will be written here for the sake
convenience.

i) First form:

DΨ

Dt
=

D

Dt

∫

vm

ψdϑ =

∫

vm

∂ψ

∂t
dϑ+

∫

sm

ψu.ndS. (1)

ii) Second form (stems from the surface integral transformation):

DΨ

Dt
=

D

Dt

∫

vm

ψdϑ =

∫

vm

[

∂ψ

∂t
+ ∇.(ψu)

]

dϑ. (2)

iii) Third form (stems from the development of ∇.(ψu)):

DΨ

Dt
=

D

Dt

∫

vm

ψdϑ =

∫

vm

[

Dψ

Dt
+ ψ∇.u

]

dϑ. (3)

In these equationsD/Dt denotes material derivative,Ψ denotes any extensive property of a selected portion of fluid,
ψ denotes any specific property of the fluid (the amount ofΨ per unit volume of the fluid),t denotes time,u denotes
the velocity field,vm denotes the material volume,sm denotes the boundary of the material volume,n denotes the unit
normal vector pointing outwards the surface element,dϑ denotes the material volume element anddS denotes the material
surface element. The relationship between a given specific propertyψ and its corresponding intensive or local property
(the amount ofΨ per unit mass of the fluid) may be given byψ = ρθ, whereθ denotes the intensive property, andρ is the
fluid density. Note that ifρ is the selected specific quantity, thenθ is unity.

2.1.2 Conservation laws of continuum mechanics

From Batchelor (2006) the laws of continuum mechanics statethat the total amount of some extensive quantity as-
sociated with a material body of fluid is either invariant or change under the action of known external influences. This
statement is mathematically written by applying a concerned principle which governs the time change rate of material
integrals expressed by any of the equations (1) or (2) or (3).The resulting differential equations are obtaned by applying
the fundamental Lemma of Calculus to the integrands.

i) Mass conservation equation or equation of continuity. Expresses the mathematical statement of conservation mass
of a selected portion of fluid (labeled material body):

∂ρ

∂t
+ ∇.(ρu) =

Dρ

Dt
+ ρ∇ · (u) = 0. (4)

ii) The equation of motion (Cauchy’s equation). Expresses the mathematical relation equating the rate of change of
momentum of a selected portion of fluid to the sum of all forcesacting on that portion of fluid:

ρ
Du

Dt
−∇ · σ − ρb = 0. (5)

whereσ denotes the stress tensor andb denotes volume force per unit mass fo fluid. The energy equation is not relevant
to the purpose of the present work.

2.2 CLASSICAL MECHANICS

Engineers quite often have to deal with systems discribed bya large number of coordinates. To obtain the differential
equations for such systems one may employ transformation techniques for mapping the physical system onto the so-
calledconfiguration spacecomprising the minimum number of independent parameters necessary to uniquely determine
the system trajectory. The resulting independent parameters are called degrees of freedom or generalized coordinates.
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2.2.1 Lagrangian formalism

ConsiderN -particle system. The set of tranformations that maps the physical space onto the configuration space is
given by:

ri = ri(q1, q2, ...., qn, t) i = 1, ...., N, (6)

ṙi =

n
∑

k=1

∂ri
∂qk

q̇k +
∂ri
∂t
, k = 1, ...., n and (7)

δri =

n
∑

k=1

∂ri
∂qk

δqk. (8)

In the equations (6), (7) and (8)ri andṙi denote, respectively, the radii vector and velocity vectorof theith particle,
δri denotes the virtual vector displacement in actual physicalspace,qk labels thekth generalized coordinate,q̇k labels the
kth generalized velocity,δqk denotes the infinitesimal virtual change in thekth generalized coordinate andn denotes the
number of degrees of freedom.

The total number of defining coordinates minus the number of equations of kinematic constraints equalsn. As the
virtual change excludes time change, the timet does not appear explicity in the equation (8). It must be emphasized that
by virtual change one means a virtual variation in the configuration (spatial variation only) of the original system in actual
physical space, compatible with force and kinematic constraints. From the equation (8),ṙi is a function ofqk andq̇k.

The key principles from which the differential equations for the system can be derived are theD’Alambert’s Principle
andVirtual Works Principle, respectively:

Fi + F̃i −mir̈i = 0 i = 1, ..., N and (9)

N
∑

i=1

(

Fi + F̃i −mir̈i

)

· δri = 0. (10)

where in the equation (9)Fi denotes the force applied to theith particle,F̃i denotes the force constraining the motion of
theith particle andmi is the mass of theith particle. Remarkable comments on the equation (9): it corresponds to another
way of writing the Newton‘s second law (representing the so-called dynamical equilibrium), and the net force acting on
each particle vanishes. The equation (10) represents the sum of virtual works done by the net force acting on each particle,
emphasizing that the virtual work done by constraint forceF̃i vanishes.

The set of differential equations (the so-called Lagrange’s equations) necessary to describe the dynamics of the system
is obtained by substituting the equation (8) into equation (10). An overwhelming algebraic manipulation, which can be
found in books on classical mechanics like Azevedo (1976) and Meriam (1966), renders the Lagrange’s equations and the
generalized force for each degree of freedom:

d

dt

(

∂L

∂q̇k

)

−

(

∂L

∂qk

)

= Qdk k = 1, .., n, (11)

L(qk, q̇k) = T (qk, q̇k) − U(qk) , (12)

T =
1

2

N
∑

i=1

miṙi.ṙi) , (13)

Qck =

N
∑

i=1

Fci.

(

∂ri
∂qk

)

= −
∂U

∂qk
and (14)

Qdk =
N

∑

i=1

Fdi.

(

∂ri
∂qk

)

. (15)

In the equations (11), (12), (13), (14) and (15):L denotes Lagrangian function (or kinetic potential),T denotes the
kinetic energy,U denotes the potential energy function,Fci denotes conservative force acting onith particle,Fdi denotes
non-conservative force acting onith particle,Qck denotes thekth generalized conservative force andQdk denotes thekth
generalized non-conservative force (both associated to thekth degree of freedom).
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2.2.2 Hamiltonian formalism

A third variational principle which also provides means forfinding the differential equations of motion of a dynamical
system isHamilton’s Extended Principle. This principle, also derived from the equation (10), rewritten as follows:

δT + δW =
N

∑

i=1

mi

d

dt
(ṙi.δri) , (16)

which renders, after time integration from timet1 to timet2:

∫ t2

t1

(

δT + δW
)

dt = 0 . (17)

The equation (17) is the statement ofHamilton‘s Extended Principle. Further development from this principle with
δW = −δU + δWd yields:

∫ t2

t1

δLdt = −

∫ t2

t1

n
∑

k=1

Qdkδqkdt. (18)

For holonimic and conservative systems (δWd =
∑n

k=1
Qdkδqk = 0) one gets the statement ofHamilton’s Principle:

δI = δ

∫ t2

t1

Ldt = 0. (19)

In the equations (16), (17), (18) and (19)δW denotes the sum of virtual works done by the external forces,δWd denotes
the sum of virtual works done by non-conservative forces andI denotes the action integral. Remarkable comments on
Hamilton’s Principle: it selects the correct (optimal) dynamical path from all possible paths followed by the system in
configuration space . In other words it is aprinciple of least actionwhich renders the stationary value toI as implied in
the equation (19).

2.2.3 Hamilton’s equations and phase space

Let us write the equation (11) in the form:

d

dt

(

∂L

∂q̇k

)

=

(

∂L

∂qk

)

+Qdk k = 1, .., n, (20)

and also define the quantitypk:

pk ≡

(

∂L

∂q̇k

)

. (21)

Thus, from the equation (20):

dpk

dt
=

(

∂L

∂qk

)

+Qdk. (22)

In these equationspk represents a kind of generalized linear momentum. For the sake of presenting the building blocks
of statistical physics, let us introduce the 2n-dimensional cartesian space(q1, ..., qn, p1, ..., pn), which is also calledΓ-
space or phase space, where the state of the system at any given instant is a single point, and the energy-related dynamical
variableH̄. Let us assign the following relationship betweenH̄ and the Lagrangian functionL:

H̄(qk, pk) =

n
∑

k=1

(

∂L

∂q̇k

)

q̇k − L(qk, q̇k) =

n
∑

k=1

pkq̇k − L(qk, q̇k). (23)

The differential equation for̄H may be derived by differentiating (23) and taking into account the equation (20), (21)
and (22). Thus:

∂H̄

∂qk
= −ṗk +Qdk and (24)
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∂H̄

∂pk

= q̇k . (25)

By adopting a similar procedure, the time rate of change of the quantityH̄ yields:

dH̄

dt
=

n
∑

k=1

Qdkq̇k. (26)

The equation (26) is a statement that ifQdk 6= 0, the energyH̄ of the system increases or decreases as the motion
of the system unfolds in time and the integralI, as implied in the equation (19), would not assume a stationary value
(extremum). On the other hand, ifQdk = 0 for k = 1, ..., n (conservative system) then̄H = H so the equations (24) and
(25) are reduce to:

∂H

∂qk
= −ṗk and (27)

∂H

∂pk

= q̇k. (28)

whereH is the Hamiltonian function (a constant of the motion or integral of the system), equations (27) and (28) are
called Hamilton’s equations andpk is called canonical momentum or momentum conjugate to the the coordinate of the
system. The dynamical orbit of the system (one-dimensionallocus or system trajectory) is a curve the (2n+1)-dimensional
cartesian space(q1, ..., qn, p1, ..., pn, t), which is called̃Γ-space. Integration of equations (27) (28) yields the stateof the
system specified by 2n constants of motion.

Regarding the key elements of classical mechanics so far derived the following assumptions are relevant:

i) the force fields are conservative (Qdk = 0),

ii) the systems are holonimic where the equations of kinematic constraints are time independent,

iii) the HamiltonianH (an integral of the system) is an not an explicit function of time, and

iv) the Hamilton’s equations are strictly kinematic and suitable to define operators in phase space.

3. FINDING CONNECTIONS

To achieve the intended connections the first step is to introduce the general equation of motion for a given dynamical
variableΞ = Ξ(q,p, t) in Γ̃-space. Then we write:

dΞ

dt
=
∂Ξ

∂t
+
∂Ξ

∂q
· q̇ +

∂Ξ

∂p
· ṗ =

∂Ξ

∂t
+
∂Ξ

∂q
·
∂H

∂p
−
∂H

∂q
·
∂Ξ

∂p
=
∂Ξ

∂t
− LnΞ and (29)

Ln =
∂H

∂q
·
∂

∂p
−
∂H

∂p
·
∂

∂q
=

n
∑

k=1

[

∂H

∂qk

∂

∂pk

−
∂H

∂pk

∂

∂qk

]

. (30)

where the substitution of equations (27) and (28) is implied. HereLn denotes the Liouville’s operator and the symbol (.)
denotes the inner product suitably defined inΓ̃-space. Sometimes, depending on the context and convenience, the inner
product will replace the sum

∑n

k=1
overk. The operatorLn may also be rewritten asLn = 〈H, 〉, where〈H, 〉 is called

Poisson bracket notation.

3.1 KINEMATIC OF PHASE SPACE VERSUS KINEMATIC OF CONTINUUM MECHANICS

Equations (29) and (30) clearly show that the convective rate of change ofU in the phase space, herein played by -L̂n,
stems from the Hamiltonian functionH provided thatH is an integral of the system.

Consider now the material derivative operatorDΨ/Dt applied to the extensive propertyΨ previously defined in
Subsubsection (2.1.1):

DΨ

Dt
=
∂Ψ

∂t
+ u · ∇Ψ. (31)

The comparison between the equations (29) and (31) calls forLn = - û · ∇. This comparison is attainable provided
thatH is an integral of the system. In order to avoid confusion, thevelocity fieldu is defined for a given actual physical
space, whereas the velocity fieldsq̇ = (q̇1, ..., q̇n) (generalized velocities) and̂u = (q̇1, ..., q̇n, ṗ1, ..., ṗn) are defined for
the correspondent configuration space and phase space, respectively. The operator∇ must be accordingly written:

∇ =

(

∂

∂q1
, ...,

∂

∂qn
,
∂

∂p1

, ...,
∂

∂pn

)

. (32)
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3.2 DERIVATION OF THE LIOUVILLE’S EQUATION THROUGH CONTINUUM CONCEPTS

The algebraic similarities between the kinematics of actual physical space and phase space helps us to identify the
restrictions to be imposed on the construction of the integral functionH so as to render the kinetic and momentum
operators that make frequent appearance in governing differential equations of statistical physics

Now let us foster the connection by deriving the so-called Liouville’s equation through an approach which combines
the transport equation (2) and conservation principle in phase space (this will require some abstraction). Consider a sys-
tem point moving on the system trajectory(q1(t), ..., qn(t), p1(t), ..., pn(t)) in phase space, as time evolves. Now imagine
a large number of mental copies of the same system, sayη. This abstract collection of replicas (η systems) is called an
ensemble. In fluid mechanics streamlines of a flow never cross, and likewise in phase space system trajectories never
cross. This follows from the fact that for a system withn degrees of freedom the system trajectory (given by the equations
(27) and (28)) is uniquely determined by 2n constants of motion(q(0),p(0)) = (q1(0), ..., qn(0), p1(0), ..., pn(0)), that
is, only one system trajectory passes through(q(0),p(0)). In fluid mechanics we apply the mass-conservation principle
to a selected portion of fluid, and likewise in phase space, wecan also apply a correspondent ensemble-conservation
principle, which states that number of system points of a given ensemble remains constants as the motion unfolds in time.
Each system comprises a system trajectory (a system point moving along it), whereas an ensemble comprisesη system
trajectories (orη system points moving along them).

Let us define the dynamical fuctionD(q,p, t), the number of system points per unit phase volume, written as follows:

D(q,p, t) =
dη

dΩ
. (33)

wheredΩ denotes the phase volume element, written as:

dΩ ≡ dqdp =

n
∏

k=1

dqkdpk. (34)

Thus, the productD(q,p, t)dqdp ≡ D(q,p, t)dΩ represents the number of system points in the phase volume
elementdΩ about the system point(q,p), at the timet

SinceD(q,p, t) represents the ensemble density function, it enjoys the property that, apart from a multiplicative
constantξ, it may be defined as a joint probability density functionfn(q,p, t) as follows:

fn(q,p, t) =
D(q,p, t)

ξ
, ξ =

∫

Ω

D(q,p, t)dqdp. (35)

WhereasD(q,p, t) is relevant to the entire ensemble,fn(q,p, t) addresses a single system of the ensemble. Here
fndqdp means the probability of finding a given system of the ensemble in the phase volumedqdp, about the state(q,p),
at the instantt. Althoughη andξ hold the same meaning, the latter has been adopted for the sake of normalizing. From
the equation (35) is clear thatfn(q,p, t) is the normalized joint probability density function:

∫

Ω

fn(q,p, t)dqdp = 1. (36)

For detailed explanation of statistical physics-related concepts, the reader is advised to look up textbooks like Balescu
(1963), (Liboff), Harris (1971) and Salinas (1999). Now we have enough elements elements in phase space so as to
derive the Liouville’s equation through the ensemble-conservation principle combined with the transport equation (2)
with assumptions and quantities appropriately adapted to the phase space:

i) η is the extensive property in phase space (η replacesΨ),

ii) fn is specific property in phase space (fn replacesψ = ρ in this case),

iii) the Liouville’s equation plays the role of continuity equation in phase space, and

iv) the intensive property is reduced to unity (fn = fnθ ⇒ θ = 1),

Thus, adapting the transport equation (2) to these quantities in phase space:

Dη

Dt
=

D

Dt

∫

Ω

fndΩ =

∫

Ω

[

∂fn

∂t
+ ∇ · (fnû)

]

dΩ = 0. (37)
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The equation (37) states that the number of system points of agiven ensemble are neither created nor destroyed. By
virtue of the arbitrariness ofΩ, the integrand of this equation is identically zero everywhere in the selected ensemble.
Hence:

∂fn

∂t
+ ∇ · (fnû) = 0.. (38)

Algebraic manipulation of the operator∇ defined by equation (32) gives:

∇ · (fnû) = fn∇ · û + û · ∇fn. (39)

Now developing the term∇ · û with the aid of the equations (27) and (28) gives:

∇ · û =
n

∑

k=1

[

∂q̇k
∂qk

+
∂ṗk

∂pk

]

=
n

∑

k=1

[

∂

∂qk

(

∂H

∂pk

)

+
∂

∂pk

(

∂(−H)

∂qk

)]

=
n

∑

k=1

[

∂2

∂qk∂pk

−
∂2

∂pk∂qk

]

H = 0. (40)

Furthermore, with the aid of equations (29) and (30), the development of the term̂u · ∇fn leads to the operator−Ln

applied tofn. Finally, by taking these results into account the so-called Liouville’s equation may be written:

∂fn

∂t
− Lnfn =

∂fn

∂t
+ 〈fn, H〉 = 0. (41)

whereLn = −〈, H〉 = 〈H, 〉 is also a very common notation in Statiscal physics called Poisson bracket form.
From equations (38), (39) and ( 40) the Liouville’s equationmay be written in terms of the material derivative operator:

Dfn

Dt
=
∂fn

∂t
+ û · ∇fn = 0. (42)

The Equation (42) states that joint probability densityfn remains constant along the systems trajectories. So we have
obtained the Liouville’s equation in the pure phase space byapplying an approach of the continuum mechanics.

Within the scope of statistical physics this equation is usually obtained through concepts like canonical transformation
(the motion of system points is itself canonical), canonical invariants like phase volume and the Liouville’s theorem,
which states that, for a system withn degrees of freedom, the jacobian of a canonical transformation is unity. Another
remarkable result that stems from the equation (40) is∇ · û = 0 (the ensemble is incompressible). Neglecting non-
conservative forces in statistical physics renders incompressible ensemble, whereas neglecting viscous stress in fluid
dynamics does not necessarily render an incompressible flow, i.e, the Euler’s equation does not show explicitly whether
the flow is compressible or incompressible.

3.3 DERIVATION OF THE KEY EQUATION THROUGH CONTINUUM CONCEPTS

As a motivation, kinetic equations of statistical physics plays the same role as that played by equations of motion of
fluid dynamics (derived from equation (5)). In this Subsection we will derive the key equation (in the pure phase space)
from which the master kinetic equation of statistical physics is obtainable through the ensemble-conservation principle
combined with the transport equation (2) with assumptions and quantities appropriately adapted to the phase space.

Consider an-degree of freedom system comprisingN particles. The kinetic stage of this system calls for the interac-
tion between particles. Thus, reduced joint probability distributionfm (m < n) is relevant. Let us assume that a given
subsystem comprisesm degrees of freedom with an agregate ofs particles. Then, this subsystem will be under the po-
tential and kinetic effects of the complementary subsystemwhich comprises the remaining(n−m) degrees of freedom,
with the correspondent(N − s) particles. If only translation mode is concerned, like in a gaseous enviroment,n = 3N .
This yields a 2n-degree of freedom phase space (6N -degree of freedom phase space).

The purpose is to obtain a differential equation for the reduced distribution functionfm. Let us labelZ a reasonable
extensive property standing for the collision integral forthe(N − s)-particle agregate, which stems from the Hamiltonian
H .

i) Z is the extensive property in phase space (Z replacesΨ), and

ii) fm is specific property in phase space (fm replacesψ).

Let us defineum as the velocity field associated with the givenm degrees of freedom subsystem and the correspondent
s-particle agregate.

Adapting the transport equation (2) to these quantities in phase space:

DZ

Dt
=

D

Dt

∫

Ω̄

fmdΩ̄ =

∫

Ω̄

[

∂fm

∂t
+ ∇ · (fmum)

]

dΩ̄, (43)
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whereΩ̄ denotes the phase volume element:

dΩ̄ =
m
∏

k=1

dqkdpk. (44)

Algebraic manipulation of the operator∇ defined by equation (32) gives:

∇ · (fmum) = fm∇ · um + um · ∇fm. (45)

Now developing the term∇ · um with the aid of the equations (27) and (28) and the summation limit redefined tom
gives:

∇ · um =

m
∑

k=1

[

∂q̇k
∂qk

+
∂ṗk

∂pk

]

=

m
∑

k=1

[

∂

∂qk

(

∂H

∂pk

)

+
∂

∂pk

(

∂(−H)

∂qk

)]

=

m
∑

k=1

[

∂2

∂qk∂pk

−
∂2

∂pk∂qk

]

H = 0. (46)

Them-degree of freedom subsystem remains incompressible (∇ · um = 0). Thus the key equation may be rewritten:

DZ

Dt
=

D

Dt

∫

Ω̄

fmdΩ̄ =

∫

Ω̄

[

∂fm

∂t
+ um · ∇fm

]

dΩ̄. (47)

If we take the equations (29) and (30) with the sum limit renumbered tom, the development of the termum · ∇fm

leads to the operator−Lm applied tofm. By taking these results into account we obtain the general form of the key
equation:

DZ

Dt
=

D

Dt

∫

Ω̄

fmdΩ̄ =

∫

Ω̄

[

∂fm

∂t
− Lmfm

]

dΩ̄. (48)

The most general equation of motion (Cauchy’s equation) in fluid dynamics has been obtained with the aid of the
continuity equation (4). Similarly, further development of the key equation (48), aimed at obtaining the extensive property
Z in terms ofH can be carried out with the aid of the Liouville’s equation, here rewritten in its integral version:

∫

Ω

[

∂fn

∂t
− Lnfn

]

dΩ =

∫

Ω

[

∂fn

∂t

]

dΩ −

∫

Ω

LnfndΩ =
∂

∂t

[
∫

Ω

fndΩ

]

−

∫

Ω

LnfndΩ = 0. (49)

The integration overΩ can be split over̄Ω and ¯̄Ω. The operators∂/∂t and
∫

Ω̄
are interchangeable. Introducing these

changes, the equation (49) may be rewritten as:
∫

Ω̄

[

∂

∂t

(
∫

¯̄Ω

fnd
¯̄Ω

)

−

∫

¯̄Ω

Lnfnd
¯̄Ω

]

dΩ̄ = 0. (50)

whereΩ̄ has already been defined by (44), and¯̄Ω is defined as follows:

d ¯̄Ω =

n
∏

k=m+1

dqkdpk. (51)

Integrations over̄̄Ω can be further assessed by splitting the integral of the equation (36) overΩ̄ and ¯̄Ω:
∫

Ω

fndΩ =

∫

Ω̄

[
∫

¯̄Ω

fnd
¯̄Ω

]

dΩ̄ =

∫

Ω̄

fmdΩ̄ = 1 and fm =

∫

¯̄Ω

fnd
¯̄Ω. (52)

The reduced joint probability density functionfm remains normalized as shown by equation (52). The completion of
this development requires the partition of the Liouville’soperatorLn = Lm +Lm+1,n. The introduction of these changes
into the equation (50) yieds:

∫

Ω̄

[

∂fm

∂t
−

∫

¯̄Ω

Lmfnd
¯̄Ω −

∫

¯̄Ω

(Lm+1,n)fnd
¯̄Ω

]

dΩ̄ = 0. (53)

Since the second term on left hand side of equation (53) comprises integration over domain̄̄Ω, whereas the reduced op-
eratorLm comprises partial differentiating with respect to domainΩ̄, it can be moved out from the integral. Furthermore,
applying the equation (52) forfm and transposing the third term on the left hand side of the equation (53) we obtain:

∫

Ω̄

[

∂fm

∂t
− Lmfm

]

dΩ̄ =

∫

Ω̄

[
∫

¯̄Ω

(Lm+1,n)fnd
¯̄Ω

]

dΩ̄, (54)
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or
∫

Ω̄

[

∂fm

∂t
− Lmfm −

∫

¯̄Ω

(Lm+1,n)fnd
¯̄Ω

]

dΩ̄ = 0. (55)

Now by comparing the equations (47) and (54) we obtain:

DZ

Dt
=

∫

Ω̄

[
∫

¯̄Ω

(Lm+1,n)fnd
¯̄Ω

]

dΩ̄ =

∫

Ω

(Lm+1,n)fndΩ. (56)

Regarding the integrand of equation (55), it is worth remarking the arbitrariness of the quantitydΩ̄. It represents a
phase volume element comprising a large number of virtual copies of a given subsystem trajectory so the integrand will
vanish everywhere in the domain̄Ω. Hence:

∂fm

∂t
− Lmfm =

∫

¯̄Ω

(Lm+1,n)fnd
¯̄Ω, (57)

Lm =
m

∑

k=1

[

∂H

∂qk

∂

∂pk

−
∂H

∂pk

∂

∂qk

]

and Lm+1,n =
n

∑

k=m+1

[

∂H

∂qk

∂

∂pk

−
∂H

∂pk

∂

∂qk

]

. (58)

where the equations (58) forLm and orLm+1,n have been rewritten for the sake of convenience.
Now proceeding to remarkable comments on equations (56) and(57). Regarding the equation (56), the material

derivative operatorD/Dt apllied toZ in phase space means the time rate of change following a subsystem trajectory, in
the same manner as following the motion of the fluid in fluid mechanics. The material derivative ofZ in phase space seems
subtle to be understood by the reader. Nevertheless, it is worth remarking that, from the equation (58), the operatorsLm

andLm+1,n depend onH which usually comprises two-body interaction potentials.The derivatives with respect to the
generalized coordinates, applied to such potentials, and subsquently moved back to the actual physical space, will render
a divergence operation quite similar to the that applied to stress tensor in fluid dynamics. Consider aN -particle system
and the associatedNxN matrix, whose scalar components are 2-particle interaction potentials of the formΦ(i, j), i < j.
The application of the operatorLm+1,n to this matrix yields a divergence operation similar to thatalready existent in fluid
dynamics (Cauchy’s equation).

Regarding the equation (57), it represents a kind of key equation in the pure phase space. To illustrate its usefulness, let
us now derive the master kinetic equation of the the statistical physics by rewriting it in terms of the number of particles of
aN -particle system, with a partition comprisings particles. Assuming that only translation is relevant withno kinematic
constraints with elastic collisions (n = 3N ), and all particles having equal massm, the Hamiltonian of the system may
be written as:

H =
N

∑

l=1

pl · pl

2m
+





∑

i

∑

j

Φ(i, j)





i<j

and pl = mvl. (59)

wherevl is the velocity of thel-th particle of the system. The concerned operatorsLN , Ls andLs+1,N are rewritten as:

LN =
N

∑

l=1

∂H

∂ql

·
∂

∂pl

−
∂H

∂pl

·
∂

∂ql

, Ls =
s

∑

l=1

∂H

∂ql

·
∂

∂pl

−
∂H

∂pl

·
∂

∂ql

andLs+1,N =
N

∑

l=s+1

∂H

∂ql

·
∂

∂pl

−
∂H

∂pl

·
∂

∂ql

.(60)

where the inner products comprise summation over cartesiancoordinatesx1, x2, x3 of each particle. By virtue of the
overwhelming algebraic manipulations, the development aimed at obtaining the kinetic equation will be left out. The
work consists in substituting the given functionH into the operatorsLs andLs+1,N , and subsequently inserting them
into equation (57), here appropriately rewritten in terms of N , s, i andj. Moreover, parts of the operatorLs+1,N that
contribute only surface terms in the domain¯̄Ω must be neglected. To so proceeding we obtain:

(

∂

∂t
− Ls

)

fs = −

s
∑

i=1

∂

∂pi

·

∫

¯̄Ω

N
∑

j=s+1

[GijfN ]d(s+ 1)....dN. (61)

where

Gij = −
∂Φ(i, j)

∂xi

, dl = dxldpl ≡

[

3
∏

r=1

dxrdpr

]

l

, l = s+ 1, ....N, and r = 1, 2, 3. (62)
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Gij is the force onith particle due to thejth particle. Additional assumptions about symmetry permitfurther re-
ductions in the equation (61). If we assume that particles are identical there is no reason to refuse thatfs(1., , , , s) is
symmetric, that is,f3(1, 2, 3) = f3(1, 3, 2), where in the last case, particle 2 occupies state 3 and particle 3 occupies state
2. Therefore, the equivalence of the integrals under thej-sum in the equation (61) will lead to further simplification. The
sth integral will give(N − s) identical terms, the integration can be split overd(s+ 1) andd(s + 2)d(s+ 3)...dN , and
we can assumeGij = Gis+1. Thus, the equation (61) may be rewritten as:

(

∂

∂t
− Ls

)

fs + (N − s)

s
∑

i=1

∂

∂pi

·

∫

s+1

[Gis+1fs+1]d(s+ 1) = 0 s = 1, ...., N. (63)

The coupledN equations given by the equation (63) are called the BBKGY equations or Hierarchy. This abbreviation
stands for N.NB Bogoliubov, M.B. Born, G. Kirkwood, H.S. Green; and J. Yvon. The BBKGY equations are also
identified by the shorthand notationBYs, and they are root of the kinetic equations of statistical physics like the Vlazov
equation and the Boltzmann equation.

4. CONCLUSIONS

This work performs a comparison between the approaches adopted in statistical mechanics and fluid mechanics with
the purpose to strengthen the connection between both fieldsof knowledge, by interchanging mathematical tools and
principles, like the use of transport equations of fluid mechanics, which allows the derivation of the key kinetic equations,
in their bulky form, likewise the Cauchy’s equation in fluid dynamics. The work also allowed the authors to foresee
alternative strategies to implement a meshless numerical technique called Lattice Boltzmann Method which is initially
intended to solve simple flows, and, at a further stage, to simulate two-phase flows with the attempt to answer open
questions related to more complex flows, like a particulate immersed in a fluid under the action of a magnetic field. Some
useful findings on integral functions defining algebraic structure of statistical physics have been found, like the possibility
of introducing alternative integral functions other than the traditional ones adopted in the hamiltonian formalism. It would
be worth trying to introduce a pseudo-potential like Rayleig function, a kind ofviscous damping potentialfrom which
non-conservative forces can be furthely derived.
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