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Abstract. This work is part of an ongoing research aimed at establiglanquasi-comprehensive foundation of Boltz-
mann equation in order to support a numerical implementatibthe Lattice Boltzmann Method (LBM). It has focus on
providing basis for the preliminary studies on differehgguations mostly suitable to describe multiphase flow rsode
and, at a further stage, to help foreseeing solutions to ncoraplex flows like a particulate immersed in a fluid under
the action of a magnetic field. Notwithstanding the goalestaibove, this work has the sole purpose of fostering the
connection by allowing an interchange of techniques cdingisn applying methods of the macroscopic domain to the
field of statistical physics so as to retrieve the very wetikn type of formula obtainable through the use of transport
equations. That means transport equations commonly useer anstated principle governing experimentally observed
phenomena only meaningful for applied sciences and engimigéo be used in the microscopic domain and described
in terms of the phase space. This may be undertaken by estiagliparallel quantities based on the similarity of roles
they play in their original domains. The simplest exampbg ttould be mentioned is the Liouville equation describing
the dynamical behavior of the density function along a sydtajectory. It may be derived accordingly by applying the
conservation principle to the number of points of a giveneentsle in place of the mass of a labeled system, without
mentioning any feature related to canonical transformatiw joint probability density functions. Besides fostegrihe
comparison of different approaches, the proposed methauethanging techniques wills also bring about discussio
of key issues related to fluid dynamics and statistical gisyisiechanics.

Keywords. microscopic description; macroscopic; lattice Boltzmastatistical mechanics.
1. INTRODUCTION

The most suitable way to introduce the present work is byrgathe expressiothe Triumph for the Mechanicg/hich
can be found in the textbook on classical physics written &su€o and Oguri (2006), which embodies the conception that
it is possible to explain the molecular chaos from the oraer @rtainty. This conception is fostered by the fact that th
description of the Brownian motion, for instance, consigtin random displacements of particles immersed in a liquid
can be supported by the Newton Laws applied to the collisimtaeen the constituent particles of the liquid and those
immersed.

On the other hand, the apparent order observable from a sw@phbic system and its physical properties are implied
by an underneath chaos, and this is easily conceived whethories of a steady motion of a piston as a result of the
pressure the confined gas exerts on the boundaries of aegladtbwing us to conceive that such a steady motion results
from chaotic molecular collisions, i.e. one can deduce wsaopic fluid flow and interpret the resulting effects frora th
microscopic models by assuming probabilities instead dhogies and partial or uncorrelated states in every patief
domain.

The two preceding paragraphs contribute to strengthercitepgance of the underneath relationship between the con-
cepts of the kinectic theory, a branch of statistical prg;sand macrocopically observable physical phenomena. t#Hawe
besides the relationship between the steady motion retidbgra macroscopic volume of gas and the associated system
comprising a very large number of molecules (s&)#°) moving in a rather irregular way, connections can also be es
tablished for the interchange of principles and methoda®en the domains of study pertaining to Fluid Mechnics and
Statistical Physics.

The last type of connection also provides hints about a [sleitastablishment of the Boltzmann equation aimed at
achieving the optimization of the computational effort anustness of the numerical implementation of the Lattice
Boltzmann Method (LBM) which is based on the molecular tlgdor fluid flows.

2. BASIC PRINCIPLES AND RELEVANT EQUATIONS

The relevant equations for this work pertains to continuuethanics, classical mechanics with phase space-related
concepts and kinetic theory. They will be written in thiserd
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2.1 CONTINUUM MECHANICS

As this work has its focus on the comparison of kinematicfies of transport equations for hydrodynamic variables
of a macroscopic flow, while in the domain of continuum meétsirand the ones for-body distribution functions, while
in the domain of statistical physics, the key equationsbélivritten with no mention of any adhoc model usually applied
to describe the microestructures.

2.1.1 Reynolds transport equation

The Reynolds transport theorem and associated equatibimendirectly applied to the purpose of this work. Although
this equation can be in classical textbooks like Batche2006) and Slattery (1972), it will be written here for the sak
convenience.

i) First form:
yori / Yd = /Jm —dv + /Sm Yu.ndS. (1)
ii) Second form (stems from the surfaceintegral transformation):
[0y
Dt / Ydd = / K3 + V. (wu)} dv. 2
ii1) Third form (stemsfrom the development of V.(yu)):
Do
Dt / Ydd = / Dt + z/)v.u] dd. 3)

In these equation® /Dt denotes material derivativ®¥, denotes any extensive property of a selected portion of, fluid
1) denotes any specific property of the fluid (the amoun®gber unit volume of the fluid)¢ denotes timen denotes
the velocity field,ym denotes the material volumey: denotes the boundary of the material volumealenotes the unit
normal vector pointing outwards the surface eleméfitienotes the material volume element dsdlenotes the material
surface element. The relationship between a given specijogptyy) and its corresponding intensive or local property
(the amount oft per unit mass of the fluid) may be given By= p0, whered denotes the intensive property, gnis the
fluid density. Note that ip is the selected specific quantity, th@rs unity.

2.1.2 Conservation laws of continuum mechanics

From Batchelor (2006) the laws of continuum mechanics statethe total amount of some extensive quantity as-
sociated with a material body of fluid is either invariant bange under the action of known external influences. This
statement is mathematically written by applying a concenprénciple which governs the time change rate of material
integrals expressed by any of the equations (1) or (2) orTB& resulting differential equations are obtaned by apglyi
the fundamental Lemma of Calculus to the integrands.

i) Mass conservation equation or equation of continuity. Expresses the mathematical statement of conservation mas
of a selected portion of fluid (labeled material body):

ap Dp
== 0. 4
S+ V(ow) = T+ pV - (w) = )
ii) The equation of motion (Cauchy’s equation). Expresses the mathematical relation equating the ratbasfge of
momentum of a selected portion of fluid to the sum of all for@eting on that portion of fluid:
Du
= _ — b = 5
P~V o—pb=0 )
whereo denotes the stress tensor andenotes volume force per unit mass fo fluid. The energy eguéinot relevant
to the purpose of the present work.

2.2 CLASSICAL MECHANICS

Engineers quite often have to deal with systems discribeallayge number of coordinates. To obtain the differential
equations for such systems one may employ transformat@migues for mapping the physical system onto the so-
calledconfiguration spaceomprising the minimum number of independent parametarassary to uniquely determine
the system trajectory. The resulting independent paramate called degrees of freedom or generalized coordinates
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2.2.1 Lagrangian formalism

ConsiderN-particle system. The set of tranformations that maps thysipal space onto the configuration space is
given by:

I'i:ri(QMQQa----ant) i:17""aN1 (6)
R o W k=1,...,n and @)
oq ot
k=1
ori= > P 8)
1 qr

In the equations (6), (7) and (8) andr; denote, respectively, the radii vector and velocity veofdaheith particle,
or; denotes the virtual vector displacement in actual physigate ;. labels thekth generalized coordinate, labels the
kth generalized velocityq;, denotes the infinitesimal virtual change in #té generalized coordinate anddenotes the
number of degrees of freedom.

The total number of defining coordinates minus the numbeafgons of kinematic constraints equals As the
virtual change excludes time change, the tint®es not appear explicity in the equation (8). It must be easjzed that
by virtual change one means a virtual variation in the coméijon (spatial variation only) of the original system iriwza
physical space, compatible with force and kinematic cairsts. From the equation (8j; is a function ofg;, andgy.

The key principles from which the differential equationstite system can be derived are iiédlambert’s Principle
andVirtual Works Principle respectively:

F; +F; —m¥i =0 i=1,..,N and (9)

zN: (Fi +F; — mii"i) -or; = 0. (20)

i=1

where in the equation (3; denotes the force applied to thté particle F; denotes the force constraining the motion of
theith particle andn; is the mass of théth particle. Remarkable comments on the equation (9): iesponds to another
way of writing the Newton's second law (representing thecalbed dynamical equilibrium), and the net force acting on
each particle vanishes. The equation (10) representsthefkurtual works done by the net force acting on each paaticl
emphasizing that the virtual work done by constraint fdfgeanishes.

The set of differential equations (the so-called Lagrasigquations) necessary to describe the dynamics of tharsyste
is obtained by substituting the equation (8) into equatidd).( An overwhelming algebraic manipulation, which can be
found in books on classical mechanics like Azevedo (1976)Mariam (1966), renders the Lagrange’s equations and the
generalized force for each degree of freedom:

d (0L OL
i (o0) - (o) ok k=t .
L(qk, qx) = T'(qr, gx) — U(qx) , (12)
1 N
T = 5 ;miri.ri) , (13)
N
(91‘1 oU
=) F¢.[—)=-— and 14
Quy = 3 Fe (aqk> " (14)

Qdy, = zN:Fdi. (@) . (15)
=1 0qx

In the equations (11), (12), (13), (14) and (1%)denotes Lagrangian function (or kinetic potentidl)denotes the
kinetic energyl/ denotes the potential energy functidit; denotes conservative force actingitimparticle Fd; denotes
non-conservative force acting ath particle,(Qc;, denotes théth generalized conservative force apd,;. denotes théth
generalized non-conservative force (both associatecetbtthdegree of freedom).
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2.2.2 Hamiltonian formalism

A third variational principle which also provides meansfiading the differential equations of motion of a dynamical
system isHamilton’s Extended PrincipleThis principle, also derived from the equation (10), réi&ri as follows:

N
— d
T = — (¥y.0r1) | 1
6T + oW ;mzdt(r or;) (16)
which renders, after time integration from timheto timets:
to -
/ (6T +oW)dt=0. 17)

ty

___The equation (17) is the statementttdmilton‘s Extended PrincipleFurther development from this principle with
oW = —0U + §W, yields:

to ity M
/ SLdt = — / > Qdidgydt. (18)
t1 t

1 k=1
For holonimic and conservative systemsi(; = >_;_, Qdirdg; = 0) one gets the statementidamilton’s Principle
ot
ol = 5/ Ldt = 0. (19)
ty

In the equations (16), (17), (18) and (18)” denotes the sum of virtual works done by the external fordés,denotes
the sum of virtual works done by non-conservative forces Adénotes the action integral. Remarkable comments on
Hamilton’s Principle it selects the correct (optimal) dynamical path from alsgible paths followed by the system in
configuration space . In other words it ipenciple of least actiorwhich renders the stationary valuek@s implied in
the equation (19).

2.2.3 Hamilton’sequations and phase space

Let us write the equation (11) in the form:

d (0L oL
i (5i.) = () + o fotn 0
and also define the quantipy;:
oL

=(— . 21
n=(5r) 1)
Thus, from the equation (20):
dpk - oL
o <aqk) Q. (22)

In these equations, represents a kind of generalized linear momentum. For tkeeafgpresenting the building blocks
of statistical physics, let us introduce the-gimensional cartesian spatg, ..., ¢n, 1, ---, Pn ), Which is also called™-
space or phase space, where the state of the system at anyrgitamt is a single point, and the energy-related dyndmica
variablef. Let us assign the following relationship betwedrand the Lagrangian functiob:

_ SEIAN , S .
H(qr,pr) =) (a—q.k) G — L(qr: ) = Y P — L(qx, ). (23)
k=1 k=1

The differential equation foff may be derived by differentiating (23) and taking into aauidhe equation (20), (21)
and (22). Thus:
oH

—— = —pr + Qd, and (24)
0qx
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oOH .
o =Gk - (25)
Opk

By adopting a similar procedure, the time rate of change@fjnantity/7 yields:

n

dH ,
ar = Z Qd G- (26)
k=1

The equation (26) is a statement thatQ)fl,, # 0, the energyif of the system increases or decreases as the motion
of the system unfolds in time and the integfalas implied in the equation (19), would not assume a statjonaue
(extremum). On the other hand,(Xd;, = 0 for k = 1, ..., n (conservative system) theéi = H so the equations (24) and
(25) are reduce to:

on = —pr and (27)

Oqx

oH .

8— = qk- (28)
Pk

where H is the Hamiltonian function (a constant of the motion or gnte of the system), equations (27) and (28) are
called Hamilton’s equations ang, is called canonical momentum or momentum conjugate to taedordinate of the
system. The dynamical orbit of the system (one-dimensiorak or system trajectory) is a curve the{A)-dimensional
cartesian spac@yi, ..., ¢n, P1, .-, Pn, t), Which is calledl-space. Integration of equations (27) (28) yields the siitee
system specified byr2constants of motion.

Regarding the key elements of classical mechanics so faredehe following assumptions are relevant:

i) the force fields are conservativ@d),. = 0),

ii) the systems are holonimic where the equations of kinematistcaints are time independent,
iii) the HamiltonianH (an integral of the system) is an not an explicit functioniwfe, and

iv) the Hamilton’s equations are strictly kinematic and suédb define operators in phase space.
3. FINDING CONNECTIONS

To achieve the intended connections the first step is todate the general equation of motion for a given dynamical
variable= = =(q, p, t) in I'-space. Then we write:

= _o0= 0= L 0= L 0= 05 OH OH 0= 0= . _ (29)
it ot aq Y op PT o Taq ap 9q op ot "
OH 0 O0H 0 " [0H 0 0H 0
= — = LA 30
dq dp Jp dq kz: L’qu Opr. Opr. Oqi (30)

=1
where the substitution of equations (27) and (28) is impliédre L,, denotes the Liouville’s operator and the symbol (.)
denotes the inner product suitably defined'ispace. Sometimes, depending on the context and convenigsecinner
product will replace the suy_;_, overk. The operatof,, may also be rewritten ak,, = (H, ), where(H, ) is called
Poisson bracket notation.

3.1 KINEMATIC OF PHASE SPACE VERSUSKINEMATIC OF CONTINUUM MECHANICS

Equations (29) and (30) clearly show that the convectiveathange ot/ in the phase space, herein played By, -
stems from the Hamiltonian functioid provided that is an integral of the system.

Consider now the material derivative operafow /Dt applied to the extensive properfy previously defined in
Subsubsection (2.1.}:

DV 0V

Dt ot

The comparison between the equations (29) and (31) calls,for - 1 - V. This comparison is attainable provided
that H is an integral of the system. In order to avoid confusionvecity fieldu is defined for a given actual physical

space, whereas the velocity fields= (¢1, ..., ¢») (generalized velocities) anid = (¢1, ..., ¢n, D1, ..., Pn) are defined for
the correspondent configuration space and phase spacestiesly. The operato¥’ must be accordingly written:

0 0 0 0
V=) —, — s — | . 32
(5611 0qn” Op1 apn) (32)

+u- V. (32)
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3.2 DERIVATION OF THE LIOUVILLE'SEQUATION THROUGH CONTINUUM CONCEPTS

The algebraic similarities between the kinematics of dgbhgsical space and phase space helps us to identify the
restrictions to be imposed on the construction of the irgefymction H so as to render the kinetic and momentum
operators that make frequent appearance in governingetitieal equations of statistical physics

Now let us foster the connection by deriving the so-callealiville’s equation through an approach which combines
the transport equation (2) and conservation principle iasghspace (this will require some abstraction). Considgsa s
tem point moving on the system trajectdry (¢), ..., ¢ (t), p1(t), ..., pn(t)) in phase space, as time evolves. Now imagine
a large number of mental copies of the same systemysdhis abstract collection of replicag §ystems) is called an
ensemble. In fluid mechanics streamlines of a flow never cianss likewise in phase space system trajectories never
cross. This follows from the fact that for a system witklegrees of freedom the system trajectory (given by the amsat
(27) and (28)) is uniquely determined by 2onstants of motioiiq(0), p(0)) = (¢1(0), ..., g»(0), p1(0), ..., p»(0)), that
is, only one system trajectory passes througt®), p(0)). In fluid mechanics we apply the mass-conservation priecipl
to a selected portion of fluid, and likewise in phase spacecavealso apply a correspondent ensemble-conservation
principle, which states that number of system points of agignsemble remains constants as the motion unfolds in time.
Each system comprises a system trajectory (a system powihgalong it), whereas an ensemble comprigeystem
trajectories (or system points moving along them).

Let us define the dynamical fuctidn(q, p, t), the number of system points per unit phase volume, writseoliows:

dn

D =,
(@,p,t) = -5 (33)
whered) denotes the phase volume element, written as:

Q) = dadp = [ [ dgrdps. (34)

k=1

Thus, the producD(q, p,t)dqdp = D(q, p,t)dQ2 represents the number of system points in the phase volume
elementd(2 about the system poirig, p), at the timet

Since D(q, p, t) represents the ensemble density function, it enjoys thpety that, apart from a multiplicative
constant, it may be defined as a joint probability density functifriq, p, ¢) as follows:

D(q,p,1t)
§

WhereasD(q, p, t) is relevant to the entire ensemblg,(q, p, t) addresses a single system of the ensemble. Here
fndqdp means the probability of finding a given system of the ensernithe phase volumé&ydp, about the statéy, p),
at the instant. Althoughn and¢ hold the same meaning, the latter has been adopted for teeo$albrmalizing. From
the equation (35) is clear thiit (q, p, ¢) is the normalized joint probability density function:

fn(a,p,t) = , Ez/S;D(q,p,t)dqdp- (35)

/Q fn(d,p,t)dadp = 1. (36)

For detailed explanation of statistical physics-relatedoepts, the reader is advised to look up textbooks likedgale
(1963), (Liboff), Harris (1971) and Salinas (1999). Now wavé enough elements elements in phase space so as to
derive the Liouville’s equation through the ensemble-eowation principle combined with the transport equatiop (2
with assumptions and quantities appropriately adapteldet@hase space:

i) nis the extensive property in phase spagegplacesl),

ii) f. is specific property in phase spagg feplaces) = p in this case),

iii) the Liouville’s equation plays the role of continuity egoatin phase space, and
iv) the intensive property is reduced to unifly,(= f.0 = 6 =1),

Thus, adapting the transport equation (2) to these quesititiphase space:

Dn D [ |0fn . B
E*D_t/gf"dﬂf/g [W+v-(fnu)] Q) = 0. (37)
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The equation (37) states that the number of system pointgivea ensemble are neither created nor destroyed. By
virtue of the arbitrariness d®, the integrand of this equation is identically zero evergréhin the selected ensemble.
Hence:

Ofn L

Algebraic manipulation of the operat®r defined by equation (32) gives:
Vo (fpl) = fo,V-a+a-Vi,. (39)
Now developing the terriv - & with the aid of the equations (27) and (28) gives:

& [9d ap-k} n [ 9 ((’)H) 9 (a(—H)>] n [ o o2
" Z [3% Op Z Oqr, \ Opk Opk oqr Z Oq0pr  OprOqy, (40)

k=1 k=1 k=1

Furthermore, with the aid of equations (29) and (30), theettgwment of the terni - V f,, leads to the operater L,,
applied tof,,. Finally, by taking these results into account the so-ddlieuville’s equation may be written:

Ofn _0fa
o =

whereL,, = —(, H) = (H, ) is also a very common notation in Statiscal physics calléd€®o bracket form.
From equations (38), (39) and ( 40) the Liouville’s equatimay be written in terms of the material derivative operator:

Dfn  0fn
Dt 0Ot

The Equation (42) states that joint probability dengityremains constant along the systems trajectories. So we have
obtained the Liouville’s equation in the pure phase spacadpyying an approach of the continuum mechanics.

Within the scope of statistical physics this equation isaligwobtained through concepts like canonical transforomat
(the motion of system points is itself canonical), canohicegariants like phase volume and the Liouville’s theorem,
which states that, for a system withdegrees of freedom, the jacobian of a canonical transfooma unity. Another
remarkable result that stems from the equation (40y isa = 0 (the ensemble is incompressible). Neglecting non-
conservative forces in statistical physics renders inaesgble ensemble, whereas neglecting viscous stressidn flu
dynamics does not necessarily render an incompressibleifigwthe Euler's equation does not show explicitly whether
the flow is compressible or incompressible.

+ (fn, H) = 0. (41)

+ia- Vi, =0. (42)

3.3 DERIVATION OF THE KEY EQUATION THROUGH CONTINUUM CONCEPTS

As a motivation, kinetic equations of statistical physitasyg the same role as that played by equations of motion of
fluid dynamics (derived from equation (5)). In this Subsattive will derive the key equation (in the pure phase space)
from which the master kinetic equation of statistical phgss obtainable through the ensemble-conservation pianci
combined with the transport equation (2) with assumptiotsguantities appropriately adapted to the phase space.

Consider ax-degree of freedom system comprisiivgparticles. The kinetic stage of this system calls for theriat-
tion between particles. Thus, reduced joint probabilistribution f,,, (m < n) is relevant. Let us assume that a given
subsystem comprises degrees of freedom with an agregatesgfarticles. Then, this subsystem will be under the po-
tential and kinetic effects of the complementary subsysidrich comprises the remainirig — m) degrees of freedom,
with the correspondenritV — s) particles. If only translation mode is concerned, like ineagpus enviroment, = 3N.

This yields a 2-degree of freedom phase spacé/f@egree of freedom phase space).

The purpose is to obtain a differential equation for the oediudistribution functiory,,. Let us labelZ a reasonable
extensive property standing for the collision integraltfee (/V — s)-particle agregate, which stems from the Hamiltonian
H.

i) Z is the extensive property in phase spaZeéplacesl), and
ii) f., is specific property in phase spagg,(replaces)).

Let us definai,, as the velocity field associated with the giverdegrees of freedom subsystem and the correspondent
s-particle agregate.
Adapting the transport equation (2) to these quantitiehasp space:

DZ D [, o [ [0fn _
B = [ttt = [ |25 9 ()| a2 (@3
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where() denotes the phase volume element:

2 = [ [ dawdpy. (44)
k=1

Algebraic manipulation of the operat®r defined by equation (32) gives:

Now developing the terrv - u,, with the aid of the equations (27) and (28) and the summaitiit ledefined ton

gives:
o (OH\ 0 a(H)ﬂ m[ o2 o2
9my . 2 - - H=0. (46
{5% <5pk) 5pk< oqu z; 0qxOpr  OprOqr (46)

Them-degree of freedom subsystem remains incompressiblai,, = 0). Thus the key equation may be rewritten:

HMS

dqr  Opi |

ot

v /fmdQ / O . me] aa. (47)

If we take the equations (29) and (30) with the sum limit rebened tom, the development of the teron, - V fo,
leads to the operator L,,, applied tof,,. By taking these results into account we obtain the generah bf the key
equation:

DZ D Ofm =
Dt~ Dt fm —/Q [Wmem} ds). (48)

The most general equation of motion (Cauchy’s equation)uid ftlynamics has been obtained with the aid of the
continuity equation (4). Similarly, further developmefttoe key equation (48), aimed at obtaining the extensive gty
Z interms of H can be carried out with the aid of the Liouville’s equatioardarewritten in its integral version:

Ofn - dfn _ 0 B _
/Q [W —Lnfn} dQ _/ [ 3 } dQ — /z Ly, fndY = 5 [ A fndﬂ} /QLnfndQ =0. (49)

The integration ovef2 can be split ovef) andQ. The operator® /ot and [, are interchangeable. Introducing these
changes, the equation (49) may be rewritten as:

/Q [% (/Q fndQ) - /QLnfndQ} Q) = 0. (50)

where() has already been defined by (44), ane defined as follows:

n

dQ = H dqydpy,. (51)

:m

Integrations ovef) can be further assessed by splitting the integral of thetemued6) over( andQ:

/andQ:/(; VQ fndQ] dQ = Qfmdﬁzl and fm:/éfndé. (52)

The reduced joint probability density functigh, remains normalized as shown by equation (52). The complefio
this development requires the partition of the LiouvillefseratotL,, = L,, + L,,+1 . The introduction of these changes
into the equation (50) yieds:

afm ' A A A
— = m fndS) — m+1,n) fnd€)] dQ = 0. 53
[ [ st [ ] o o

Since the second term on left hand side of equation (53) cisegintegration over domald, whereas the reduced op-
eratorL,,, comprises partial differentiating with respect to dom@ijrit can be moved out from the integral. Furthermore,
applying the equation (52) fof,,, and transposing the third term on the left hand side of thagau (53) we obtain:

/Q[%”mem} dQ:/(.z [/Q (LmH,n)fndfz} dQ, (54)
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afm ' A A
—— — Linfm — | (Lym+1.n)fndQ| dQ = 0. (55)
al ot o ’
Now by comparing the equations (47) and (54) we obtain:
DZ =1 =
— = / [/ (Lm+17n)fnd9] dQ) = / (Lim+1,n) fndS2. (56)
Dt a L/a Q

Regarding the integrand of equation (55), it is worth rerivaykhe arbitrariness of the quantid). It represents a
phase volume element comprising a large number of virtuailesoof a given subsystem trajectory so the integrand will
vanish everywhere in the domaih Hence:

Ofm =
% - mem = /: (Lm+1,n)fndQ; (57)
Q
“[0H 0 OH 0 " [0H 0 OH 9
L, = _——— and Lipsin= - . 58
Z {3% Opr  Ops 3%] i Z [&]k Opr  Opi Ogu (58)

k=m+1

where the equations (58) fdr,, and orL,, 1 ,, have been rewritten for the sake of convenience.

Now proceeding to remarkable comments on equations (56)%r)d Regarding the equation (56), the material
derivative operatoD /Dt apllied toZ in phase space means the time rate of change following a sténsyrajectory, in
the same manner as following the motion of the fluid in fluid heetdcs. The material derivative gfin phase space seems
subtle to be understood by the reader. Nevertheless, itighwemarking that, from the equation (58), the operafors
andL,,+1,, depend or which usually comprises two-body interaction potentidlbe derivatives with respect to the
generalized coordinates, applied to such potentials, absiggiently moved back to the actual physical space, wideen
a divergence operation quite similar to the that appliedn®ss tensor in fluid dynamics. ConsideNaparticle system
and the associate =N matrix, whose scalar components are 2-particle interagtaientials of the forn® (4, j),¢ < j.
The application of the operatdr,, 11 ,, to this matrix yields a divergence operation similar to tila¢ady existent in fluid
dynamics (Cauchy’s equation).

Regarding the equation (57), it represents a kind of keytoyuan the pure phase space. To illustrate its usefulness, |
us now derive the master kinetic equation of the the stadilsihysics by rewriting it in terms of the number of partscte
a N-particle system, with a partition comprisingparticles. Assuming that only translation is relevant withkinematic
constraints with elastic collisions (= 3V), and all particles having equal mass the Hamiltonian of the system may
be written as:

N
_ Z P1-P1 .. _
H = — W + E EJ (I)(Z,j) a.nd P1 = mvi. (59)
= * i<j

wherev; is the velocity of thé-th particle of the system. The concerned operafogs Ls and L1y are rewritten as:

N s N
OH o0 O0H 0 OH o0 O0H 0 OH o0 O0H 0
R VSV VN o . )
Y ~ dq1 dp1 Ip1 Oq ~ dq1 dp1 Ip1 Oq i S, 9ar Ip1 Opa 3(11( )

where the inner products comprise summation over cartesiardinatese;, xo, x3 of each particle. By virtue of the
overwhelming algebraic manipulations, the developmemidi at obtaining the kinetic equation will be left out. The
work consists in substituting the given functiéhinto the operators.; and L, n, and subsequently inserting them
into equation (57), here appropriately rewritten in terms\g s, < andj. Moreover, parts of the operatdr,,; y that
contribute only surface terms in the dom&must be neglected. To so proceeding we obtain:

B ) N
S L) f=— : Gi; fvld(s + 1)....dN. 61
(5-2) > o /;[ (s + 1) (61)
where
0 (i, 5) 2
Gij= ——2L gl = dxydpy = [derde] . l=s+1,..N, and r = 1,2,3. (62)
8xi el ;
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G;; is the force onith particle due to thgth particle. Additional assumptions about symmetry perfunither re-
ductions in the equation (61). If we assume that particlesi@entical there is no reason to refuse tigtl ., , ,, s) is
symmetric, thatisfs(1,2,3) = f3(1, 3,2), where in the last case, particle 2 occupies state 3 anclesBtoccupies state
2. Therefore, the equivalence of the integrals undeythem in the equation (61) will lead to further simplificatiorhe
sth integral will give(N — s) identical terms, the integration can be split odés + 1) andd(s + 2)d(s + 3)...dN, and
we can assumé&;; = Gis11. Thus, the equation (61) may be rewritten as:

0 L0
<§ - Ls> fs + (N - S); apl ' /5+1[Gis+1fs+1]d(s + 1) =0 s= 15 7N (63)

The coupledV equations given by the equation (63) are called the BBKGYa&qus or Hierarchy. This abbreviation
stands for N.NB Bogoliubov, M.B. Born, G. Kirkwood, H.S. Green; and J. Yvon. The BBKGY equations asmal
identified by the shorthand notatidsy, and they are root of the kinetic equations of statisticalgits like the Vlazov
equation and the Boltzmann equation.

4. CONCLUSIONS

This work performs a comparison between the approachegediopstatistical mechanics and fluid mechanics with
the purpose to strengthen the connection between both fiéldsowledge, by interchanging mathematical tools and
principles, like the use of transport equations of fluid neatbs, which allows the derivation of the key kinetic eqoias,
in their bulky form, likewise the Cauchy’s equation in fluigrchmics. The work also allowed the authors to foresee
alternative strategies to implement a meshless numegchhique called Lattice Boltzmann Method which is initiall
intended to solve simple flows, and, at a further stage, talsita two-phase flows with the attempt to answer open
guestions related to more complex flows, like a particulat@érsed in a fluid under the action of a magnetic field. Some
useful findings on integral functions defining algebraiosture of statistical physics have been found, like theipdisg
of introducing alternative integral functions other thha traditional ones adopted in the hamiltonian formaligruaduld
be worth trying to introduce a pseudo-potential like Raylinction, a kind ofviscous damping potentidlom which
non-conservative forces can be furthely derived.
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