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Abstract. The reactivity is one of the most important properties in a nuclear reactor, because it is directly related to the 
control of the reactor. The process of start-up a nuclear reactor requires insertion of reactivity in the system that 
occurs with the withdraw of the control rods following a discontinuous procedure which has to be monitored. In this 
paper the point kinetics equations are solved considering a fixed source of neutrons and with linear insertion of 
reactivity from the monitored withdraw of the control rods. An analysis of the transient regime between two rod liftings 
is done and a discussion on the feasibility of extending the method for a large number of consecutive withdraw 
procedures is also presented. The results showed small deviations in relation to the reference values 
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1. INTRODUCTION  
 

Reactivity is one of the most important properties of a nuclear reactor, as it directly relates to reactor control. The 
process to start-up a nuclear reactor demands the insertion of reactivity in the system, which takes place with the 
withdraw of the control rods in a non-continuous and monitored manner. In practice, the control rods are raised at set 
time intervals so to linearly insert reactivity in the reactor core, generating transients that allow criticality to be reached 
in a slow and safe manner. 

Kinetic equations for reactors are the non-static case of the diffusion equation, and can be obtained from the 
simplifying hypotheses in the transport equation (Stacey, 2001). The use of kinetic equations allows one to obtain point 
kinetics equations where the spatial variations in the neutron flux are not considered. The point kinetics model is chosen 
for its being a simple model, capable of offering satisfactory responses from a physical standpoint, that is, point kinetics 
equations allow the obtaining of reasonably precise responses on global reactor behaviour in time, with the exception of 
some specific situations such as the ejection of the control bar. Point kinetics equations, in accounting for the existence 
of a group of delayed neutrons, are written by:  
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where ( )tn  is the number of neutrons inside the reactor, ( )tC  is the concentration of delayed precursor neutrons, ( )tq  

is the external neutron source, l  is the mean generation time between the birth of the neutron and its subsequent 
absorption inducing fission. Constants b  and l  are the fractions of the delayed neutrons in the group and decay 
constant for group precursors. 

 This paper presents an analytical approximation for the concentration of precursor neutrons ( )C t , from the 

solution of the point kinetics equations, equation (1), considering a fixed source ( ) 0q t q=  and an insertion of 

reactivity that is variable in time and is represented by:  
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where 0t  is the time to raise the control rods, 0r is the initial system reactivity and r is the linear insertion rate for 

reactivity. 
 

2. MATHEMATICAL FORMULATION   
 

2.1. Analytical Solution for neutron density  ( )n t  

 
 In implementing a calculation method that considers more than one transient from the solution of the point kinetics 
equations written by equation (1), with the reactivity written by equation (2), it is necessary to predict neutron density 
beyond the concentration of delayed precursor neutrons. This Section presents two approximations found in the 
literature that will be used to predict neutron density considering a double reactivity insertion ramp into the system. 
 
2.1.1 Solution proposed by Palma et al. (2009) 
 

After eliminating the dependency for the concentration of precursors (Zhang et al., 2008), the differential equation 
that rules neutron density as the control rod is raised is thus written: 
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subjected to the initial conditions, 
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The term 
( )2

2

d n t
l

dt
 is small in relation to all of the others in equation (3) and can be disregarded ( )310l -» .  After 

disregarding this term and considering that lr b l- ? , the system with differential equations that rule the 
approximate neutron density behaviour for the variation in reactivity as presented in equation (2), is the following: 
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subjected to the conditions expressed by equation (5) and the following condition of continuity 

 

( ) ( )1 0 2 0n t n t= .                                                                                                                                                           (7) 

 
 When solving the set of differential equations formed by equations (5) and (6) one can write the following 
expressions for neutron density (Palma et al., 2009): 
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where constants 1A , 2A  and 3A  are defined by: 
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and too:  
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2.1.2 Solution proposed by Zhang et al. (2008) 
 

After disregarding the term 
( )2

2

d n t
l

dt
 in equation (3) and adopting the prompt jump and constant source 

approximations, the following expression for neutron density in the event of linear reactivity insertion was proposed by 
Zhang et al. (2008): 
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2.2. Analytical solution for the concentration of precursor neutrons  ( )C t  

 
After the elimination of the dependency of neutron density ( )tn , the differential equation that rules the density of 

precursor neutrons during the withdraw of the control rods is thus written: 
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The term 
( )2

2

Cd t
l

dt
 is small in relation to all of the others in equation (16) and can be disregarded ( )310l -» .  

After disregarding this term and considering that lr b l- ? , the system of differential equations that rule the 
approximate concentration of precursors neutrons behaviour for the variation of reactivity as presented in Eq. (2) is the 
following: 
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subjected to the initial condition 
 

( ) 00C C= ,                                                                                                                                                                   (19) 

 
and of continuity: 
 

( ) ( )1 0 2 0C t C t= .                                                                                                                                                         (20) 

 
The system formed by Eq.s (17) and (18) consists of ordinary, non-homogeneous differential equations and can be 

written thus: 
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and may be solved using the integrating factor method (Arfken, 2001), providing solutions represented by: 
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where, for each reactivity insertion regime the integration constants W  can be determined from the conditions 
expressed by the initial and continuity conditions. 
 

2.2.1 Solution during reactivity ramp 00 t t£ £  

 

During the insertion of reactivity, which occurs in an interval [ ]0,t t , functions ( )tf  and ( )tg  are written by: 
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where constants 4k  and 5k  are defined thus: 
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In replacing Eq.s (10) and (11) in Eq. (9) one can write: 
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 Denoting 4 2 1k kw l= + - , integrating Eq. (27) and imposing the initial condition as expressed by Eq. (19) one 

obtains the following expression for the precursor concentration during the reactivity ramp in the system: 
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where constants 4A  and 5A  are defined by: 
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2.2.2 Solution after reactivity ramp 0t t³  

 

Following the insertion of reactivity during a time interval 0t  the reactivity holds constant and equal to 0 0rtr + .  

Thus, the differential equation to be solved becomes simpler: 
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where constants 1y  and 2y  are defined thus: 
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 Solving Eq. (31) and imposing the condition of continuity as expressed by Eq. (20) one can write the following 
expression for the concentration of precursor neutrons following the reactivity ramp: 
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where constant 6A  is defined thus: 
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 Therefore, without adopting the prompt jump approximation in instant 0t , the solution proposed in this paper for 

the concentration of precursor neutrons is:     
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The results obtained for the concentration of precursor neutrons in both reactivity insertion regimes, calculated from 

Eq. (36) are shown in the results section. 
 It is possible to approximate the incomplete gamma functions that exist in the functional form of neutron 
density ( )tn , as written by Eq. (36), with no significant accuracy loss. For that, the following relation will be used 
(Gradshteyn & Ryzhik, 2007): 
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 Numerical studies indicate that with only two terms in the existing expansion in Eq. (37) the required accuracy is 
achieved. In using the gamma function approximation proposed by Nemmes (Nemmes, 2007), one obtains the 
following expression for the incomplete gamma function that will be used in this paper: 
 

( ) ( )2

2 1 10 1
, ,

120 1 1 2 2

a

aa x x
a x a x

a e a a a a
p é ùé ùæ öG » + + - -ê úç ÷ê ú- + +è øë û ë û

                                                (38) 

 
where 2.71828e »  is the basis for the Neperian logarithms.  
 The results obtained for concentration of precursor neutron in both reactivity insertion regimes, calculated from 
Eq. (36) and with the incomplete gamma function calculated from Eq. (38) are shown in the results section. 

 
3. RESULTS 

 
 As a reference in the validation of the analytical approximation for the concentration of precursor neutrons 
obtained in this paper, the method of finite differences will be used for the numerical solution of the point kinetics 
equations, Eq. (1). The following expressions were used to implement the implicit temporal integration method 
(Hashimoto et al., 2000): 
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where 1i it t t+D = - , ( )i
in n t= , ( )i

iC C t= , ( )i
itr r=  and it  is the time from the ith iteration. All validations 

used the mesh point 610t s-D = . The nuclear parameters used in this paper for the validation of the approximation 

presented, Eq. (36), are using fuel material 235U and assuming that 0.0065b = , 0.0001l s= , 10.07741sl -=  and 
8 310 / .q neutrons cm s= . As demonstrated in the above reference (Hashimoto et al., 2000) this numerical method 

presents unconditional stability. 
 
  Figure 1 considers the regime of linear reactivity insertion such that: 
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where 0 5t s= . 

 

 
 

Figure 1. Comparison between the calculation methods for ( )n t  with r(t) calculated from Eq. (39). 

 
 During the reactivity ramp one can see the concordance between the analytical methods and the numerical one for 
the relatively big time interval for the control rods withdrawal. Maximum percentage deviation obtained in the entire 
simulation period was of 0.05 %. 
 From the accurate expressions for neutron density ( )n t , Eq. (8), and from the concentration of precursors ( )C t , 

Eq. (35), one obtains a full set of point kinetics solutions.  
 Another important application for the solutions presented in this paper is the possibility of extending the prediction 
of the transients for an additional ramp, which takes place in practice. For that, it is necessary to add, apart from the 
condition of continuity expressed by Eq. (4), the condition that 
 

( ) ( )2 1 3 1n t n t= ,                                                                                                                                                        (40) 

 
where 1t  is the instant when the second ramp starts, that is, the interface between two consecutive transients, and 

( )3 1n t  is a solution with the same functional form of Eq. (8) in the interval [ ]00, t with constants 1A  and 2A being 

updated at each process. 
 
 Figure 2 shows the comparison of the methods proposed by Palma et al. (2009) and Zhang et al. (2008) for two 
reactivity ramps separated by a constant reactivity plateau, with it written thus: 
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where 0 5t s=  and 1 50t s= .  
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Figure 2. Comparison between the calculation methods for ( )n t  with r(t) calculated from Eq. (41) 

 
 
 

It is possible to see from Figure 2 that the method presented in this paper presents accurate results across the entire 
simulation whilst the method proposed by Zhang et al presents accurate results only during the first transient, that is, 
during interval [ ]10, t . The maximum percentage deviation obtained from the method proposed in this paper was of 

1.3% whilst the method proposed by Zhang et al produced deviations to the order of 4.2% for 1 50t t s> = . One of the 
explanations for this fact is that the prompt jump approximation is not used in the expression presented in this paper, 
whereas it can be found in the set of approximations proposed by Zhang et al. (2008). 
 
 
4. CONCLUSIONS   
  

 
An analytical approximation was developed in this paper, seeking to predict the concentration of precursor 

neutrons ( )C t  during the removal of the control rods with the resulting linear reactivity insertion in the system. The 

formulation proposed consists of the solution of the point kinetics equations for a group of precursors without resorting 
to the prompt jump approximation. The results obtained have been shown to be compatible with those obtained from the 
reference method that was the numerical solution of the point kinetics equations. 

For the periods of time for the removal of the control rods ( 0t ) used in the practice, the percentage deviations 

obtained are found within the acceptable limit for engineering applications, not reaching 0.1 % in relation to the 
reference values. 

Another result obtained was the extension of the expressions proposed by Palma et al. (2009) for an additional 
ramp that simulates the raising of the control rods separated by stagnation periods, with the reactivity being written by 
Eq. (41) and considering an external and constant source of neutrons. The results obtained were accurate and were 
systematically better than those achieved by the expressions proposed by Zhang et al., Eq. (15) when 1 50t t s> = . 
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