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Abstract. The total separation of mechanical and thermal effects is a reasonable assumption for most applications in 
solid mechanics. However, some problems require more complex models. Glass transition temperatures for rubber-like 
polymers and everyday experience with thermal softening of plastics constitute evidence of the need for considering 
thermo-mechanical coupling, when dealing with these materials. Even metals, when subjected to large strains or strain 
rates, exhibit macroscopic heating effects. The clear need for coupled thermo-mechanical models has led to the 
extensive study of such effects as thermal stresses and thermoelastic heating and cooling for a wide range of materials 
and applications. The aim of this paper is to formulate a fully coupled thermo-mechanical problem in a variational 
structure, considering isotropic hyperelastic-viscoplastic materials. The construction of an incremental pseudo-
potential leads to the computation of constitutive updates. More specifically, an adiabatic problem is considered. For 
simplicity reasons, no local heat generation or heat flux are considered in this paper, which allows the temperature to 
be considered as an additional internal variable. The local heat balance problem is derived from the coupled thermo-
mechanical potential, along with equations describing the mechanical part of the problem. Temperature dependence is 
briefly discussed for all the potentials used in the construction of the incremental pseudo-potential. The resulting non-
linear problem with respect to temperature and cumulated plastic strain is solved, allowing for the prediction of 
temperature increase and heat dissipation during deformation, as well as a correct description of mechanical behavior 
influenced by thermal fields. A comparison to experimental results for selected materials found in literature is 
presented.   
  
Keywords: thermo-mechanical coupling, variational formulation, constitutive updates. 

  
1. INTRODUCTION 
 

The application of variational principles for dissipative mechanical systems has been the theme of many recent 
papers. Ortiz and Stainier (1999) developed variational constitutive updates for a rather general range of material 
models, including irreversible, dissipative and rate-dependent behaviors. The works of Fancello et al. (2006), with 
application to nonlinear finite viscoelasticity problems, and Fancello et al. (2008), extending the approach of the 
previous paper to finite isotropic viscoplasticity, base the construction of constitutive updates on the use of spectral 
quantities of independent variables. This allowed for the adoption of a wider variety of potentials within the same 
formalism. 

Owing to the need to consider thermal effects in many contexts, the study of thermo-mechanically coupled 
formulations has also been of recent interest. Yang et al. (2006) and Stainier and Ortiz (2008) list a number of fields of 
application where the assumption of mechanical behavior independent of thermal effects proves to be insufficient. In 
such diverse applications such as metal forming and ballistic penetration, common characteristics such as high strain 
rates and heat dissipation due to plastification indicate the conditions that motivate the construction of coupled thermo-
mechanical models for dissipative materials.  

The aim of the present paper is to extend the formulation used by Fancello et al. (2008) to an adiabatic fully-coupled 
thermo-viscoplastic model. Potentials based on spectral quantities are used in order to allow for more versatility. By 
considering the problem to be adiabatic (a reasonable hypothesis when the time range under consideration is short, 
according to Stainier and Ortiz (2008)), thermal effects can be treated locally, and temperature becomes an internal 
variable. 

Section 2 presents briefly the form of a general incremental pseudo-potential for a purely mechanical dissipative 
problem, as an inspiration for our thermally coupled model. Section 3 then proceeds to show the steps necessary to 
make the extension of the model. After some preliminary definitions and hypotheses (Sect.3.1.), we explore 
thermodynamic aspects (Sect.3.2.) and then go on to show the individual potentials utilized to describe the various 
facets of material behavior (Sect.3.3.1.-3.3.5.), as well as exploring incremental updates (Sect.3.3.6.), all leading to the 
construction of the final incremental pseudo-potential (Sect.3.3.7.). The presentations of optimality conditions of the 
incremental pseudo-potential (Sect.3.4.) and of the stress update formulae (Sect.3.5.) conclude the description of the 
model. Applications of the model to two materials described in Stainier and Ortiz (2008) in Sect.4. aim to show some of 
its capabilities in describing coupled thermo-mechanical behavior. 
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2. INCREMENTAL FORMULATIONS FOR PURELY MECHANICAL PROBLEMS 

 
In searching for variational formulations for general inelastic problems, the existence of a pseudo-potential function 

ψ, dependent on strains and internal variables describing the dissipative behavior of the material, is assumed. It is 
referred to as a pseudo-potential because, despite not being able to describe the state of stress for any strain state (i.e. 
despite not being hyperelastic in strict sense), it holds hyperelastic-like properties within the load increment: 
 
 

୬ାଵ۾ ൌ
∂Ψሺ۴୬ାଵ; ε୬ሻ

∂۴୬ାଵ
ൌ 2۴୬ାଵ

∂Ψሺ۱୬ାଵ; ε୬ሻ
∂۱୬ାଵ

 (1) 

 
Where: ۾୬ାଵ is the first Piola-Kirchhoff stress tensor at load step n+1; F is the deformation gradient; C is the right 

Cauchy-Green tensor; and ε୬ is a set of internal variables, defined accordingly to the considered problem. 
Such a formulation, based on the construction of an incremental pseudo-potential for every load step, is elsewhere 

explored in detail, e.g. in the works of Ortiz and Stainier (1999), Radovitzky and Ortiz (1999), Fancello et al. (2006) 
and Fancello et al. (2008). When no thermal effects are considered, the pseudo-potential used to describe a wide variety 
of inelastic problems takes on the following form: 

 
ΨሺF୬ାଵ, ε୬ሻ ൌ min

க౤శభ
ሼWሺε୬ାଵሻ െWሺε୬ሻ ൅ ∆tψഥሺεሶ୬ାଵ; ε୬ሻሽ ሺ2ሻ

 
Where W denotes a Helmholtz free energy density; ψഥ denotes a dissipation potential; ε includes external variable F 

(deformation gradient) and internal variables ۴୧ (inelastic part of deformation gradient) and Q (describing remaining 
internal processes); and εሶ  denotes the rate equations for the set of variables ε. 

Since we wish to extend the previous formulation to a thermo-mechanical context, it is necessary to define an 
appropriate set of internal variables, to redefine the Helmholtz free energy density and to explore the laws of 
thermodynamics in order to build an incrementally consistent pseudo-potential.  

 
3. EXTENSION OF THE VARIATIONAL FORMULATION TO THERMO-MECHANICAL VISCOPLASTIC 
PROBLEMS 
 
3.1. Definitions and hypotheses 

 
Before we delve into the thermodynamical aspects of the present model, some basic hypotheses are presented. 
The classical multiplicative decomposition of the deformation gradient in elastic (۴ୣ) and plastic (۴୮) parts is also 

used here: 
 
۴ ൌ ۴ୣ۴୮  ሺ3ሻ
 
It is assumed that all plastic deformations are isochoric. Therefore, we may consider the following multiplicative 

decomposition of the deformation gradient, in volumetric (۴୴୭୪) and isochoric (۴෠) parts, and the consequent useful 
definitions of an isochoric elastic right Cauchy-Green tensor (۱෠ୣ), and the related natural strain (ઽୣ), both decomposed 
in their respective spectral quantities: 

 
۴ ൌ ۴୴୭୪۴෠  ሺ4ሻ
 

J ൌ det ۴  ۴෠ ൌ
1
Jଵ ଷൗ

۴  ሺ5ሻ

 
۴෠ ൌ ۴෠ୣ۴୮  det ۴୮ ൌ 1  ሺ6ሻ
 

۱෠ୣ ൌ ۴෠ୣT۴෠ୣ ൌ෍cୣ୧۳ୣ୧

ଷ

୧ୀଵ

  ૓ୣ ൌ
1
2 ln ۱

෠ୣ ൌ෍εୣ୧۳ୣ୧

ଷ

୧ୀଵ

εୣ୧ ൌ
1
2 ln c

ୣ
୧ ሺ7ሻ

 
Considering a von Mises type flow rule for the plastic part, the rate of plastic deformation (۲୮) may be decomposed 

in terms of amplitude (qሶ ) and direction (M). Ortiz and Stainier (1999) show that combining this decomposition with 
logarithmic strains and quadratic hyperelastic (Hencky) potentials yields a complete separation of kinematic aspects 
(direction M) and constitutive aspects (qሶ ). Thus, expressions similar to those of infinitesimal plasticity can be obtained.  
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۲୮ ൌ symሺۺ୮ሻ ൌ ۴ሶ ୮۴୮ିଵ ሺ8ሻ
 

۲୮ ൌ qሶۻ  qሶ א Թା  ۻ א  KM ൌ ൜ۼ א Sym: ۼ · ۼ ൌ
3
2 ; ۼ · ۷ ൌ 0ൠ ሺ9ሻ

 
If a spectral decomposition of ۲୮ is used, it is possible to extend the separation of kinematic and constitutive aspects 

to more general potentials: 
 

۲୮ ൌ qሶ ෍q୧

ଷ

୧ୀଵ

 ୧ ሺ10ሻۻ

 

qሶ א Թା  q୧ א KQ ൌ ൝p୧ א Թ: ෍p୧ ൌ 0
ଷ

୧ୀଵ

;෍p୧ଶ ൌ
3
2

ଷ

୧ୀଵ

ൡ ሺ11ሻ

 
୧ۻ א  KM ൌ ൛ۼ୧ א Sym: ۼ୧ · ୧ۼ ൌ ୧ۼ ;1 · ୨ۼ ൌ 0, i ് jൟ ሺ12ሻ 
 
The set KQ enforces the traceless properties of M, necessary since the plastic flow has to be incompressible and is 

considered irrotational (hypothesis of zero plastic spin), while the set KM enforces properties of eigenprojections. The 
relations above allow for a complete representation of the plastic deformation gradient in terms of qሶ , q୧ and ۻ୧.  

 
3.2. Thermodynamic aspects  

 
The inclusion of thermomechanical coupling within the present variational formalism was firstly stated in Yang et 

al. (2006). In this paper we combine that approach with spectral decomposition (Eqs. 10-12) in order to allow the use of 
general isotropic hyperelastic laws suitable e.g. to polymeric materials. 

We begin by postulating the existence a Helmholtz free energy density (W), dependent on a set of external (an 
imposed F) and internal variables (cumulated plastic strain on the load step Δq ൌ qሶ Δt, plastification directions q୧, 
eigenprojections ۻ୧, and temperature T). Derivatives of the Helmholtz free energy density with respect to independent 
variables give thermodynamic forces associated to them. The entropy density per unit of undeformed volume (η) is the 
thermodynamic force associated to the temperature T, just as the first Piola-Kirchhoff stress tensor (P) is the 
thermodynamic force associated to the total strain.  

 

۾ ൌ
∂Wሺ۴, q, q୧,ۻ୧, Tሻ

∂۴   ሺ13ሻ

 

ρ଴η ൌ െ
∂Wሺ۴, q, q୧,ۻ୧, Tሻ

∂T
ሺ14ሻ

 
By means of a Legendre-Fenchel transform of the equation above, we define the specific internal energy (per unit of 

undeformed volume) as: 
 
Uሺ۴, q, q୧,ۻ୧, ηሻ ൌ sup

T
ሾρ଴ηT ൅Wሺ۴, q, q୧,ۻ୧, Tሻሿ ሺ15ሻ

 
We may now introduce the first law of thermodynamics in local form, as deducted by Holzapfel (2000), with H 

denoting the heat flux vector, Q denoting local heat generation per unit undeformed volume and the term ۾: ۴ሶ  
representing the stress power: 

 
Uሶ ൌ :۾ ۴ሶ െ Div۶ ൅ Q  ሺ16ሻ
 
The second law of thermodynamics is then introduced, in a local form of the Clausius-Duhem inequality, where ηሶ  

indicates the local production of entropy: 
 

:۾ ۴ሶ െ Uሶ ൅ Tηሶ െ
۶
T GradT ൒ 0  ሺ17ሻ
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The last term on the left-hand side indicates the production of entropy due to heat conduction. Heat flux occurs from 
warmer to colder regions of a body, which means that this term must be non-negative, i.e.: 

 

െ
۶
T GradT ൒ 0  ሺ18ሻ

 
A stronger form of the second law of thermodynamics, known as the Clausius-Planck inequality, introducing the 

concept of internal dissipation (ࣞ୧୬୲): 
 
ࣞ୧୬୲ ൌ :۾ ۴ሶ െ Uሶ ൅ Tηሶ ൒ 0 ሺ19ሻ
 
Combining the Clausius-Planck inequality with the local form of the first law of thermodynamics presented above, 

we arrive at the energy balance in entropy form, which will later serve as the equation for entropy evolution along the 
load step of the incremental problem: 

 
Tηሶ ൌ ࣞ୧୬୲ െ Div۶ ൅ Q  ሺ20ሻ
 
In this paper, we consider an adiabatic case. No heat flux or heat generation are considered, so that the last two 

terms of the equation above are equal to zero. In other words, we consider thermal effects to be local, and temperature 
behaves as a local variable of similar nature to cumulated plastic strain Δq. All entropy production is due to internal 
dissipation during deformation, and is strictly associated to a dissipation potential that is a part of the incremental 
pseudo-potential, as shown below. 

 
3.3. Incremental pseudo-potential 

 
An additive decomposition of the free energy density is commonly used, representing the independence of elastic 

processes from internal processes, a very reasonable assumption for a wide range of materials. Furthermore, in the 
present work, we consider independent potentials for all different aspects of material behavior: φ୴୭୪ሺJ, Tሻ is responsible 
for the elastic volumetric response; φୣ൫۱෠܍, T൯ represents the isochoric elastic response; φ୮ሺq, Tሻ represents the plastic 
response of the material, including yield conditions and hardening; and φ୦ሺTሻ is responsible for the accumulation of 
energy in the form of heat. 

 
Wሺ۴, q, q୧,ۻ୧, Tሻ ൌ φ୴୭୪ሺJ, Tሻ ൅ φୣ൫۱෠ୣ, T൯ ൅ φ୮ሺq, Tሻ ൅ φ୦ሺTሻ ሺ21ሻ

 
It is important to observe that all the individual potentials are considered to be dependent of temperature. In other 

words, thermal effects affect potentials describing mechanical behavior, and are affected by them. The specific details 
of all individual potentials are presented below, followed by the description of the potential that describes dissipative 
behaviors of the material. 

 
3.3.1. Volumetric potential 

 
The volumetric potential considers two distinct effects: the energy necessary to change the volume of a portion of 

material, proportional to the temperature dependent bulk modulus K(T); and the energy consumed in the thermal 
expansion of the material, proportional to the temperature change and the volumetric dilation coefficient α. K଴ is the 
bulk modulus at the reference temperature T଴. 

 

φ୴୭୪ሺJ, Tሻ ൌ
1
2K

ሺTሻ൫lnሺJሻ൯ଶ െ 3K଴αሺT െ T଴ሻlnሺJሻ ሺ22ሻ
 

The temperature dependence of the bulk modulus, according to Holzapfel (2000), takes on the following linear 
form, where T is the current temperature: 

 

KሺTሻ ൌ K଴ ൬
T
T଴
൰  ሺ23ሻ

 
3.3.2. Elastic isochoric potential 

 
A Hencky potential, quadratic with respect to the logarithmic strain tensor, is used to describe the isochoric elastic 

response of the material. The elastic modulus µ(T) elastic modulus, also according to Holzapfel (2000), follows a linear 
form with respect to the current temperature: 
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φୣ ൌ µሺTሻ෍൫εୣ୨൯
ଶ

ଷ

୨ୀଵ

  ሺ24ሻ

 

µሺTሻ ൌ µ଴ ൬
T
T଴
൰  ሺ25ሻ

 
3.3.3. Plastic potential  

 
The plastic potential was generalized from the model used in Vassoler (2007). It was chosen for its versatility in 

describing various types of plasticity, from purely elastoplastic to more complex higher order potential hardening 
models. Temperature dependence is introduced on coefficients Σ଴, H, μ୮ and μ୮୨, in linear form similar to those 
presented previously. The exception is Σ଴, that decreases linearly with temperature increase, representing thermal 
softening of the yield criteria. Parameters α୮ and α୮୨ are considered temperature independent, as in equivalent 
parameters in Stainier and Ortiz (2008). The parameter q represents the cumulated plastic strain: 

 

φ୮ሺq, Tሻ ൌ Σ଴ሺTሻq ൅
1
2H

ሺTሻqଶ ൅ µ୮ሺTሻ ൤q ൅
1
α୮ exp

ሺെα୮qሻ൨ ൅෍
µ୮୨ሺTሻ
α୮୨ ൅ 1

ሺqሻ஑౦ౠାଵ
N

୨ୀଵ

ሺ26ሻ

 
3.3.4. Potential of thermal energy accumulation 

 
Associated to the specific heat capacity C଴, the potential of thermal energy accumulation accounts for portion of heat 

necessary to change the temperature of the material: 
 

φ୦ ൌ ρ଴C଴ ൤ሺT െ T଴ሻ െ T log
T
T଴
൨  ሺ27ሻ

 
3.3.5. Dissipation pseudo-potential 

 
Dissipative behaviors are associated to the rate of the internal variables. For a viscoplastic models the dissipation 

potential depends on the rate of plastic deformation (qሶ ), usually represented by the rate of the cumulated plastic strain in 
the load step (Δqሶ ). Since the temperature is now an internal variable of the model, we would also need to include 
dependence on the rate of temperature change. We represent both rates together, following the work of Stainier (2006), 
by assuming that temperature and cumulated plastic strain appear together on all rate expressions. Thus, the following 
model, proposed by Stainier and Ortiz (2008), is adopted here to make use of the material parameters (m, εሶ ଴, b′, d′, n′, 
ωଵ, ωෝଵ, ω୴) and critical stresses (σଵሺT଴ሻ, σොଵሺT଴ሻ, σ୴ሺT଴ሻ) they already identified:  

 

ψഥሺqሶ , q, Tሻ ൌ σ୷ሺq, Tሻqሶ ൅
m

m൅ 1σ୴
ሺTሻεሶ଴ ൬

qሶ
εሶ଴
൰
ଵ
୫ାଵ ሺ28ሻ

 

σ୷ሺq, Tሻ ൌ σଵሺTሻሺ1 ൅ bԢqሻ
ଵ
୬ᇱ ൅ σෝଵሺTሻሾ1 െ expሺെdԢqሻሿ ሺ29ሻ

 
σଵሺTሻ ൌ σଵሺT଴ሻሾ1 െ ωଵሺT െ T଴ሻሿ  ሺ30ሻ

 
σෝଵሺTሻ ൌ σෝଵሺT଴ሻሾ1 െ ωෝଵሺT െ T଴ሻሿ  ሺ31ሻ

 
σ୴ሺTሻ ൌ σ୴ሺT଴ሻሾ1 െ ω୴ሺT െ T଴ሻሿ  ሺ32ሻ
 
Equation (34), the incremental counterpart of Eq. (28), is then stated by substituting rate quantities qሶ  by T౤శభ

T౤

୼୯
୼୲

, 
which degenerates to the rate of cumulated plastic strain for Δt ՜ 0 and T୬ାଵ ՜ T୬, i.e., for sufficiently small load step. 
The cumulated plastic strain is substituted according Eq. (33), the incremental representation within the load step. 

 
Δq ൌ qሶ Δt ൌ q୬ାଵ െ q୬    ሺ33ሻ
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ψഥሺΔqሶ , Δq, Tሻ ൌ σ୷ሺq, TሻΔqሶ ൅
m

m൅ 1σ୴
ሺTሻεሶ଴ ൬

Δqሶ
εሶ଴
൰
ଵ
୫ାଵ ሺ34ሻ

 
The recourse to this strategy will show its importance during the minimization of the incremental pseudo-potential, 

described later. 
 
3.3.6. Incremental updates 

 
In an incremental context, it is necessary to determine evolution equations in terms of involved variables. An 

exponential mapping of the plastic part of the deformation gradient (۴୮) is considered: 
 

۴୬ାଵ
୮ ൌ exp ൥∆q ෍q୧

ଷ

୧ୀଵ

୧൩ۻ ۴୬
୮  ሺ35ሻ

 
The cumulated plastic strain for a certain point is considered to be the sum of the cumulated plastic strains of all 

previous steps: 
 
q୬ାଵ ൌ q୬ ൅ Δtqሶ ൌ q୬ ൅ Δq  ሺ36ሻ
 
This allows for us to substitute qሶ  for Δq in the list of independent variables. 

 
3.3.7. Incremental potential 

 
We are now well equipped to assemble the incremental potential, consistently representing the material behavior 

within a load step. The total deformation gradient at the end of the load step (۴୬ାଵ) is imposed as an external variable. 
The fully coupled thermo-mechanical problem consists of solving the optimization problem (37) with respect to internal 
variables Δq, M, q୧ and T (grouped in the set ε) indicated in the pseudo-potential Ψሺ۴୬ାଵ; ε୬ሻ, thus completely 
determining the final state of the material. All quantities for load step n are considered known. 

 

Ψሺ۴୬ାଵ, ε୬ሻ ൌ inf
౟,∆୯ܙ,౟ۻ

sup
T౤శభ

൜∆Wሺ۴, εሻ ൅ ρ଴η୬ሺT୬ାଵ െ T୬ሻ ൅ ∆tψഥ ൬
T୬ାଵ
T୬

∆q
∆t , T୬൰ൠ ሺ37ሻ

 
Where: 

 
∆Wሺ۴, εሻ ൌ Wሺ۴୬ାଵ, ε୬ାଵሻ െWሺ۴୬, ε୬ሻ  ሺ38ሻ

 
Subjected to the following constraints: 
 

q୧ א KQ ൌ ൝p୧ א Թ: ෍p୧ ൌ 0
ଷ

୧ୀଵ

;෍p୧ଶ ൌ
3
2

ଷ

୧ୀଵ

ൡ ሺ39ሻ

 
୧ۻ א  KM ൌ ൛ۼ୧ א Sym: ۼ୧ · ୧ۼ ൌ ୧ۼ ;1 · ୨ۼ ൌ 0, i ് jൟ ሺ40ሻ

 
Δq ൒ 0  ሺ41ሻ

 
3.4. Extremization of the pseudo-potential (inf-sup problem) 

 
The minimization with respect to directions ۻ୧ in Eq. (37) can be performed analytically. This step is omitted here 

due to space constraints, and is shown in detail in Fancello et al. (2008). It still remains an inf-sup problem with respect 
to (ܙ୧, ∆q) and T୬ାଵ respectively that may be derived from the Lagrangian function: 

 

ࣦሺq୧, ∆q, T୬ାଵሻ ൌ ∆W൅ ρ଴η୬ሺT୬ାଵ െ T୬ሻ ൅ ∆tψഥ ൬
T୬ାଵ
T୬

∆q
∆t , T୬൰ ൅ λ൭෍q୧

ଷ

୧ୀଵ

൱ ൅ β൭෍q୧ଶ
ଷ

୧ୀଵ

൱  ሺ42ሻ

 
Considering a predictor state between configurations at time n and time n+1, consisting of a completely elastic step 

(the determination of directions q୧ consist, then on determining the direction of radial return to the actual configuration), 
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we show the necessary optimality conditions for the problem next. Of note, is equation rହ, corresponding to the optimal 
condition with respect to current temperature T୬ାଵ, that represents the local energy balance problem: 

 
εୣ୧ ൌ εୣ୧

୮୰ െ ∆q. q୧  ሺ43ሻ
 
 

r୧ ൌ
∂ࣦ
∂qi

ൌ െ
∂∆φୣ

∂εୣ୧
∆q ൅ λ ൅ 2βq୧ ൌ 0  i ൌ 1,2,3 ሺ44ሻ

 

rସ ൌ
∂ࣦ
∂∆q ൌ െ෍

∂∆φୣ

∂εୣ୧
qi

ଷ

୧ୀଵ

൅
∂∆φ୮

∂∆q ൅
T୬ାଵ
T୬

∂ψഥ
∂∆q ൌ 0 ሺ45ሻ

 

rହ ൌ
∂ࣦ

∂T୬ାଵ
ൌ ቆ

∂∆φୣ

∂T୬ାଵ
൅
∂∆φ୮

∂T୬ାଵ
൅
∂∆φ୦

∂T୬ାଵ
൅

∂U
∂T୬ାଵ

ቇ ൅ ρ଴η୬ ൅
∆q
T୬

∂ψഥ
∂∆q ൌ 0 ሺ46ሻ

 

r଺ ൌ
∂ࣦ
∂λ ൌ෍q୧

ଷ

୧ୀଵ

ൌ 0  ሺ47ሻ

 

r଻ ൌ
∂ࣦ
∂β ൌ෍q୧ଶ െ

3
2 ൌ 0

ଷ

୧ୀଵ

ሺ48ሻ

 
With further conditions: 
 

Δq ൒ 0  ሺ49ሻ
 

rଽ ൌ rସΔq ൌ 0  ሺ50ሻ
 
3.5. Stress update 

 
By building the incremental pseudo-potential presented in section 3.3.6., consistently variational within a load step, 

we achieve our desired initial goal, which was to determine the final stress state of the material at time n+1, as in Eq.(1). 
Considering the separation between volumetric and isochoric parts, the expressions for the Piola-Kirchhoff (۾୬ାଵ) and 
Cauchy (ો୬ାଵ) stresses are as follows: 

 

୬ାଵ۾ ൌ 2۴୬ାଵ
∂ψሺ۴୬ାଵ, εሻ
∂۱୬ାଵ

ൌ ۴୬ାଵ ቈJ୬ାଵି
ଶ
ଷൗ DEVቆ2

∂∆φୣ

∂۱෠୬ାଵ
ቇ ൅

∂∆φ୴୭୪

∂J୬ାଵ
J୬ାଵ۱୬ାଵିଵ቉ ሺ51ሻ

 

ો୬ାଵ ൌ
1
J୬ାଵ

 ୬ାଵ۴୬ାଵT۾ ሺ52ሻ

 
4. APPLICATION TO SELECT MATERIALS 

 
In order to show the capabilities of our model, we take advantage of the complete thermo-mechanical 

characterization of two metallic materials presented in the work of Stainier and Ortiz (2008): rate dependent α-titanium 
alloy and pure polycrystalline tantalum. We basically seek to evidence thermo-mechanical coupling through stress-
strain and temperature increase curves of numerically simulated uniaxial traction tests.  

While the application of our model to α-titanium is straightforward, characteristic temperature-dependent behavior 
of tantalum requires slight alterations. Considering previous works on tantalum, Stainier and Ortiz (2008) different 
temperature dependences in the potential for the dissipative behavior, considering thermally-activated processes 
(motion of dislocations through Peierls barriers) that result in the following expressions for critical stress σ୴ሺTሻ and 
material parameter εሶ଴ሺTሻ (considered independent of temperature for α-titanium): 

 

σ୴ሺTሻ ൌ σ୴ሺT଴ሻ
T
T଴
  ሺ53ሻ
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εሶ଴ሺTሻ ൌ εሶ଴ሺT଴ሻ exp ൤െTୡ ൬
1
T െ

1
T଴
൰൨  ሺ54ሻ

 
Material properties for both materials are presented on Table (1) below: 

 
Table 1. Material properties for rate dependent α-titanium alloy (T0 = 293K) and pure polycrystalline tantalum (T0 = 

298K) 

 

Material property 
Rate dependent 
α-titanium alloy 

(T0 = 293K) 

Pure 
polycrystalline 

tantalum 
(T0 = 298K) 

Material property 
Rate dependent 
α-titanium alloy 

(T0 = 293K) 

Pure 
polycrystalline 

tantalum 
(T0 = 298K) 

µ(T0) [MPa] 43,3 68,9 σ1(T0) [MPa] 300,0 210,0 
K0 [GPa] 129,9 206,7 ω1 [K-1] 0,0008 0,0018 
α [K] 8,9.10-6 6,6.10-6 σො1(T0) [MPa] 200,0 0,0 

ρ [kg/m3] 4500,0 16650,0 ωෝ1 [K-1] 0,0 - 
C0 [J/(kg.K)] 518,0 140,0 σv(T0) [MPa] 50,0 125,0 
∑0(T0) [MPa] 75,0 10,0 ωv [K-1] 0,0006 - 
H(T0) [MPa] 0,0 0,0 b’ 5,0 1,25 
µp(T0) [MPa] 120,0 15,0 n’ 1,5 1,0 

αp 10,0 80,0 d’ 7,0 - 
µp

j(T0) [MPa], j=1,2,3 0,0 0,0 Tc [K] - 4200,0 
αp

j, j=1,2,3 0,0 0,0 
εሶ0(T0) [s-1] 1,0 0,1 

m 5,0 8,3 
 

For α-titanium, two sets of tests are presented. First (Fig.1), the effect of strain rate is demonstrated. Increase of 
stress with increased strain rate is demonstrated, for strain rates varying between 0,001/s (which Stainier and Ortiz 
(2008) consider quasi-static) and 10000/s (dynamic range). Coupling of thermo-mechanical aspects lead to different 
temperature increase levels during deformation. Higher strain rates represent higher internal dissipation and result in 
larger increases in temperature. 
  

 
 

Figure 1. Influence of strain rate on temperature increase and stress-strain curves for rate-dependent α-titanium alloy (T0 
= 293K) 

 
A second set of tests (Fig.2) shows the influence of initial temperature on the thermo-mechanical behavior of the 

metal. Tests are simulated at a strain rate of 0,001/s. A higher initial temperature results in the need for lower stress 
levels in order to maintain the same strain rate level, i.e., thermal softening of α-titanium is evidenced. 
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Figure 2. Influence of initial temperature on stress-strain and temperature increase curves for rate-dependent α-titanium 
alloy (strain rate = 0,001/s). 

 
Pure polycrystalline tantalum exhibits a very different behavior after plastification begins. The versatility of the 

model in describing a variety of materials is demonstrated in Fig.3, which shows the strain rate dependence of tantalum. 
Strain rates varying from 0,001/s to 10000/s are used, and the results in stress-strain behavior and temperature increase 
during deformation are shown. 
 

 
 

Figure 3. Influence of strain rate on stress-strain and temperature increase curves for polycrystalline Ta (T0 = 298K). 

 
5. CONCLUSIONS 

 
In this paper, we have shown the application of a variational formulation to a fully-coupled thermo-mechanical 

problem. Based on established models for a variety of inelastic material models, we defined appropriate potentials for 
the various aspects of material behavior involved in the finite thermo-viscoplastic problem. The general nature of the 
variational structure, with potentials dependent of spectral quantities, gives it great versatility in describing different sets 
of materials and material behaviors. The construction of an incrementally consistent pseudo-potential, together with the 
definition of constitutive updates for other variables, allows for the complete determination of the state of the material at 
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any point in time. As observed by Stainier and Ortiz (2008), the importance of having such a variational structure for 
the coupled thermo-mechanical problem, though not explored in the present paper, is ensuring the property of 
mathematical symmetry, which in turn brings about solid implementation advantages, such as symmetric tangent 
matrices. 

The application of the model to two different metallic materials showed good correspondence to results found 
elsewhere in literature, both numerically simulated and experimentally observed. It was possible to estimate the increase 
in temperature during a uniaxial traction test, as well as to capture coupling effects in stress-strain curves with varying 
starting temperatures. Immediate applications of the model can include the a posteriori prediction of plastic work 
converted into heat, through the calculation Taylor-Quinney factor, as presented in Stainier and Ortiz (2008). 

Limitations of the present model are associated to its simplifying hypotheses. As is, there is restriction to isotropic 
materials. No viscoelastic effects are considered, which may somehow limit its applications to some polymeric 
materials, though the extension to include such effects should pose no serious obstacles. It also important to highlight 
that this paper presented a model restricted to adiabatic thermo-viscoplasticity. Although the inclusion of heat 
conduction and heat generation is theoretically straightforward, their implementation is the subject of future works. 
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