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Abstract: The main goal of this work is to validate the Structured Singular Value method to analyze the Flutter 

Margin, by comparing with results obtained from methods of flutter analysis traditionally employed in the aeronautical 

industry, that presents modal evolution or the geometric root locus, taken as a reference. In order to perform this 

validation, it is adopted as a model the aeroelastic typical section with three degrees of freedom subjected to 

aerodynamic forces and moments, derived from Theodorsen´s formulation. The reference flutter speed is calculated by 

the Method K. Applying the Roger rational function approximation to the aerodynamic influence matrix it is possible to 

create a state space approximation of the aeroelastic model and, by analyzing the state matrix eigenvalues evolution 

with increasing speed, the instability condition of the approximate model can be determined. Nominal model 

uncertainty parameters are defined by the true airspeed and the dynamic pressure, and these parameters are inserted 

in the model by the application of the Linear Fraction Transformation. The Flutter speed is then calculated using the 

Structured Singular Value and compared with its reference value. 
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1. INTRODUCTION 
 

The design requirements for commercial aircraft, related to Aeroelasticity, imposed by FAA (Federal Aviation 

Administration), are presented in the FAR (Federal Aviation Regulation) Section 25.629 [rgl.faa.gov]. The general 

requirement is that the aircraft is free from aeroelastic instability for all of the project conditions and configurations 

inside the aeroelastic stability envelope. 

Aeroelastic instabilities are potentially destructive to the aircraft. Thus, in new aircraft designs or in new 

configurations to already existing aircraft, the characteristics of the aeroelastic dynamic stability should be investigated 

to determine if the flight envelope is free from Flutter, considering the parameters that may vary. 

Flutter is an aeroelastic phenomenon characterized by a self-excited oscillation of an airfoil and its associated 

structure, caused by the combination of inertia forces, elasticity and aerodynamics. The structural component vibrates in 

its natural frequency under the effect of the aerodynamic forces. At a certain speed, called Flutter critical speed, the 

oscillation amplitude is kept at a constant value. As the speed increases, the movement amplitude grows until the point 

of structural failure. The mode of vibration during the Flutter is known as the Flutter mode. 

This phenomenon is a constant concern for aircraft designers due to the large amount of possible Flutter modes and 

the number of tests required to determine these modes to guarantee that the aircraft is free from aeroelastic instabilities. 

Once the Flutter modes are known, the structural stiffness can be changed or a balance masses can be added to suppress 

its occurrence.  

The Flutter boundary is defined as a line in the flight envelope, defined by altitude values and Mach number for 

which the system is at imminent instability, that is, the system’s dynamic response to initial conditions that are different 

from equilibrium is oscillatory and non-damped, or simple harmonic oscillations. There are different ways to determine 

this boundary, but the use of traditional methods requires performing an analysis for variation of several parameters. 

The robust aeroelastic analysis aims to find a stability margin for a system with multiple inputs and outputs, 

considering inherent parametric variations of the system without the need to perform the Flutter calculation for every 

parametric variation, reducing the time of analysis. 

 

2. AEROELASTIC STABILITY  
 

The aeroelastic system considered is constituted by the wing and the control surface. The physical model was 

idealized as constituted by two rigid bodies interconnected by springs, as illustrated in Fig. 1. The typical section is a 

model that represents the main modes of a high aspect-ratio wing and without sweep angle and, although it is a simple 

model, its use is justified by the possibility of validation of methods that can be used in more complex and 

representative models. The Eq. (1), developed for a typical section, refers to the structural degrees of freedom of the 

section. The three degrees of freedom referred to plunge, pitch and deflection of control surface are characterized by six 

states in the state space model corresponding to the respective displacements and speeds. 
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Figure 1. Aeroelastic Typical Section with Three Degrees of Freedom, Waszak (1998) 

 

For the ideal system three generalized coordinates were considered: one fixed coordinate in the wing to represent the 

plunge (h); one fixed coordinate in the inertial system, chosen as the non-strained position of the structure, which 

represents the pitch (θ); and another fixed in the control surface, to represent its deflection (δ). So the application of the 

Lagrange equation leads to the following mathematical model for this system: 
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The non-steady aerodynamic forces (Lb, Mθ e Mδ) are calculated based on the linearized theory of thin airfoils, by 

Theodorsen (1935), in which the surface is treated as a flat plate subjected to a simple harmonic movement, assuming 

an incompressible regime, potential flow and small oscillations. It is assumed in this situation that the airfoil oscillation 

happens in relation to the elastic axis. The Eq. (2) presents this calculation. 
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In the Eq. (2), xs represents the structural degrees of freedom of the typical section. The parameter q corresponds to 

dynamic pressure and V corresponds to true airspeed; except for C(k), the other parameters are functions of the section 

geometry. The values used in this work are the same used by Olds (1997) (listed on Tab.1). 

 

Table 1. Model’s Parameters. 

 

Parameter Value Unit (SI) 

b 0.914 [m] 

c 1  

m 128.7165 [Kg/m] 

ρ 1.225 [Kg/m
3
] 

Sα 23.5397 [Kg] 

Sβ 1.4712 [Kg] 

Iα 26.90 [Kgm] 

Iβ 0.673 [Kgm] 

Kh m50
2
 [N/m] 

Kα Iα1002 [N/m] 

Kβ Iβ500
2
 [N/m] 
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The Theodorsen function, C(k), characterizes (quantifies) the aerodynamic delays in the system and its magnitude 

relates the circulatory and non-circulatory forces [Da Silva (1994)]. The Theodorsen function can be expressed in terms 

of Bessel functions (J1 e Y1 are first order Bessel functions), as shown in the Eq. (3). 
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When the value of C(k) is real and unitary (k=0) the flow is denominated quasi-steady, because the effects of 

aerodynamic delays are eliminated. The argument k of the Theodorsen function is called reduced frequency (k = ω⋅b/V). 

 

 
 

Figure 2. Theodorsen Function (C(k): 0≤ k ≤1). 

 

Defining the vector
[ ]T

s hx δθ=
, the equations that describe the model’s behavior can be presented as the 

Eq. (4): 
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The inertia matrix is denoted as [Ms] and the stiffness matrix as [Ks], weighted by chord b to correspond to force 

vector and aerodynamic momentum (see Eq. (2)). The matrix A(s’) is called aerodynamic influence matrix (s’=i⋅k). 

 

2.1. Method K to determine the Flutter Speed 
 

The Method K [Karpel (1981), Nam and Kim (2006)] is the one that requires the least computational effort among 

the methods to solve the Flutter problem. Assuming that the system is subject to a simple harmonic movement, 

expressed by the equation: 
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Hodges (2002) wrote that experimental observations indicate that the energy removed by cycle during the simple 

harmonic oscillation is approximately proportional to the amplitude squared, but independent from frequency. This 

behavior can be characterized by a damping force which is proportional to the displacement time derivative. To 

incorporate this form of structural damping into the analysis, a structural damping g is added and 1/ω
2
 is substituted by: 
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The numeric values for damping g, which are obtained for each reduced frequency value, can be interpreted only as 

the necessary damping (at a certain way) to obtain a simple harmonic movement at a given frequency. Note that this 

damping is, in fact, an artificial structural damping, that does not really exist and was introduced as an artifact to 

produce the desired movement. Using the Laplace transform and substituting Eq. (6) into Eq. (2): 
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Substituting Eq. (5) into Eq. (7) reveals a configuration of an “eigenvalue problem”, which can be solved calculating 

the respective values of λ. 

Figure 3 shows the variations in the frequencies of aeroelastic modes versus flight speed. The point where the results 

are correct is exactly in the Flutter speed. Nevertheless, the concept of the physical phenomenon responsible for 

aeroelastic instability can be observed. At first, at low speed, the frequencies of the aeroelastic modes are very distinct 

and easy to identify. As the speed increases, the frequency of the pitch mode decreases and the frequency of the plunge 

mode increases to converge to the Flutter speed. This coalescence of frequencies is the result of aeroelastic coupling by 

the modes that are responsible for the aeroelastic instability of the studied system. 

 

 
 

Figure 3. Modal Frequency Evolution. 

 

Figure 4 shows the evolution of structural modes damping as a function of flight speed. The speed which, as shown 

in Fig. 3, the coalescence of the frequencies of the pitch and plunge modes, the damping referred to the pitch mode 

crosses the zero damping line (Fig. 4), presenting negative damping. 

 

 
 

Figure 4. Damping Evolution. 
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Figure 3, along with Fig. 4, correspond to the so-called V-g-f Diagram, because it contains information on the 

evolution of Speed, Damping and Frequency of the aeroelastic modes of the system. The advantages of the V-g-f 

Diagram are: presenting physical information of the system as frequency, damping and speed, and without needing a 

state space model to the generation of its data. 

 

2.2. State Space 
 

The utilization of the Structured Singular Values method [Toivonem (1998), Lind and Brenner (1998) and Damen 

and Weiland (2002)], requires that the model’s equations are represented in the state space form and assuming a linear 

time-invariant system (LTI) and finite dimension. To build this model, the equations of the non-steady aerodynamic 

forces are approximated in the frequency domain in terms of rational functions on the Laplace s variable. 

The main approximation methods by rational functions, presented by Karpel (1981), are the Roger Method, the Padè 

Matrix Method and the Minimum-State Method. Applying these approximation methods, aerodynamic states are added 

to the system to represent the aerodynamic lags due to non-steady flow. 

The Roger method approximates the aerodynamic influence matrix by the following expression, where coefficient 

matrices are calculated using the Least Squares Method. The matrix Aap, calculated this way, represents the rational 

approximation of the aerodynamic influence matrix, A(s’). 
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The state vector is increased by adding the aerodynamic lags, as defined: 
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The values of γj-2 correspond to the aerodynamic poles selected in the interval of reduced frequencies of interest. 

Here the values of the approximation poles used are the same as in Karpel’s work (γ1=0.2, γ2=0.4, γ3=0.6 and γ4=0.8). 

The approximation of the developed aerodynamic model, associated to the representative model of structural 

behavior, is added to associate distinct physical phenomena in a single mathematical representation, by the state space 

representation. The index “s” in the states refers to the structural states and the index “a” refers to aerodynamic lags. 
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where: 
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The development of analytical expressions and rational approximations to the aerodynamic influence coefficients 

allows the utilization of eigenvalue extraction techniques, directly from the state matrix, as a function of speed, as the 

Geometric Root Locus (see Fig. 5). 
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Once the state space system equations are formulated, it is possible to observe that the state matrix has speed 

dependant parameters, therefore the eigenvalues of the matrix, which corresponds to the open loop system poles, are 

also speed dependant. Thus, by gradually increasing the speed, a new state matrix is calculated and its eigenvalues are 

extracted to find the Flutter speed where one eigenvalue crosses the imaginary axis.  

  

 
 

Figure 5. Nominal Plant Eigenvalues Evolution with Increasing Speed. 

 

The system adopted for this work, with its aerodynamic model approximated by rational functions given by Eq. (8) 

and Eq. (9), presented a value of 299.04 [m/s] as the critical Flutter speed. 

 

2.3. Structured Singular Values 
 

The aeroelastic model is re-written in an appropriate form for the robust stability study, which used norm bounded 

operators, ∆, to describe errors and uncertainties. One measure of multivariable stability, known as Structured Singular 

Value, µ, allows the determination of a stable flight speed which is robust to model uncertainties described by ∆. 

The basic idea to model a system with uncertainties is to separate what is known (nominal plant) from what is 

unknown (uncertainties) and create a feedback link with boundaries for the possible parametric and uncertainties 

variations. The Linear Fractional Transformation (LFT) is a powerful and flexible tool to represent uncertainties in 

systems and matrices. A complex operator P is considered and partitioned into four elements to describe the nominal 

plant: 
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The upper LFT, Fu(P,∆), is defined as the interconnection matrix such that the P upper loop is closed with the 

complex operator ∆. This transformation is applied to include the effect of uncertainties into the nominal plant as Eq. 

(15). 
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Figure 6. Upper Linear Fractional Transformation Fu(P,∆). 

 

The problem formulation by structured parametric uncertainties encloses the norm bounded operators set, ∆, 

associated with the plant P by a LFT feedback. The set of possible plants is generated by Fu(P,∆) including every 

possible ∆. It is assumed that the true model belongs to this set. 

The Structured Singular Value, µ, represents an alternative for the robust stability analysis. The measure µ is defined 

as in the works of Toivonem (1998), Lind and Brenner (1998) and Damen and Weiland (2002) as being equal to zero 

for the case without any uncertainty or parametric variation, or Eq. (16), for the other cases: 
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The Structured Singular Value is an exact measure of robust stability for systems with structured uncertainties. The 

value of µ determines the amplitude that the uncertainties can present without compromising the absolute stability of the 

system. It is said that P is robustly stable in respect to the operator ∆, knowing that ||∆||∞ ≤ α, for every ∆ if, and only if, 

µ(P) < (1/α) [Zhou, Doyle and Glover (1994), Toivonem (1998), Lind and Brenner (1998), Damen and Weiland 

(2002)]. 

The system P is, in general, internally weighted in a way that the interval within which the system’s errors and 

perturbations variations can be described by the set of uncertainties ∆, bounded by the unit value (||∆||∞<1). A value of 

µ(P)<1, for a set of uncertainties bounded by one (unit value), imply that there are no uncertainty in this set of 

uncertainties which is able to make the system unstable. This means that the system is stable for any uncertainty inside 

the described model. 

The Structured Singular Value depends on the modeled uncertainty structure. The calculated robust stability 

analysis by µ will be precise only if the uncertainty model is realistic enough. 

The determination of the Flutter critical condition needs the description of uncertainties on dynamic pressure or true 

airspeed. In the problem under study, the state space model used for analysis does not have all non-steady aerodynamic 

components linearly varying with dynamic pressure. The aerodynamic poles are proportional to the speed. 

It can be observed, in Eq. (12), that there is a factor q/V multiplying the real coefficient matrix P1, therefore B  is 

also not linearly dependant with dynamic pressure. This factor is considered as q/V0 where V0 is the speed at which the 

model is generated so that this parameter depends linearly on the dynamic pressure. This approximation increases faster 

than the original factor, which is thought of to be conservative, and this is good when the dynamic pressure is calculated 

at a speed close to V0. 

Thus, the state matrix is divided, according to what was pointed out above, in two large blocks for the addition of 

parametric uncertainties. The first block consists in the group of parameters that are proportional to the dynamic 

pressure, directly influencing the states referred to the structural displacements of the system. The second block consists 

in the group of parameters that are proportional to the speed, originated by the inclusion of the aerodynamic lags. 

The second consideration made refers to the relation of the dynamic pressure variation from the first block to the 

speed variation of the second block, in such a way that its variations have amplitudes that correspond to the actual 

values and are coherent with each other. Therefore, for a variation of 10% in the speed it is allowed a variation of 21% 

in the dynamic pressure (dq = 2dv+dv
2
).  

The Flutter margin is dependant upon the flight conditions and µ is defined as the lowest perturbation ∆ that causes 

instability in the system. In this way, uncertainties in the flight parameters (dynamic pressure and speed) are introduced  

and it reaches the least perturbation that leads to instability, which means the Flutter speed. 

In this work, all analysis are made considering only sea level flight (ρ=1.225 Kg/m
3
), therefore the speed is related 

to the dynamic pressure by its square and a constant (q = 0.5ρV2). 

Perturbations in the dynamic pressure and in the speed must enter the system by a feedback represented by a LFT 

(Linear Fractional Transformation). Additive real perturbations are considered in the system: δq for the dynamic 

pressure and δv for the speed. 
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Next, the dynamics referring to δq and δv are separated from the nominal system. 

The first step is the insertion of the additive uncertainty in the dynamic pressure of the nominal aeroelastic system. 

Starting from Eq. (10): 
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where: 
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The second step is the insertion of additive uncertainty in the speed, which correspond to the aerodynamic poles of 

the nominal aeroelastic system. This uncertainty can be modeled as speed uncertainty or as an uncertainty in the non-

steady aerodynamic force model which can result from computational fluid dynamics algorithms or by the assumed 

hypotheses for the development of the equations. 

The consideration of speed uncertainty is illustrated for the first aerodynamic pole as a model for the development of 

the equation in the required form because the procedure is exactly the same for all other aerodynamic pole. Thus, from 

the nominal equation: 
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where: 
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The signals zi and wi (where each signal wi corresponds to the zi multiplied by the respective δ factor) were 

introduced to associate the perturbations in the dynamics to the nominal dynamics by feedback connections. Having this 

in mind, the perturbation information is added to the nominal aeroelastic model to result in a new model that will be 

used in the µ stability analysis. 

 

 (22) 

 

The Eq. (22) represents the augmented plant considering uncertainties in speed and in dynamic pressure. The 

uncertainty matrix, ∆, is diagonal and contains the dynamic pressure uncertainty parameter in the first three positions 

and the speed uncertainty parameter in the following twelve positions. 

The evaluation of the maximum structured singular value as a function of frequency resulted in a speed of 292 [m/s] 

to the instability condition. It was considered a nominal speed of 260 [m/s] in the stability analysis that led to the 

previous value and a parametric variation of 15% was considered around this nominal value. It can be observed, in Fig. 
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7 and by the use of the Structured Singular Value stability criterion (µ(P) < 1), that the maximum variation before 

instability is approximately (15/1.2) %, which results in the speed found. 

 

 
 

Figure 7. Aeroelastic System Structured Singular Values –260 [m/s]. 

 

This difference between the values of the critical speed obtained by the Method K and by the Structured Singular 

Value Method is mainly due to the simplification made to allow the linear dependence of the system to the dynamic 

pressure. As previously stated, the approximation is only good when it is near the nominal value from which the 

variation is being considered.  

Therefore, taking the value of 290 [m/s] as the nominal speed, and allowing the same variation of 15% around the 

nominal values, the new Flutter speed found is 298.97 [m/s]. Comparing with the value of 299.04 m/s obtained by the 

Method K, they are practically the same but with a slightly lower value, which is conservative.  

 

 
 

Figure 8. Aeroelastic System Structured Singular Value –290 [m/s]. 
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It can be observed, in Fig. 8, the percentage variation of (15/4.9) % from the nominal speed under consideration. It 

is possible to create an iterative algorithm, with the procedure presented above, so that the µ-analysis converges to the 

eigenvalue analysis results. 

 

3. CONCLUSION 
 

The methods presented for the Flutter speed calculations – Method K and Structured Singular Values – presented 

results coherent with each other. Thus, the state space system modeling by the Linear Fractional Transformation to the 

inclusion of aerodynamic uncertainties in the model aiming the Structured Singular Value Method was validated.  

The Flutter speed calculations by the Structured Singular Value presented very precise results (almost the same as 

that obtained from Method K and from the variation of eigenvalues of the state matrix with the speed). The use of this 

method and modeling assumptions was validated to allow the inclusion of parametric uncertainties in the stiffness 

coefficients.  

Besides that, this stability analysis method can be use to aid the design of control systems and also to analyze the 

closed loop robust stability. The potential of this method will be better exploited in another work.  

The focus of this work consisted in the validation of the modeling by the Linear Fractional Transformation and the 

results obtained by the Structured Singular Value method. This method allows the inclusion of simultaneous variation 

in several parameters of the model in one stability analysis, which can reduce considerably the time of analysis if 

adequately employed.  
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