
Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil

IMPLEME�TATIO� OF CO�STA�T BOU�DARY ELEME�TS FOR 2D

POTE�TIAL PROBLEMS O� GRAPHICS HARDWARE – GPU

Josué Labaki, labaki@fem.unicamp.br

Luiz Otávio Saraiva Ferreira, lotavio@fem.unicamp.br

Euclides Mesquita, euclides@fem.unicamp.br
Unicamp, State University of Campinas

Mendeleyev St., 200. Campinas – SP/Brazil.

Abstract. There is a growing trend towards solving problems of computational mechanics by parallelization strategies.

The more traditional approach is to implement the parallelization procedures on CPUs based on the MPI or OpenMP

paradigms. Recent efforts have been made to implement computational tasks, which are amenable to parallelization on

graphics hardware (GPU). Due to its architecture, the GPU is specially well-suited to address problems that can be

expressed as data-parallel computations with high arithmetic intensity (the ratio of arithmetic operations to memory

operations). One example of such problem is the Boundary Elements Method (BEM). This work addresses the

implementation of the direct version of BEM for two-dimensional potential problems. For the present implementation

constant boundary elements are used. According to the formulation of BEM, every term of both influence matrices (Gij

and Hij) is independent of each other. In classical CPU serial implementations, these terms are calculated in a

sequence of two loops: for the field point i and for the source point j. On the other hand, from the point of view of the

GPU parallel processing paradigm, the calculation of every one of these terms can be assigned to a thread (GPU’s

elementary unit of calculation) and calculated simultaneously. The transposition of the influence equation to an

algebraic linear system of equation also admits parallelization. The computational efficiency of distinct levels of

parallelization is addressed. Standard Gaussian quadrature is applied to integrate each term of influence matrices.

The code was developed on a 3Vidia CUDA programming environment and executed on a GeForce GTX 280 graphics

card hosted by a regular AMD dual-core CPU. The accuracy and efficiency of the implemented strategies are

investigated by solving a classical potential problem.

Keywords: High Performance Computing; Graphics Hardware; Boundary Elements Method

1. I�TRODUCTIO�

In the last three years, the edges of computing capability have been pushed by the emergence of General Purpose

Graphics Processing Units (GPGPU). Around the end of 2006, a new technology of graphic devices was launched. This

new generation of devices is not only dedicated to graphics computation, but is also capable of performing general-

purpose calculations. Along with this technology, Application Programming Interfaces (APIs) were also launched,

allowing the programmer to code the GPGPU in a higher level paradigm (Owens et al, 2007).

 Graphics hardware was born as parallel computation hardware. Its high-bandwidth memories and its floating-point

operations are significantly faster than ordinary CPUs and have driven attention of the scientific community. Methods

of discretization, such as the Boundary Elements Method (BEM), whose parallel formulations have been explored for

CPU clusters, now find in general-purpose GPU a new and promising alternative of implementation.

In the process of solution of a problem by BEM, several non-recursive numerical calculations have to be performed,

which are good candidates to parallelization on graphics hardware. Many numerical integrations have to be done, a

dense linear system has to be solved, and a couple of rectangular and square matrix-vector multiplications has to be

performed.

This paper addresses the implementation of the Boundary Elements Method for two-dimensional potential problems

on graphics hardware. The paper begins describing the formulation of the BEM. The classical serial implementation is

overviewed. Next, the new technology of GPGPU is described in some details. It is shown why the GPU

implementation is more efficient than its CPU counterpart and how the coding of non-graphical algorithms is treated.

The fourth section shows how the BEM was approached in order to comply with the GPGPU philosophy. Finally, the

presented implementation is used to solve a simple potential problem. Its performance is compared with an ordinary

CPU serial code.

2. THE BOU�DARY ELEME�TS METHOD

The Boundary Elements Method (BEM) began to be developed by Cruse and Rizzo (1968) and Brebbia (1978),

primarily as a discretized formulation of the Integral Equations and the Boundary Integral Equations, from the works of

Fredholm and Helmholz (Courant and Hilbert, 1989; Arfken and Weber, 2005).

The BEM is part of the group of numerical methods which involve some discretization, i. e., a great, complex

problem is divided into smaller problems which solution is more easily obtained. These solutions are them assembled in

Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil

order to form the solution of the greater problem. The nature of the problem being studied can be structural static or

dynamic, thermal, electrical and electromagnetical, chemical, and so forth.

The solution of the problems by BEM goes through the following main steps:

(a) the discretization of the domain boundary by elements;

(b) the assignment of boundary parameters in terms of nodal values;

(c) the numerical integration over the elements;

(d) the assembly of an algebraic system of equations which represent the contribution of the solutions over the

elements to the solution of the whole problem and

(e) the numerical solution of this final system of equations.

It is also possible to determine the solution at the domain of the problem from this analysis of the boundary.

However, while in the Finite Elements Method this is done by interpolation, in BEM it is achieved by a technique of

integration similar to the one which led to the solution at the boundary.

2.1 Formulation of BEM for potential problems

Consider a domain Ωb enclosed by a boundary Γb (Fig. 1), in which the behavior of a quantity u(x) is described by

the Laplace homogeneous equation, Eq. (1).

()2
0∇ =u x (1)

Figure 1. Domain Ωb enclosed by a boundary Γb.

Figure 2. Particular case of auxiliary state: the

fundamental solution.

Consider also a relation of reciprocity between two states u*(x, x0) and u(x), such as the Green’s Second Identity

(Brebbia and Dominguez, 1992; Kane, 1994).

() () () ()() () () () () ()
*

* 2 2 * *
,

, , ,
Ω Γ

 ∂ ∂
∇ − ∇ Ω = − Γ  ∂ ∂ 

∫ ∫
b b

u u
u u u u d u u d

0

0 0

x x x
x x x x x x x x x x

n n
 (2)

In Eq. (2), the state u*(x, x0) is called auxiliary state, and is a fundamental concept in the Boundary Element

Method. A classical example is the solution of the Laplace operator, Eq. (3), when the domain Ω is unbounded (Fig. 2):

2 *

0 0(,) (,)∇ = −u δx x x x (3)

This state refers to the application of a unitary concentrated load (Dirac Delta distribution) at the point x0, subjected

to the condition that its effects vanishes at a point x infinitely far from x0. In other words,

0

*

0
lim (,) 0
− →∞

=u
x x

x x (4)

Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil

The source-point x0, in which the auxiliary state is applied, as well as the field-point x, where the effect of this load

is measured, is another fundamental concept of BEM, as well as the derivative of the auxiliary state with respect to a

normal direction n to be defined later:

*

*0

0

(,)
(,)

∂
=

∂

u
q

x x
x x

n
 (5)

This particular case of auxiliary state is called the fundamental solution of the Laplace operator. The characteristics

of this fundamental solution are:

(a) the auxiliary state is the solution of the Laplace operator at the unbounded domain Ωinf, presenting a non-

homogeneous term defined by a Dirac Delta and

(b) it satisfies the boundary condition stated by Eq. (4).

The fundamental solution u*(x, x0) presents the following mathematical property:

() ()2 *

0 0 0
() (,) () (,) ()

Ω Ω

∇ Ω = − Ω= −∫ ∫
b b

u u d u d uδx x x x x x x (6)

Replacing (6) and (1) into (2) it is obtained:

()

[]()
0

* 2 2 *

0 0 0 0

0

(,) () () (,) () () ()
Ω Ω− −

 
 ∇ − ∇ Ω = − − − Ω =
 
 
∫ ∫������� �����������

b b

u u u u d u d u

δ

δ
x x

x x x x x x x x x x (7)

Equation (7) is applied to the right hand side of the Green’s Second Identity (Eq. 2) in order to obtain the following

Boundary Integral Equation:

*

* 0

0 0

(,)()
() (,) () ()

Γ

 ∂∂
+ = − Γ 

∂ ∂ 
∫
b

uu
u u u d

x xx
x x x x x

n n
 (8)

Once the position of the source-point x0 is arbitrary, it can be collocated at the boundary of the problem. In this case,

Eq. (8) becomes similar to the Somigliana identity, but for the Laplace operator:

*

* 0

0 0 0

(,)()
() () (,) () ()

Γ

 ∂∂
= − Γ 

∂ ∂ 
∫
b

uu
C u u u d

x xx
x x x x x x

n n
 (9)

This equation forms the basis of the classical BEM for potential problems and its formulation can be found in many

text-books about the Boundary Elements Method. Equation (9) is an exact Boundary Integral Equation in which line

integrals must be determined along a boundary like Γb in Fig. 1. The formulation of the BEM consists in the

discretization of Eq. (9). According to this method, the boundary Γb is discretized by boundary elements Γe (Fig. 3),

each one having normal vectors ne pointing outwards the domain. The solution over the boundary elements are assumed

to vary according to some pre-defined mathematical function hi(x):

() () ; () ()= =∑ ∑i i i i

i i

u u h q q hx x x x (10)

Replacing Eq. (10) into (9), results:

* *

0 0 0 0
() () (,) () () (,) () ()

Γ Γ

= Γ + Γ∑ ∑∫ ∫e e

i e i e e i e i e e

i ie e

C u q u h d u q h dx x x x x x x x x x (11)

2.2. Serial implementation of the BEM

Consider a two-dimensional problem discretized by N constant boundary elements, as it can be seen in Fig. 4b.

According to the formulation based on constant elements, the central node of the element is taken to represent the whole

element, in which the quantities u and q are taken as constants.

Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil

Figure 3. Discretization of the boundary Γb. Figure 4. (a) Continuous problem and (b) problem discretized by

boundary elements.

The point i (Eq. 11) is an arbitrary element in which the fundamental solution is applied, and Γe is the boundary of

another element j. For constant elements, the multiplier C(x0) is always 0.5 (Brebbia, 1978). Considering that the

quantities u and q are constants along the element j, they can be taken out of the integral. Equation (11) becomes then:

1 1

1

2

3 3
i j j

j jj j

u q d u u d q
∗ ∗

= =Γ Γ

   
+ Γ ⋅ = Γ ⋅      

   
∑ ∑∫ ∫ (12)

It is usual to denote the integrals of Eq. (12) by influence coefficients, given by:

� ;

1
;

2

∗

Γ

∗

Γ

 = Γ ≠


= 
 Γ + =


∫

∫

ij

j
ïj

j

H q d i j

H

q d i j

 and ïj

j

G u d∗

Γ

= Γ∫ (13)

Replacing (13) into (12) yields:

1 1

3 3
ij j ij j

j j

H u G q
= =

=∑ ∑ (14)

If the index i runs through all the N boundary elements, Eq. (14) becomes the system of algebraic equations given in

Eq. (15), in which H and G are matrices with dimensions N × N, and u and q are vectors N × 1:

H⋅⋅⋅⋅u = G⋅⋅⋅⋅q (15)

In a well-posed problem, each element has a known u and an unknown q or vice-versa. Hence, every problem will

have N known variables and N unknowns. Equation (15) has to be rearranged in order to separate the unknowns to the

same side of the equation (Eq. 16).

A⋅⋅⋅⋅x = B⋅⋅⋅⋅b’ (16)

In Eq. (16), matrices A and B are formed by a combination of columns of H and G according to the problem’s

boundary conditions, i. e., according to which values of u or q are known in a given element i. The vector x contains the

unknowns of the problem and the vector b’ contains the boundary conditions. The matrix B and the vector b’ are

multiplied to obtain the following final system of algebraic equations:

A⋅⋅⋅⋅x = b (17)

Equation (17) is solved to determine the unknowns of the problem at the prescribed boundary. Once determined u
j

and q
j
 for every element j, it is possible to determine the quantities u and q for any internal point p of the domain from

Eq. (11). Now that the point p belongs in the domain of the problem, the value of the constant C(p) is 1 (Brebbia, 1978).

Thus, Eq. (11) becomes:

�

1 1

3 3 pj
p pj j j

j j

u G q H u
= =

= −∑ ∑ (18)

Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil

In the serial implementation, the terms H
ij
 and G

ij
 (Eq. 14) are calculated in a sequence of two loops. The iterator i

represents the collocation of the source-point on different elements. The iterator j varies representing the element over

in which the integration is performed. Depending on the method of integration adopted, an additional inner loop,

responsible for the numerical integration, will have to be carried out for each pair i-j. For example, for the integration by

Gaussian Quadrature, an additional loop k over the Np integration nodes will be necessary (Davis and Rabinowitz,

2007).

In a very simple programming scheme, once full the matrices H and G are determined, the transition between Eq.

(15) and (16) is performed. A loop of N terms fills the vectors x and b’ with data from u and q according to the

boundary conditions. In this loop, the columns of A and B are created, with data from H and G, according to the

boundary conditions. In the sequence the linear system of Eq. (17) is solved. A large variety of numerical methods are

described by the literature for the solution of this sort of system (Ruggiero and Lopes, 1996).

A new double loop in p and j fills the new rectangular matrices H
pj
 and G

pj
. The multiplication of these matrices by

the just determined vectors u and q results in the solution of u for the internal points.

In this section, the Boundary Elements Method for the study of potential problems was displayed. A simple and

classical serial implementation was summarized. Next, the technology of computation on graphics hardware will be

presented.

3. PARALLEL COMPUTI�G O� GRAPHICS HARDWARE

Ordinary Central Processing Units (CPUs) must be capable of dealing with a variety of tasks demanded by a

computer. Among them, there are recursive, adaptive, and interdependent problems, which demand a large amount of

the computation resources to be dedicated to communication of data and control. On the other hand, graphics

calculations such as pixel shading, vertex transformation and rasterization are tasks that require little control and

communication, when compared to the volume of calculations. Because of that, graphics hardware has been developed

since its beginning as parallel computation devices. They are specially well-suited to address problems that can be

expressed as data-parallel computations with high arithmetic intensity (the ratio of arithmetic operations to memory

operations) (NVidia, 2008).

 For example, a typical card launched in the end of 2006 is the NVidia GeForce 8800 model (TechReport, 2006b).

This graphics card contains 128 calculation units (called multiprocessors), distributed among 8 vector processors. This

architecture is similar to the one found in clusters of CPU, only confined in a single hardware device. Because of its

architecture, this family of graphics cards requires a single instruction−multiple data programming paradigm (SIMD).

For this family of cards, in regular computations such as matrix multiplication, performances 100 times higher than the

CPU have been reported (Cooperman and Kaeli, 2008; Ohshima et al, 2007).

The model GeForce 8800, launched by NVidia along with its CUDA API, is part of the new technology of general-

purpose programmable graphics processing units, the GPGPUs. The company ATI was the first to introduce this

technology (TechReport, 2006a). Its graphics cards are programmable since the Radeon R600 model launched in May,

2007 (TechReport, 2007). Its respective API is called CTM (Close-to-the-Metal). In the present work, NVidia’s API,

CUDA, was adopted.

CUDA (Computer Unified Device Architecture) is an API (Application Programming Interface) with which NVidia

graphics cards can be programmed to perform non-graphics tasks. It is a low level language, because it requires the

programmer to explicitly allocate and free memory, to declare data copies, to chose parameters of parallelism, and so

forth. It is essentially an extension of the C programming language, with the addition of function type qualifiers,

variable type qualifiers, kernel execution directives and some additional built-in variables. CUDA is multiplatform and

can work with all NVidia card architectures (NVidia, 2008).

In CUDA programming, the concepts of thread, thread block and grid are fundamental. Thread is a virtualized CPU,

the basic execution unit: it is the component responsible for executing a given instruction (the kernel) over a single data.

Multiple threads may work in parallel executing the same kernel over a set of different data. Thread blocks are used to

spread the threads between the various multiprocessors of the graphics card. Grids are used to spread the data of the

problem among thread blocks. A thread block can be a one-, two- or three-dimensional array of threads, and CUDA

offers variables with which the index of every thread inside its block can be recovered. The same applies to grids with

respect to their blocks.

A GPU has several multiprocessors, each one of them capable of dealing with many blocks simultaneously. Each

thread block, in turn, admits the execution of a limited number of threads at the same time. This number is called warp,

and use to be of 32 threads. The number of multiprocessors in a GPU, such as the number of thread blocks with which

each one of them can deal with and the warp size depends on the card’s model. For example, the model GTX 280 has

30 multiprocessors, each one of them capable of dealing with 8 blocks simultaneously. Altogether, this card can execute

the same kernel simultaneously over (30 multiprocessors) × (8 thread blocks per multiprocessor) × (32 threads of the
warp) = 7680 data.

It is up to the programmer to decide in which way the data of the problem will be divided in terms of blocks and

grids. This is a tough decision which implies directly on the efficiency of the program. Recently, an application has

Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil

been developed, to determine these parameters by metaprogramming (Klöckner and Hesthaven, 2008).

Graphics hardware holds complex memory architecture. The most important of them, the global, may have up to 2

GB of memory, in the newest cards. The data placed in this memory are available to all the threads of a grid. Each

thread block has its own shared memory, of only 16 kB, but the access time is up to 600 times faster than of the global

memory. However, only the threads of the given block are allowed to access their block’s shared memory. Furthermore,

each thread has its own registers, accessed only by the thread itself. The graphics card also has the constant and texture

read-only cache memories, devoted to specific purposes in the graphics calculation (NVidia, 2008). Despite all this

graphics hardware memories, a CUDA program also has to deal with the ordinary CPU RAM memory, as every

classical low-medium level program does.

The execution of GPU programs requires a sophisticated manipulation of data between all these memories. All the

vectors and matrices that might be accessed by the threads have to be allocated in the RAM memory of the CPU that

hosts the graphics card, and also allocated in the GPU’s global memory. Only pointers to these vectors are passed as

arguments to the kernels. If it is necessary to access a set of data repeatedly inside a block, it might be also necessary to

define a space inside its shared memories, or even in the threads’ registers.

At the end of the execution of a kernel, the data calculated by the threads are saved in the memory allocated in the

GPU. It is necessary to copy back this data to the CPU’s memory so that they can be printed, read, saved, etc.

All memory manipulation expends some processor clock cycles. A precise, fair benchmark of processing time

between CPU and GPU will be achieved only if it also involves the time the GPU consumes to perform these memories

operations. The following section will report how the programming concepts of GPGPU were approached in the present

implementation of the Boundary Element Method.

4. IMPLEME�TATIO�

In section 2.2, a classical serial algorithm of the implementation of BEM was summarized. The part of that

algorithm referring to the calculation of the matrices H and G, i. e., the calculation of the influence coefficients H
ij
 and

G
ij
 (Eq. 14), is one of the easiest cases to be coded in a parallel algorithm, if the formulation of discontinuous elements

is adopted.

The matrices H and G are allocated as vectors of size N
2
 and passed as argument to the kernel that will perform the

calculations of their terms H
ij
 and G

ij
. The data of the problem, like the coordinates of the nodes and the incidence of the

elements are passed as arguments as well.

A number of threads is chosen in order to perform the calculations. In the present implementation, these threads are

distributed among two-dimensional thread blocks of 22 × 22 threads. The number 22 is chosen because 22 × 22 is the
biggest dimension a square block can have (23 × 23 > 512, maximum number of threads per block). The size of a two-

dimensional grid is calculated so as to contain as many blocks as needed to accommodate the N
2
 terms of H and G.

Figure 5 illustrated the sizes of grids and blocks for a reduced example. In this example, matrices H and G will have

dimensions of N × N = 6 × 6. The thread blocks were defined as containing 4 × 4 threads. From Fig. 5, it is observed

that the grid will then be calculated to contain 2 × 2 blocks, in a total of 8 × 8 = 64 threads. Even so, only 6 × 6 = 36 out
of the 64 threads will perform the calculations of H

ij
 and G

ij
. The darkened cells in Fig. 5 represent the terms that will

perform some calculation, while the blank cells represent the threads that were created, but left inactive.

Two 22 × 22 sub-matrices (of H and G) are allocated at each thread block’s shared memory. The calculation of H
ij

and G
ij
 performed by these threads are initially stored in these sub-matrices. After all the block’s threads have ended

their calculations, this data are finally copied to the vectors H and G allocated at the GPU’s global memory.

In the calculation of internal points, a similar procedure is employed. The same size of blocks is used. The

difference is that, as the number of internal points might be different of the number of elements, the matrices might

present more or less rows than columns, and therefore the grids will also have more or less thread blocks in its

“vertical” direction.

In parallel execution, instead of two chain loops, each thread of the whole grid will have its own index ij. Based on

this index, the threads will be able to univocally determine, from the data of the problem (node coordinates, element

incidence, etc.) the parameters needed to perform the integration shown by Eq. (13). In this paper, four-node Gaussian

Quadrature is adopted to perform this integration. The four terms loop referring to the Gaussian Quadrature is

performed sequentially by each thread.

A kernel dedicated to perform the transition between Eqs. (15) and (16) was written. According to the boundary

conditions, the thread of index ij switches or not the terms H
ij
 and G

ij
 and assembles the vectors x and b’ from u and q.

Hence, not only several terms of x and b’ are filled in one single execution step, but also several columns of H and G

are switched at the same time.

The same procedure is employed to calculate the matrices H
pj
 and G

pj
 of Eq. (18). In this case, only the number of

activated threads is different.

The remaining calculations, as the multiplication of matrices by vectors and the solution of the linear system

expressed by Eq. 17 are performed in serial execution by the CPU. There are initiatives to implement methods for

solution of linear systems in GPGPU, but the present available implementations are still immature or ill-documented.

Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil

The present implementation was applied to solve an elementary potential problem by BEM, and the results are

reported in the next section.

Figure 5. Reduced example of a grid of thread blocks.

Figure 6. Two-dimensional square plate of unitary edge.

5. RESULTS

The present implementation is capable of dealing with two-dimensional problems, discretized by constant boundary

elements. As input data, it must be provided: a vector containing the coordinates (x
i
, y

i
) of the vertices of the N

elements; a vector containing the relationship of incidence of the elements (which nodes belong in each elements); a

vector containing the type (u or q) and the value of the boundary conditions, and a vector containing the coordinates (x
p
,

y
p
) of the internal points.

The thermal problem depicted by Fig. 6 was treated. The problem refers to a square plate of unitary edge. Each edge

is discretized by N/4 elements of same length. As boundary conditions, all the elements of the left border have zero

temperature, all the elements of the right border have temperature 1, and the remaining borders are insulated (q = 0).

This problem has a closed form analytical solution given by T(x) = x, according to the given system of coordinated

(Fig. 6).

10
0

10
1

10
2

10
3

10
4

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

N elements

E
la
p
s
e
d
 t
im

e
 [
m
s
]

GPU

CPU

Figure 7. Time spent by the GPU and the CPU to calculate H and G.

The time consumed to fill the matrices H and G of Eq. (14) was measured to several numbers of elements N. In the

GPU, this time corresponds to the time spent by the specific kernel that calculates these matrices. These times are

compared to a serial code written in pure C language. In the CPU, this time corresponds to the time spent by the specific

function that performs these calculations. Figure 7 shows the elapsed times for values of N between 4 and 10,000

elements.

Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil

At the beginning of the graphic, it can be observed that there is a number of elements before which the use of CPU

is more advantageous than the GPU. The reason to that is that, in order to execute the kernel that calculates H and G on

the GPGPU, a few allocations and copies of memory are needed, which are not necessary in the CPU. This allocation

time is rather short and depends little on the number of elements N, the increase of N causes it to dissolve in the total

execution time of the kernel.

Beyond this point, the superiority of performance of the GPU is observed. In the final experiment, in which a

problem of 10,000 elements was considered, the GPU obtained the matrices H and G in a time 56.8 times shorter than

the CPU.

The present study also compared the time consumed to introduce the boundary conditions, that is to map the vectors

u and q of Eq. 15 into the vectors x and b’ of Eq. 16, that is to switch the columns between H and G according to the

boundary conditions. The comparison is shown by Fig. 8.

It is again observed that there is a certain number of elements, from which the use of GPU is worth. The reason is

the same: there is memory handling required before any calculation can commence. Because the calculation of the

distribution of vectors and transposition of columns of matrices is much simpler than the calculation of the matrices H

and G, this problem has smaller arithmetic intensity than the prior. For this reason, the use of GPU is advantageous only

from a number of elements bigger than in the previous problem.

10
0

10
1

10
2

10
3

10
4

10
-3

10
-2

10
-1

N elements

E
la
p
s
e
d
 t
im

e
 [
m
s
]

GPU

CPU

Figure 8. Time spent by the GPU and the CPU to distribute the vectors u and q among x and b’, and switch the

columns between H and G.

The performance of GPU versus CPU in the calculation of internal points was also investigated. A mesh of Nptint

equally-spaced internal points was spread inside the domain of the same problem of Fig. 8. Figure 9 shows the

distribution of the internal points when Nptint is 9.

Figure 10 reports the time spent by the GPU and the CPU to calculate the matrices H
pj
 and G

pj
 (Eq. 18) as the

number of internal points varies. The number of boundary elements was fixed in 1,600 elements. It is observed a large

superiority of the GPU in numerical efficiency in this calculation. In the final experiment, in which 3,600 internal points

were considered, the GPU obtained the matrices H
pj
 and G

pj
 in a time 141.6 times shorter than the CPU.

Finally, a complete problem was solved. In this experiment, N boundary elements are used. The solution goes from

calculating H and G and ends at the calculation of the temperature at Nptint = 16 internal points. The aim of this

experiment is to relate the time spent by the GPU in global memory operations to the time spent with the global

processing.

As it was already told, the solution of the linear system and the matrix multiplication in the present implementation

were performed by classical serial algorithms, in both the CPU and the GPU. Once this time is the same in both cases, it

is not shown in the next results. Figure 11 shows the execution time for values of N between 4 and 10,000 elements.

Unlike the experiments shown in Fig. 7, in which the memory operations of the kernel was compared with the

kernel’s own calculations, the solution of the present complete problem also involved memory operation between CPU

and GPU and argument passing between kernels. Therefore, from the point of view of the complete problem, the

present implementation of BEM has reduced arithmetic intensity when compared to the calculation of H and G alone.

For this reason, the use of GPU is more advantageous from a number of elements bigger than what was observed in Fig.

7.

Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil

10

1
10

2
10

3
10

4
10

-2

10
-1

10
0

10
1

10
2

10
3

10
4

N elements

E
la
p
s
e
d
 t
im

e
 [
m
s
]

GPU

CPU

Figure 9. Distribution of internal points

inside the domain of the square plate.

Figure 10. Time spent by the GPU and the CPU to calculate H
pj
 and G

pj
.

Even so, a superior performance of the GPU over the CPU is observed. In the final experiment, where 10,000

elements were considered, the graphics hardware solved the problem – both the solution at the boundary and at the 16

internal points – in a time 13 times shorter than the CPU.

A last case of complete problem was solved, with a much larger number of internal points. Ten thousand of

boundary elements and internal points were used. The time consumed by the CPU, except to matrix multiplications and

solution of the linear system, was 64,776.865 ms. The time consumed by the graphics card to solve the same problem

was 3,200.773 ms – 20.24 times lower.

10
0

10
1

10
2

10
3

10
4

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

N elements

E
la
p
s
e
d
 t
im

e
 [
m
s
]

GPU

CPU

Figure 11. Times of execution to solve a complete problem.

6. CO�CLUSIO�

This paper has described the implementation of the Boundary Elements Method for two-dimensional potential

problems on graphics processing devices. A classical serial implementation was rewritten under the SIMD parallel

programming paradigm.

The paper reports the performances of GPU and CPU on dealing with three important steps of BEM: the calculation

of the influence matrices, the rearrangement of these matrices in the form of a system of equations A⋅⋅⋅⋅x = b, and in the

Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil

calculation of the matrices of influence of internal points. It was observed that the point from which the GPU presents

better performance than the CPU is function of the arithmetic intensity of each problem. In all the cases, however, the

graphics hardware has shown to be more numerically efficient than the CPU with increasing number of elements and

internal points.

Many improvements can be added to the present implementation. It is well known that the time spent in the solution

of a linear system of algebraic equations varies dramatically with the size of the system. In the last experiment of this

work, in which the linear system had dimension of 10
4
 × 104, the time consumed to solve it was 101,839.016 ms: over

30 times the time consumed to perform all the remaining calculations of the problem. Therefore, it is hoped that the

development of a reliable CUDA linear systems solver may boost the analysis of problems by BEM in GPU to even

more attractive levels.

7. REFERE�CES

Arfken, G. B., Weber, H. J., 2005, “Mathematical Methods for Physicists”. Academic Press, Orlando, 1200p.

Brebbia, C. A., 1978, “The Boundary Element Method”. Pentech Press, London.

Brebbia C. A., Dominguez J., 1992, “Boundary Elements - An Introductory Course”. 2
nd
 Edt., Computational

Mechanics, Southampton.

Courant, R., Hilbert, D., 1989, “Methods of Mathematical Physics”. Wiley-Interscience, New York, 560 p.

Cooperman, G., Kaeli, D., 2008, “GPGPU Programming – Syllabus”. 28 November 2008.

<http://www.ccs.neu.edu/course/csu610/#syllabus>

Cruse, T. A., Rizzo, F. J., 1968, “A direct formulation and numerical solution of the general transient elatodynamic

problem”. I. I. J. Math Analysis, vol. 22, pp. 244-259.

Davis, P. J., Rabinowitz, P., 2007, “Methods of Numerical Integration”. 2
nd
 Edt. Dover Publications. Mineola.

Kane, J. H., 1994, “Boundary Element Analysis in Engineering Continuum Mechanics”. Prentice Hall Englewood

Cliffs.

Klöckner, A., Hesthaven, J. S., 2008, “Metaprogramming Graphics Processors from High-

Level Languages”. 28 November 2008 <http://mathema.tician.de/entry/dam>

NVidia., 2008, “NVidia CUDA – Compute Unified Device Architecture – Programming Guide”. NVidia Corporation,

Santa Clara.

Ohshima, S., Kise, K., Katagiri, T., Yuba, T. 2007, “Parallel Processing of Matrix Multiplication in a CPU and GPU

Heterogeneous Environment”. Graduate School of Information Systems The University of Electro-Communications,

Tokyo.

Owens, J. D. et al, 2007, “A Survey of General-Purpose Computation on Graphics Hardware”, Computer Graphics, 26,

1, pp. 80-113.

TechReport, 2007. “AMD's Radeon HD 2900 XT graphics processor: R600 revealed”. 23 May 2009,

<http://techreport.com/articles.x/12458>

TechReport, 2006a. “ATI dives into stream computing and makes a splash”. 23 May 2009,

<http://techreport.com/articles.x/10956>

TechReport, 2006b. “Nvidia's GeForce 8800 graphics processor

The green team reinvents its own reality and rattles ours”. 23 May 2009, < http://techreport.com/articles.x/11211 >

Ruggiero, M. A. G., Lopes, V. L. R., 1996, “Cálculo Numérico – Aspectos Teóricos e Computacionais”, Editora

Pearson Education, São Paulo, 410 p.

8. RESPO�SIBILITY �OTICE

The authors are the only responsible for the printed material included in this paper.

