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Abstract. The attitude of an artificial satellite on terrestrial orbits is analyzed through the application of external 

torques to the vehicle using thrusters, reaction wheels or external gravitational torque, and considering also the 

presence of solar wind and magnetic torques.   The use of reaction wheels eliminates the need of thrusters or gas jets 

as external perturbation sources and they can be used also as moment wheels in the stabilization procedure.   This 

work presents the method of attitude optimization of artificial satellites equipped with three reaction wheels.   In the 

vehicle being studied, which is on a terrestrial circular orbit, gravitational gradient torques are applied.   The angular 

velocities of the reaction wheels have their vectors coincident with the satellite principal axes of inertia.   For the 

determination of optimal trajectories, numerical methods are developed with applied torques as external perturbation 

on the internal wheel axles.   A numerical solution is presented on an approach employing performance range for 

minimum energy.  The numerical solution is accomplished through a program implemented within the Matlab 

software, which uses the function bvp4c of the Matlab subroutines for optimization of a boundary value solution in two 

points. 
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1. INTRODUCTION  

 
Considering that nonlinear coupled equations would result from models based on realistic satellite architecture, 

many projects in the field of attitude maneuver control of a rigid space vehicle have been developed using satellite 
configurations with only one or two control axes.  Concerning this, a historic description will be presented in this 
chapter, which will be very useful for the comprehension of the present research.   

The regions of stability of a satellite equipped with one single internal wheel, along with one of the satellite 
principal axis of inertia, and subjected to disturbing gravitational torques, have their limits of stability determined for all 
its equilibrium positions (Longman, 1981).   The limits of stability were obtained for all possible satellite equilibrium 
positions, where the variations of these regions corresponded to changes on the internal body angular momentum 
magnitude, or on the alignment of this moment with another body principal axis.  The research in this field evolved with 
a work based on a satellite equipped with more than one internal wheel (Sarychev, 1982), where it was presented a 
devise for damping the satellite nutation oscillations, which comprised a gyroscopic system, embodying only one 
degree of freedom, and with a single spring-mass-dashpot system within it.  More recently, an interesting research 
(Druzhinin, 1999) dealt with the permanent rotation motion of a satellite, developed with internal rotors, assembled over 
the satellite center of gravity, where it was proved that in case the total angular momentum of the that spacecraft is not 
null, the permanent rotations can occur only around its principal axis of inertia.  Subsequently, a research studied the 
stabilization of the equilibrium positions of a satellite with internal rotors and with the rotors moment control employing 
servo-motors (El-Gohary, 2001).  As a satellite can not be stabilized around a single equilibrium position, a method was 
conceived focusing on a control law with feedback, which would stabilizes globally and asymptotically the vehicle 
under a revolute motion, around a specific inertial axis (Kim, 2001).   In the same research, an analytical method 
showed that there are no less than eight and no more than twenty four isolated cases of equilibrium on a satellite, when 
the angular motion is exclusively around the vehicle body Y axis (Sarychev, 2001).  Considering the attitude 
optimization, a procedure for calculating the attitude maneuvering with minimization of time was developed using a 
gyroscopic device with moment control (Kranton, 1970).  The problem of time minimization of space vehicles attitude 
was dealt with using a numerical method, with limitations of forces and torques and with the time determined through 
sequential reductions of the maneuvering time, until the limits would approach the bounds imposed for the problem, 
configuring the problem as a Bang Bang procedure (Li and Bainum, 1990).  The boundary value problem in two points 
was derived from the application of the minimum principle of Pontryagin, solved using a quasi-linearization program.   
It was established analytically in a further work that a rigid space vehicle, embodying inertial symmetry, can be 
controlled independently on three axes; but without being simultaneously singular, in any moment, in the minimum 
time maneuvering procedure (Bilimoria, 1993).  In a complementary work on the field of minimum time optimization 
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control, the solution was obtained through a switching algorithm, using an open loop procedure (Meier and Bryson, 
1993).   The same algorithm was used to obtain approximate solutions, with switching control, for minimization of time 
of a satellite attitude maneuver (Byers, 1993).   A solution employing the minimization of time procedure, offering 
many control options of the attitude maneuver problem of an inertial symmetric space vehicle, where three independent 
control torques are applied, each one aligned with one vehicle inertia principal axis and where the bang bang method for 
a finite and infinite singular control strategy was used, was published showing that for certain problems, all the control 
procedures for minimum cost were of an infinite order (Seywald, 1993).   In a later publication, it was shown that it is 
possible to simulate many solutions using a variety of space vehicle configurations, through a minimum time maneuver 
attitude control, for rigid and flexible bodies (Scrivener, 1994).   Lately, a control method for assuring satellite optimal 
stabilization was proposed, for a vehicle equipped with three reaction wheels.   In this case, the controlling action is 
obtained through the rotational motion of the internal reaction wheels.      

As a complement of the above-mentioned studies, the present work will analyze, in particular, the case of the 
optimization control strategy, based on the minimum energy approach.  

 
2. EQUATIONS OF MOTION 

 
The satellite inertial parameters are defined as follows (Bryson, 1994): 
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Where: 
 
a and b are the inertia parameters of the vehicle; 
Ixx, Iyy and Izz are the principal moments of inertia of the vehicle. 
 
The angular motion is relative to the vehicle center of mass.  The kinematics equations are:  
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Where: 
 
n is the orbit angular velocity, and is defined as: 
 

R

g
n = , being g the earth gravity acceleration and R the distance from the earth center of gravity and satellite 

center of gravity. 
 
 p, q and r are the angular velocities of the vehicle, relative to the x, y and z body axes, respectively 
 

ψθφ ,, are the Euler’s angles 

 

The angular velocities are in function of n and of the Euler’s angles for the equilibriums positions.  
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The internal reaction wheels dynamic equations of the angular momentum are (Junkins, 1986): 
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Where 
21

,hh &&  and 
3
h&  correspond to the time rate of the angular momentum of the vehicle motion and u1, u2 and u3 

correspond to the torques applied on the internal reaction wheels and Ja is the polar moment of inertia of the reaction 
wheels. 

 
The dynamic equations are as follows: 
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In the equations (6), the angular momentum, as well as its time rate, the torque applied on the internal reaction 
wheel and its moment of inertia, are “parameterized” as a function of the principal moment of inertia Iyy: 
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The system is described through the nonlinear Eq. (4), (6) and (7), to satisfy the requirements of the model: 
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The performance index is defined as follows (Lewis, 1986):  
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The Hamiltonian function is written as: 
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And the co-states dynamic: 
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Being the optimality condition defined as: 
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The Eq. (9) and (10) and the constraints ( ) ( )nRxxx ∈=
00

,0 , and ( )( ) ( )qRTTx ∈= ψψ ,0, , with nq ≤ , lead to a 

“boundary value problem in two points”, whose boundary conditions vector is: 
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3. ATTITUDE OPTIMIZATION 

 
 In this chapter, the problem formulation will be presented with its computational implementation, and the results of 

the motion optimization control of artificial satellites on circular orbits, subjected to moments due to the gravitational 
force. 

The attitude maneuver is done from a position defined by the known initial and final states, characterizing it as a 
boundary value problem (BVP) in two points, of the continuous systems relative to time optimal control theory.  The 
maneuver is done having as control sources the applied torques over the three internal reaction wheels. 
 

3.1. bvp4c – Description of the numerical method 

 
The MatLab function bvp4c implements a method for the solution of a BVP as following (Shampine, 2000): 
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Where: 
a is the parameter initial state x 
b is the parameter final state y 
and p is a unknown parameter vector 
 
Subjected to boundary conditions in two points, generally nonlinear: 
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And the above relation satisfies the differential equations at the intermediate and final points of each interval: 
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These conditions result in a non linear system of algebraic differential equations with the S(x) coefficients.   

Differently from the method of shots, the solution y(x) is approximate over the interval [a, b] and the boundary 
conditions are taken into consideration at each step of the solution process.   The algebraic equations are solved 
iteratively by linearization, as the methods considered in this study employ the MatLab tools for the solution of linear 
equations.   The basic method utilized by the bvp4c function is known as “collocation method”. 



 

 
3.2. Formulation of the actuation control problem for the minimization of energy 

 
The model is described by the nonlinear equation variables on time.   The performance index  is chosen considering 

as a constraint the activation control minimum energy approach, for accomplishing the desired maneuvering attitude, 
taking the system from the initial to the final position. 

The applied torqueses, as control sources, are applied on the three internal wheels ( )( )tu1 , Eq. (6), determining the 

system function (Junkins, J. L, Kim, Y., 1993):  
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The problem is formulated with the final state free, which is a condition that includes in the equation the 

performance index, the final state function ( )( )TTx ,φ , where the state variables tend to assume a very close value to the 

desired final state variables.   
Then, the performance index, if a weighing value S is included in its final state, considering the Eq. (9), is as 

follows: 
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The function L is defined as follows: 
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The nine differential equations which define the system, being three of them the ones that determine its kinematic 

behavior, Eq. (1), and six that determine its parameterized dynamic behavior, Eq.(6) and Eq.(7), being inserted in Eq. 
(11) result in the Hamiltonian equation, defined as follows: 
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The co-state differential equations are determined employing the Eq.(22), and the control equations, in conformity 

with Eq.(13). 
By deriving the Hamiltonian equations, in relation to each state variable, we obtain the nine co-states differential 

equations (Bettiato, 2003). 
The control inputs are obtained under the condition of “optimality” Eq.(14) being applied to the Hamiltonian 

equation: 
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3.3. Computational implementation of the minimum energy control problem 

 
The elaboration of a computational program for solving the optimum control problem with the control actuation for 

the minimization of energy was done with the aid of the software Matlab 6.0, through the Matlab optimization package 
function “bvp4c”, for the solution of a boundary value problem in two points. 



The computational implementation presented in this item constitutes a generalized form, which will be applied on 
the other optimization program, with some distinctions. 

The state and costate vectors are as follows: 
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The system dynamic is described through nine state differential Eq. (1), (6) and (7) and nine co-state differential 

equations (Bettiato, 2003), totalizing eighteen equations for the whole system, including the three internal wheels 
dynamics.   The controls are determined through the Eq. (23)-(25). 

For this case of the optimization problem solution for the minimization of energy of the actuation control, eighteen 
boundary conditions were established, being nine for the initial states and nine for the final ones. 

For the final states, the vector boundary conditions components were computed as a function of the final state
( )( )TTx ,φ ,  from the Eq. (20), which for a quadratic index of performance with a weighted final state, is: 
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Defining the co-state problem as: 
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The difference between the co-state and the right side of the Eq. (27) generates a residue for the final states which 

are terms of the boundary conditions vector. 
The program includes the “continuation method”, being this method characterized for repetitions on the program 

execution, where the result obtained in the former execution is utilized, with the purpose of adjusting the weighed 
variables (S(T)) for improving the precision of the result. 

The proposed problem was developed with the purpose of determining the applied torques on the internal wheels, to 
produce the angular displacement of a satellite with some inertial relations, minimizing as a result the actuation control 
energy.   The satellite is on a circular terrestrial orbit and, undergoing the effects of the moments due to the gravitational 
force. 

The following figure illustrates the initial and final position of a satellite with the internal amount of angular 
displacement: 

 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 – Change on the angular positions of a satellite with three internal wheels 
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The satellite being studied is of the flat kind, with the following values of the inertial parameters a and b: 

 
a = - 0.5 
b =  0.2 
 
These parameters correspond to the following inertial relations: 
 
Ixx =1.667 Iyy 
Izz=1.333 Iyy 
 

This work uses time expressed in canonic units. Its advantage is to integrate the dynamic equations easily in the 
numerical development. In this paper, one unit of time (u.t.) in canonic units is the necessary time for the satellite to 
translate one radius arc in its orbit. In this case, the distance from the center of mass to the center of the inertial 
referential frame, is 6,978 Km. Then, one canonic unit of time is, approximately, 923 seconds (01 u.t. ≅ 923 sec).  

The initial as well as the final positions constitute equilibrium positions and are functions of the internal amount of 
angular displacement, and in this case are: 
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The orbit angular velocity is: 
 

n= - 1 rd/u.t. 
 
As the angular positions are equilibrium positions, the satellite angular velocity is the orbit angular velocity itself, 

which is expressed in the reference system of the body through the components p, q and r, due to the Euler’s angles
θφ ,  andψ . 

So, due to the satellite positions, initial and final, the components p, q and r are: 
 
Initials: p = - 0.173 rd/u.t       Finals: p = - 0.982 rd/u.t 
             q = 0.982 rd/u.t                                q = 0.173 rd/u.t 
             r = - 0.077 rd/u.t                   r = 0.077 rd/u.t. 
 
In addition to the orbit angular velocity n and to the inertial parameters a and b and to the initial and final states, the 

following data are also used: 
 

Parameterized axial moment of inertia of the internal wheels: 
 
Ja = 0.05 
 
Number of intervals of the time vector: 
 
Int = 10 
 
The weighing values of the final state are: 
 
S1 = 100, S2 = 10000 and S3 = 100000 
 
The maneuver final time: 
 
T = 0.2 u.t. 
 
Obs.: The same data are used in the subsequent problems 
 
 



The problem results are presented in graphic form as follows: 
 

 
 

Figure 1. Controls input (u1 u2 u3) 
 

 

 
 

Figure 2. Angular velocities 
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Figure 3. Parameterized angular momentum (h1 h2 h3) 
 
 
 
 
 

 
Figure 4. Euler’s angles ( ψθφ ) 
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4. CONCLUSIONS 

 
The intent of this work, to determine the equilibrium positions of a satellite equipped with three internal reaction 

wheels, through an optimization procedure using numerical methods, was satisfactorily accomplished using the Matlab 
function “bvp4c”, for the solution of a boundary value problem in two points.  The use of numerical methods was 
justified due to the fact that the manipulation of analytical methods for the solution of a rigid body equation of motion is 
extremely difficult.   However, this can be the base for a future work in this field, to complement the literature on 
satellite control and the theoretical support on the matter of satellites equipped with three reactions wheels with internal 
motion.   Also, the inclusion of the magnetic torques and body center of gravity offset effect could be analyzed in a 
future work, being this aspect important in the research of satellite optimal control. 
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