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Abstract. This paper presents a study to identify, in a qualitative manner, how friction effects between adjacent layers 
of concentric pipes affects their global structural behavior when such structures are subjected to axisymmetric loads 
(traction and uniform pressures), in order to detect some non-linear effects. Pipe-in-pipe models are analyzed, through 
simplified analytical formulations and then through finite element simulations, considering no initial gaps between 
adjacent layers and using a simple Coulomb dry friction model. Through the simulations, the values for the equivalent 
axial stiffness are obtained and compared to that predicted by the analytical model and the results are discussed. 
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1. INTRODUCTION 

 
Pipe-in-Pipe systems, also known as sandwich pipes, are structures that consist basically of two concentric metal 

tubes, fulfilled with a non-structural thermal-resistant material. They can be used for deepwater oil and gas 
transportation, combining structural resistance with thermal insulation characteristics. Figure 1 presents a typical 
sandwich pipe construction. Several researches have been recently carried out in order to investigate the behavior of 
these elements, mainly regarding their structural instability (see, e.g., Castello and Estefen (2007) and Estefen et 
al.(2005)). 

 
 

Figure 1. A sandwich pipe construction (Estefen et al (2005)). 
 
One important step for a pipe design is to predict the global behavior of the sandwich pipe under certain loads. 

Simplified analytical models may be used to make such a prediction, based on some hypotheses which may (or may 
not) be restrictive. One of the most usual hypotheses is the one that considers that all the adjacent tubes are perfectly 
bonded and that there is no friction between the internal layers. However, it is interesting to verify how those effects 
might affect the global behavior of the sandwich pipe. In this paper, a simplified analytical model will be first proposed 
to predict the behavior of the whole pipe under internal and external pressures and traction loads, as well as the value of 
the equivalent axial stiffness of the pipe. Then some finite element analyses are performed, disregarding some of the 
hypotheses used in the analytical model, in order to compare the results obtained. 

 
2. SIMPLIFIED ANALYTICAL MODELS 

 
In this section some simplified analytical models derived from the classical theory of elasticity (see, e.g., 

Timoshenko and Goodier (1980), Sokolnikoff (1956) or Love (1944)) will be presented. The results obtained thorough 
these simplified models, such as the equivalent axial stiffness values, will be used as a comparative basis for the 
numerical simulation results obtained through finite element models. The following hypotheses will be assumed in the 
derivation of the analytical models: 
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i) all materials are homogeneous; 
ii) all materials have a linear-elastic behavior; 
iii) all materials are isotropic; 
iv) the sections which were plane before deformation remain plane after deformation; 
v) all layers are considered as having perfectly concentric cylindrical surfaces; 
vi) all the adjacent layers are perfectly bonded together; 
vii) geometric linearity applies; 
viii) friction forces between adjacent layers can be neglected; 
ix) in the extreme cross-sections all the layers are subjected to the same axial displacement  
 

2.1. Analytical model for traction and internal/external pressures loads 
 
Let us consider a sandwich pipe construction formed by the superposition on n concentric pipes numbered from j =1 

(most internal pipe) to j = n (most external pipe) as depicted in Fig. 2 for the case of a sandwich pipe with three layers. 
Let Lo be the total initial (non-deformed) length of this structure, Ri,j and Ro,j the initial (non-deformed) values for the 
internal and external radius for the j-th layer, respectively, and jE , jG , j  and j  the elastic constants for the j-th layer. 

 
Figure 2. A schematic sandwich pipe cross-section with three layers. 

 
Considering the aforementioned set of hypotheses it is possible to show that the solution for the radial displacement 

functions for each layer is given by: 
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where the constants 1, jC  and 2, jC  for the j-th layer are functions of: layer geometry (Ri,j and Ro,j); elastic constants 

(e.g., jE , jG , j  and j ); internal and external pressures acting in the layer ( ,i jp and ,o jp ) and longitudinal strain z , 
which is the same for all layers. Figure 3 shows the loading considered for each layer. 

 
 

Figure 3. Loading supported for the j-th layer. 
 
The total number of unknowns for this problem is then 5n + 1, which are defined according to Table 1. 
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Table 1. Unknowns of the problem. 
 

Unknown Description Number of unknowns 
1, jC , 2, jC  integration constants for the j-th layer 2n 

,i jp , ,o jp  internal and external pressures in the j-th layer 2n 

jF  axial force in the j-th layer n 

z  axial strain in the pipe 1 

Total of unknowns 5n + 1 
 
All these 5n + 1 unknowns can be obtained through the solution of a linear system given by 5n + 1 independent 

equations which comprises: 
a) (2n) boundary conditions related to the internal and external pressures in each layer given by: 
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b) (n – 1) compatibility equations applied to each of the (n – 1) interfaces between adjacent layers given by: 
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c) (n) equilibrium equations for the axial forces in each layer given by: 
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d) (n + 1) compatibility equations for the pressures at the interfaces between adjacent layers given by: 
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e) (1) axial force equilibrium equation for the set of layers which is given by: 
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Considering that the pipe has an initial length oL , the internal and external pressures applied to its internal and 

external lateral surfaces can be related to forces piF  and poF  defined respectively by: 
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2.1. Global Stiffness Matrix and Coupling Effects 
 

If we consider as global input parameters for the loads applied to the pipe: the total axial force F applied to its cross-
section and the two forces piF  and poF  applied to its lateral surfaces, the following relationship between forces and 
displacements can be derived, after one obtains the complete solution for the 5n + 1 unknowns given in Tab.1 (see also 
Ramos et al. (2008)): 
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where ijk  is the corresponding component for the stiffness matrix [K], L  is the change in length of the pipe, and 

,1 ,1( )i r iR u R   and , ,( )o r n o nR u R   are the displacements for the internal and external surfaces of the pipe, 
respectively. If we solve the system of equations given by Eq.(8) for the unknowns L , iR  and oR , it is 
straightforward to show that: 
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which is equivalent to: 
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2.2. Equivalent Axial Stiffness  

 
A usual and very simple way to define the equivalent axial stiffness for a set of pipes comes from the equation: 
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where Ei is the modulus of elasticity of the i-th layer, Ai is the cross-section area of the i-th layer and z is the axial 

deformation. It is important to emphasize, however, that Eq. (11) does not consider any kind of interaction between the 
adjacent layers, but Eqs. (10) do consider. So, from Eq.(10-a), it follows that: 
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This is similar to Eq. (11) except by the terms that depend on Fpi and Fpo. Now, if we remember that .o zL L   , we 

can define the true equivalent axial stiffness of the pipe-in-pipe system as the one given by: 
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3. FINITE ELEMENT MODEL 
 
The terms kij given in Eq. (8) can be obtained analytically as shown in the previous section, considering the 

hypotheses used in the derivation. However, it is interesting to obtain numerically the values kij, disregarding some of 
the hypotheses used, and compare the obtained values. 

 
In order to obtain those values for matrix K, some finite element analyses have been performed. The finite element 

models were built in MSC.Patran® and simulated in MSC.Marc®. A three-layer sandwich pipe, as described in Table 
2, with size L0 = 1000 mm, was modeled, following the geometry of the sandwich pipe studied by Estefen et al (2005). 
Since both geometry and loadings are axisymmetric, so are the results, leading to the choice of planar axisymmetric 
linear elements to perform the analyses. This approach greatly reduced the computation time if compared to that of a 
full 3D-modeling. 
 

Table 2. Description of the model layers. 
 

Layer Internal radius External Radius Material Modulus of Elasticity Poisson Coefficient 
1 25 mm 27 mm Aluminum 70 GPa 0.29 
2 27 mm 38 mm Polypropylene 10 GPa 0.34 
3 38 mm 40 mm Aluminum 70 GPa 0.29 
 
In order to check for the relative importance of non-linear effects in the global structural behavior, three different 

cases were studied in the FE analyses: 
Case 1 – the tubes are perfectly bonded; 
Case 2 – the tubes are unbounded with no friction between the layers; 
Case 3 – the tubes are unbounded with friction between layers. 
 
All three cases were modeled equally, only changing the type of contact between each layer defined in the FE 

application: Case 1 was modeled as “Glued” contact; Cases 2 and 3 were modeled as “Touch” contact. The friction 
model used in Case 3 was a simple Coulomb “dry-friction” model. The friction coefficients between all layers were 
considered to be equal to 0.5. 

 
3.1 Boundary Conditions 
 
All three cases were modeled with two possible end conditions: 
A - The extreme sections are rigid, i.e., the radius can not vary at any point of the pipe ends, and 
B - The extreme sections are free to expand/contract radially, so radial displacements are possible in all sections. 
 
The end condition “A” generates variations in the internal and external radius through the axial coordinate, so in this 

case the external and internal radius variations were measured in terms of an average value given by: 
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The end condition “B”, in conjunction with the boundary condition related to hypothesis (ix), leads to a state in 

which almost no slip between adjacent layers is possible, that is, to a state which is quite similar to the “plane sections 
remain plane” hypothesis. So, all three cases with boundary condition “B” yield to almost identical results (irrespective 
of how the contact and friction between adjacent layers were modeled), since there is practically no slip between layers. 
As a result of that, the end condition “B”, and all results related to this condition, will be treated as Case 4. 

 
3.2 Finite Element Simulations 

 
The linear system given by Eq. (8) can be expanded to solve three different cases at a time: 
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It is possible to solve for the all the nine stiffness coefficients of the matrix K by running three independent 
simulations. The FE inputs and its respective results, for each simulation, are used to fill each column of the 
displacement and force matrices in Eq. (15), and then the matrix K is determined. The independent variables used in 
each simulation were: L, the total displacement in top section, pi, the internal pressure, and po, the external pressure. 
The results observed through the simulations were: F, which is the total sum of each layer reaction force, Ri, the average 
variation of the internal radius, and Ro, the average variation of the external radius. 
 

The four cases proposed were simulated that way and the results for each matrix K are shown in the next section. 
The hypotheses considered for each case are summarized in Table 3. 
 

Table 3. Hypotheses used in the FE models. 
 

Hypothesis Analytical FE Case 1 FE Case 2 FE Case 3 FE Case 4 
Homogeneous materials X X X X X 
Linear-elastic behavior X X X X X 
Isotropic material X X X X X 
Plane sections remain plane X     
Tubes are perfectly bonded X X   X 
No initial gaps between layers X X X X X 
Geometric Linearity Applies X    X 
Friction forces can be neglected X X X  X 
Same axial displacement on top sections X X X X X 

 
4. RESULTS FROM FEA 
 

The analytical solution for K was obtained in a Maple® routine to solve Eqs. (1-8), whereas the FE simulations 
provided the values needed to obtain the numerical values of kij, for each case considered, as described in Eq. (15). All 
results are shown in the following sections: 

 
4.1 Values for kij 

 
Tables 4 and 5 present the numerical values for kij and relative errors between the FE simulations and the analytical 

prediction for each case, respectively. The matrix K obtained analytically is symmetric, and the ones obtained 
numerically for Cases 1 and 4 are “almost” symmetric, i.e, the terms kij and kji are nearly close, but not exactly equal. It 
was not possible to conclude if such lack of symmetry was caused only by numerical effects. Case 4 results are much 
closer to the analytical ones, when compared to the results of other cases, but that should be expected since Case 4 
conditions almost reproduce the set of hypotheses considered in the analytical model. It is interesting to note that the 
unbounded hypothesis, considered in Cases 2 and 3, introduces a remarkable asymmetry in matrix K, especially in the 
terms k21 (error of -24%) and k31 (error of -16%). Moreover, the presence of friction forces introduces a very small 
difference in those terms, showing that the gap formation effects caused by the unbounding of layers are more relevant 
than the friction forces in this case. 

 
Table 4. Results for kij terms (kN/mm). 

 

 Analytical Case 1 (Perfectly 
Bonded) 

Case 2 (Unbonded 
with no friction) 

Case 3 (Unbonded 
with friction,  = 0.5) 

Case 4 (Plane sections 
remain plane) 

k11 0.102 0.102 0.099 0.099 0.102 
k12 -1.347 -1.355 -1.357 -1.356 -1.347 
k13 2.607 2.622 2.624 2.622 2.607 
k21 -1.347 -1.347 -1.029 -1.027 -1.346 
k22 250.942 254.212 254.343 254.080 251.059 
k23 -257.507 -260.124 -260.438 -260.066 -257.539 
k31 2.607 2.607 2.193 2.191 2.605 
k32 -257.507 -260.124 -260.519 -260.249 -257.637 
k33 362.509 366.947 367.132 366.752 362.577 
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Table 5. Relative errors (%) in kij terms when compared to the analytical prediction. 
 

 Case 1 (Perfectly 
Bonded) 

Case 2 (Unbonded with 
no friction) 

Case 3 (Unbonded with 
friction,  = 0.5) 

Case 4 (Plane sections 
remain plane) 

k11 0 -2.94 -2.94 0 
k12 0.59 0.74 0.67 0 
k13 0.58 0.65 0.58 0 
k21 0 -23.61 -23.76 -0.07 
k22 1.3 1.36 1.25 0.05 
k23 1.02 1.14 0.99 0.01 
k31 0 -15.88 -15.96 -0.08 
k32 1.02 1.17 1.06 0.05 
k33 1.22 1.28 1.17 0.02 

 
4.2 Comparison of (EA)eq 
 
In order to compare the cases, values for the equivalent axial stiffness were calculated, as given in Eq (13). Despite 

the variations of the kij terms between the cases, those values are nearly the same for all of them. The equivalent axial 
stifness was also evaluated from Eq. (11), which does not consider any interaction between the layers. Table 6 presents 
the results and the relative errors using the analytical model (Eq.(13)) as basis. 

 
Table 6. Comparison between (EA)eq for each case. 

 
 Eq.(11) Eq.(13) FE Case 1 FE Case 2 FE Case 3 FE Case 4 

(EA)eq  (kN) 79.639 E3 79.688 E3 79.861 E3 79.757 E3 79.757 E3 79.599 E3 
Error (%) -0.06 0 0.21 0.08 0.08 -0.11 

 
4.3 Contact effects 
 
Cases 2 and 3 present some results that could not be obtained using the analytical model proposed: variations in the 

internal and external radius, gap formation and friction effects. It is interesting to note that those effects happen only 
near the top sections. The results for a displacement of 1 mm (related to an average axial strain 0,1%z  ), with 
neither internal nor external pressures applied, are shown in Fig. 4, 5 and 6. 
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Figure 4. Radius variation along the length in a sandwich pipe submitted to traction load (Case 3). 
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Figure 5. Detail of gap formation in a sandwich pipe submitted to traction load (Case 3). 
 

 
 

Figure 6. Friction force (0.08N) in a sandwich pipe submitted to traction load (Case 3). 
 

5. CONCLUSIONS 
 
Friction effects appear only in regions where there is slip between layers and, in this case study, this seems to be 

more pronounced in regions where there is a sudden change (along the longitudinal axis) from gap regions to contact 
regions, which may be caused by border effects. In Figure 6, it is possible to notice that the friction region is in fact very 
small, so it has a minor impact on the pipe global behavior. Also, from Tables 4 and 5, it is possible to observe that the 
possibility of gap formation between layers may be more relevant than consideration of friction effects. The most 
remarkable effect related to Cases 2 and 3 (unbounded layers) is the introduction of an asymmetry in the stiffness 
matrix K. In spite of that, the equivalent axial stiffness value of the pipe, (EA)eq, does not vary significantly, what means 
that the global behavior of the pipe does not seem to be affected by nonlinear effects as gap formation or friction 
between layers (at least under the given conditions). 

Since the differences between equivalent values for all the four conditions are very small, the hypotheses used in the 
analytical prediction can be used without losses in the results, what means that simplified analytical models can provide 
good results even for unbounded tubes, when considering only axial loads. The friction effects in unbounded pipes are 
also irrelevant for the global structural behavior and it can be safely neglected. 
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