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Abstract. The use of discontinuous elements in the boundarpent method (BEM) does not provide continuous
results across de boundary mesh, i.e. variablesatesingle valued across element interfaces. fmdmentation of
a smoothing technique, able to retrieve continu@ssilts for isoparametric discontinuous boundarmneénts in two-
dimensional elasticity is proposed. The methodolisgased on the recovery of smoothed values ag#oenetric
nodes shared by two elements, using least squiamastiie physical nodes values in the neighborhdbslv solutions
with the same degree of interpolation of the ordinnes are obtained in each element from the rewa/values and,
consequently, a continuous solution can be achietareover, continuous as well as discontinuous nokauy
elements generate discontinuous, low accuracy t®dor the tangential component of stress, whichussially
obtained by post-processing. This paper presemisvaproposal for computing that stress componedtsoontinuous
elements. The proposed technique is based on thefus smaller number of points with higher conesige in the
application of the Hooke’s law. The efficiency bé tproposed techniques are verified by solvingicstalasticity
problems using linear and quadratic elements.

Keywords: boundary elements method, discontinuous elemestisble recovery, variable smoothing, tangential
stress

1. INTRODUCTION

The relaxation of continuity conditions in disceetiion-based methods has gained impulse amongasenanerical
methods in the last decade. The use of discontgyetements in boundary element methods (BEM) isesdmat old,
but discontinuous Galerkin finite element methdeEN!) are prime examples of the developments inftald. These
approaches greatly simplify the computational impatation of the solution methods, and may increthsdr
efficiency, particularly in nonlinear problems aoplems containing discontinuous fields.

In the BEM context, there are a number of advargd@géhe use of discontinuous boundary elemenspite of the
characteristic interelement discontinuities. Digommous interpolation presen@' continuity on all physical nodes,
which simplifies the computation of strongly singulintegrals. It also avoids the need of doubleesonh cases
containing corners and discontinuities in the ba@ugctonditions. In addition, the use of discontinsilements has
already proved its efficiency in the solution of ltrdomain BEM formulations and FEM-BEM couplingghang and
Zhang, 2002). On the other hand, the recovery aBlkes at the ends of the elements by simple pataéion or by
averaging the extrapolated results of two or mégments are usually inadequate.

A similar problem occurs in stress evaluation byVFEince the optimal values must be computed atnuaal
points, resulting a discontinuous — element by elem stress field which must be smoothed in otdeecover nodal
values. This is generally done as a post-procestag and among the several techniques develapedan mention
extrapolation from the Barlow points (Barlow, 1976obal and local, smoothing (Hinton and Campbell, 1974) and
the various types of superconvergent patch reco(@®PR) procedures (Zienkiewicz and Zhu, 1992),ldter being
possibly the most used.

The present work presents the application of ongedsional SPR methods to post-process resultsnebitdiy
discontinuous boundary elements. Although onlytediyg problems are illustrated, the basic procedisrvalid for any
governing equation. It is shown that continuous beter defined interelement results are obtainables eliminating
one of the major drawbacks in discontinuous BEMrfglations.

Another issue approached by the present work &ea@lto the boundary stress components not evdluktectly
from the BEM boundary solution. It is well knownathin 2D elasticity problems only of two stress guments are
directly given by the traction components along lleendary. The remaining component of the stressotemust be
computed by mixing the known stress componentsaaadher term, evaluated by differentiating the shfamctions in
order to estimate the normal strain in the tangémirection. Regardless the elements are contswwsunot, lower
accuracy is generally found for these post-procksieess components due to the reduction by onesedg the
approximation polynomial. Therefore, one can exgwablems similar to those found in FEM for Mindiplates,
where the shear strain is evaluated by mixingolynomials for the plate rotations wigit1l polynomials for the
derivatives of the transverse displacement. Thiedsa robust method because of two reasons: (anhgnprimal
variables with dual ones (obtained by numericafedéntiation) may lead to ill-conditioned equatiofuiggiani,
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1994); (b) nodes are not the optimal ordinatesstmver derivative (dual) variables. Although itiviable technique
for many applications, the tangential stress compbrmay present significant errors when coarse esesre
employed. Aiming the evaluation of more reliabldues for the stress components on the boundarpwacost
alternative technique for computing the normal &l stress component is presented and testbisivork.

Both the proposed smoothing and the alternativenigoie for evaluation of the tangential stressiamglemented
for linear and quadratic discontinuous boundarynelats, and used to solve 2-D elasticity benchmarks. results
obtained are compared with the conventional BEMiltss

2. USING SPR METHODS IN DISCONTINUOUS BOUNDARY ELEMENTS

This section presents a smoothing procedure vamnjlasi to the SPR methods used in FEM, but devoted t
recovering the results on the geometric nodessfoditinuous boundary elements. The underlying ¢l to avoid
direct variable extrapolation from the physical eedo the geometric (end) nodes through elememgeshanctions.
This not only leads to inaccurate results at eldéregtremities (particularly when the element offelarge), but also
will require further weightening of the resultsarder to obtain the smoothed value at the shardd.no

Let the domain boundary be defined by line segmevtigch are divided into discontinuous boundaryredats. The
objective of the variable recovery technique idinal a continuous field (stress or displacementsh@ the boundary
segments using a set of recovered nodal parameters

u =Nu )

whereN are the geometric interpolation functions of theveents discretizing the current segment.
In the present implementation, a first order neahbod was used, i.e., the two elements will foha patch
containing the shared geometric node. Figure &titites the patches for linear and quadratic disuoous elements.
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Figure 1. Discontinuous boundary element patctagdinear elements; (b) quadratic elements.

It is assumed that the recovered nodal valuebelong to a polynomial expansiaug*, which is valid over an
element patch surrounding the geometric node ceresitd This polynomial expansion is one degree higfen the
base function®l and can be written as:

u, =Pa (2)
whereup* is any stress or displacement component &, gi,, U;, Uy), P contains the appropriate terms of a complete
polynomial of ordep, anda contains generalized parameters to be determined.

The evaluation of the unknown paramei@isf the expansion in Eq. (2) is accomplished bgast square fit a]ip*
using the element results at the sampling poirttggjpal nodes) along the patch considered. Thexefore has to find
a which minimizes the function:

F (@)= (1 ()=, ()" = 2(u(0)-P(Ha) @

wherex; are the local coordinates of the sampling pointsrais the total number of sampling points in the patdere,
m = 4 for linear elements (two physical nodes inhe@lementx two elements in the patch), while= 6 for quadratic
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elements (three physical nodes in each elememio elements in the patch). The minimizationFg&) leads to an
algebraic system that can be solved as

a=A" (4)
where
A=SPT(P(x)  and  b=3 P (x)u(x) ®

Once the parametessare determined the recovered value is computadyaposition of the patch by inserting the
appropriate coordinates in Eq (2). The recovemnasle only for the shared node of each path. Thesyalue for the
central node in each quadratic element is calallate the average value obtained by the two clogasthes. The
values in the extreme of a segment of contour ateutated by the nearest patch. Figure 2 showshgrally the
variable recovery for linear and quadratic eleme®isilar ideas can be used in higher order elesaent
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Figure 2. Variable recovery on a shared node. i@dr elements; (b) Quadratic elements.

3. AN ALTERNATIVE TECHNIQUE FOR TANGENTIAL STRESS C ALCULATION IN DISCONTINUOUS
BOUNDARY ELEMENTS

In numerical analysis, the computation of quargitiyy combining interpolated values and its derixegtimust be
done with care, as the optimal sampling pointshef tlerivatives are not coincident with the integpioh points
themselves. This issue is relatively common in margnches of computational mechanics. Prime examnmse be
found in FEM, for instance, in the calculation tkss in two-dimensional elasticity elements, ia ¢ivaluation of shear
strains in structural elements (plate/shell), othie pressure-velocity coupling in fluid mechanithis is essentially the
very same problem that causes the locking phenomefil low order thick plate finite elements (Oéiat al. 1992,
Zienkiewicz et al. 1993). A similar problem occurs the standard evaluation of the tangential boonddress
components for elasticity in BEM, although not cwerized by the same consequences as in FEM.

As aforementioned, the missing boundary stress oomams in the conventional BEM are obtained connigjirthe
boundary tractions with the tangential strain isaoted by differentiation of interpolation funct®ver each element
(Brebbia et al. 1984). It is known that this tecjug not necessarily provides good results alongnihele element
(Guiggiani, 1994). Here, it is suggested a smadingje in the use of Hooke’s law in order to obtaimare reliable
estimate of the tangential stress component fonthary elements without any significant increasthencomputational
cost. Basically, the tangential strain is sampledptimal locations, instead at the nodes. Thesgerasented herein are
implemented and tested for 2D elasticity discorgimiboundary elements, but they can be used imlya faoad class
of problems, regardless the continuity of the ipbdation.

3.1. Standard technique for tangential stress caltation
In 2D elasticity problems, the normat,f) and shear d,) boundary stress are directly related to the bagnd

tractions p,, py) in a local coordinate system, (t). Assuming that the tractions are written in thebgl coordinate
system, the boundary stress components are eaésilined by rotating the tractions according tolthval system:

O _ P
{Jnt}_R{pz} (6)
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wherea is the angle between global and the local coatdisystems (Fig. 3). The tangential straj) is obtained by
using the interpolated displacements (Zhao, 1996):

£ = d_ut - ﬂtl +ﬂt2 O & = 1‘]2{ d(qu:r) uitl + deE:t) uith\J (7)

wheret; andt, are components of the unit tangential vector; iandx, directions, respectivelyali andu, are the nodal
displacements in thieth node inx; andx, directions, respectively; angé) are the physical interpolation functiorkig
the Jacobian of the element transformation to trenalized space).

t n

Figure 3. Coordinate system over the boundary.

The tangential stress componeat)( can be obtained by Hooke’s law for plane-strain;
1
Oy (f) = 1_|:V Oin (f) +2Ge, ({)] (8)

wherev is the Poisson’s ratio, ar@lis the shear modulus.

Therefore, when Eq.(8) is used in the standard BEBLmMs two polynomial terms of different ordebepending
on wheregy is evaluated, this procedure process may leaditeliable results unless tlfe co-ordinate is known to be
an optimal point to retrieve derivative quantitfpsesent in thes, term).

3.2. Alternative technique for tangential stress daulation

The existence of points able to represent optinthklyderivative of an interpolated function is weallown and can
be proved mathematically. In the FEM, these paimesknown as Barlow points, and they are used aduate stress
fields from differentiation of interpolated dispiments (Barlow, 1976 and Prathap, 1996). When riterpolation
function is of the polynomial type, these points lycated at the Gauss-Legendre stations corresmptm one order
less than the minimum order necessary to intedgtaeinterpolation function exactly. The underlyiidga of the
scheme proposed here is to use these points toadedEq.(8). To the best of the authors’ knowledbere are no
similar studies correlating these aspects in thbBBEntext.

In the case of linear boundary elements, the nbstnass is obtained directly from the tractioncks, and therefore
it is a linear function (as well as the displacetagnThe tangential deformation is represented bgrestant function in
each element since it is obtained by the displactierivative. The combined use of these two fumsj through the
Hooke’s law, is the origin of often unsatisfactogsults (Guiggiani, 1994). The present work suggtst use of the
central point of the element — Gauss point fomadr function integrationé(= 0), to sample the differentiation of the
interpolated displacement. The co-ordin&te O delivers the best estimate for the tangentialrsalong the element. It
is worth to note that the evaluation of this straimodal locationsd= +1) will overestimates or underestimates the
strain value. In summary, it is proposed that btlle, normal stress and tangential strain shouléJuaduated at the
center of the element, thus obtaining a constamttfon for tangential stress over each element.drmity, Table 1
compares both ways for the evaluation of the tatiglestress in linear elements.

For quadratic discontinuous elements where, a ipiibe normal stress and tangential strain areessmted by
guadratic and linear functions respectively, isigjgested that the Gauss points for a cubic quaergf = +1~/3)
should be used to represent the tangential stiglthdlong the element. Therefore, replacing thadard technique, the
calculation of the tangential stress is performsth@ the values for normal stress and tangentiairsjust at two
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points. A linear interpolation of the values ob&inin the Gauss points is made in order to obtaénnodal stress
values of the quadratic element. Table 2 shows$wbeamethods for tangential stress calculation oadgatic elements.

In summary, the tangential stress calculation islanaith one degree less than the other stress ammpm This
method may initially seem less sound than the cothweal procedure, but later it will be shown thdten used with
the smoothing technique described in section 2ptbposed scheme leads to better results. In masgscit was found
that the conventional scheme will produce wrongsitp theg, term in Eq.(8), a direct consequence of it being
sampled at non-optimal points.

Table 1. Tangential stress calculation for lineacontinuous boundary elemehts

STANDARD TECHNIQUE ALTERNATIVE TECHNIQUE
1
o zﬁ(varlm +265t1t) a,(4) :E(Vgnn (51)+2G£n(51))

0. =o; refers to constant

0 == (vo?, + 26¢?) CRE
1-v interpolation ofa,, (£,)

* & =0, and the superscript represent the associated valde of the variable.

Table 2. Tangential stress calculation for quadmi§continuous boundary eleménts

STANDARD TECHNIQUE ALTERNATIVE TECHNIQUE
o :ﬁ(m;n +2Gel) o, (&) =ﬁ(v0nn(<‘1)+268n(51))
o7 = 1T1(|/ann +2Ge}) o, (&)= ﬁ(vann (&) +2Ge, (&)
ez ) 7 e e

* &= —]/\/é ¢ :]/\/é , and the superscript represent the associated valda of the variable.

4. NUMERICAL RESULTS

In order to investigate the performance of the dimog procedure and the alternative tangentialssteyaluation
scheme, this section shows some results obtained bsth. Numerical integration was carried outngsilé Gauss
points, in order to minimize the influence of quadre errors. Dimensions, material properties, @her physical data
are given without units, but they were specifieddpresent a compatible system of units. The natproperties used
in all case areE = 210e9 and/ = 0.3 Plane-stress condition is assumed through@isection.

4.1. Square-plate with a central hole under tractio

A 100x100 square plate with a central hole of rafli= 5 was analyzed. Due to symmetry, only one quaiftéhe
plate was considered (Fig. 4). The traction loaditang the upper side was setRc= 1. The offset of all boundary
elements used in the mesh is 15% of the elemegtHe

Linear and quadratic elements were used with tWferdint meshes for each type of element. Mesh U ase
element size of 2.5 along the straight boundanesfaur elements along the quarter-circle. Mests@duan element
size of 1.25 and eight elements along the quaitelec

Figures 5 and 6 exemplify the benefits of the smimot procedure by plotting the hoop stress alorgeitige AB.
The analytical solution for an infinite plate witkentral hole is compared against the raw and sredatsults obtained
by BEM. One can see clearly in Figs. 5-6 that tmeathing do not destroy the overall behavior of ¥heiable, and
more importantly, it preserves peak values like glress concentration on the hole (point A). lalso worth to note
that the recovered values along the element irgesfaliffer considerably from the value obtainedelsfrapolation of
the discontinuous results.
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Figure 4. Squared plate with a central hole undéotm traction.
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Figure 5. Hoop stress smoothing results for squpla® with central hole. Linear elements — mesh 1.
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Figure 6. Hoop stress smoothing results for squpla@ with central hole. Quadratic elements — miesh

Regarding the application of the alternative metfardangential stress calculation, it can be usé@t or without
the smoothing procedure, leading to four possiédifor post-processing the results:
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« Method A: Discontinuous BEM without smoothing -ethaw results of discontinuous elements are coreide
with standard tangential stress calculation (sacdid).

« Method B: Discontinuous BEM with smoothing — saaseMethod A, but the results are smoothed.

« Method C: Modified discontinuous BEM without smbiolg — raw results of discontinuous elements with
alternative tangential stress calculation as cediim section 3.2.

« Method D: Modified discontinuous BEM with smoothir same as Method C, but the results are smoothed.

These methods were used to post-process the noatial stress along the edge AB, which is the tatige
component along that piece of boundary. Figuresad 8 compare graphically these results for liredaments with
meshes 1 and 2.
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Figure 7. Radial stress recovery along edge ABeairelements — mesh 1.
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Figure 8. Radial stress recovery along edge ABeairelements — mesh 2.

The graphs depicted in Figs.7-8 show that the mespavhich agrees more closely to the analyticalt®ol is the
smoothed solution considering the alternative tatigk stress calculation. As expected, it can bensthat the
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alternative tangential solution without smoothisgsimply an element average value from discontist®EM without
smoothing.

Figure 9 shows the recovery of radial stress onsttree edge, this time using quadratic elementsn A$gs.7-8,
these graphs show the four types of post-processamdts against the analytical solution. Althoudlke differences
between the four methods are not as drastic aseircase of linear elements, it is evident thatsimeothed results
obtained with alternative tangential stress catoutaagree more closely to the analytical solutipaxticularly at point
A. Another important aspect is that the differenbbetveen all methods tend to vanish where analydimation is less
oscillatory (away from stress concentration areas).

Interestingly, it is also evident from Figs.7-9 tttrone of the methods provided very good resules tiee hole,
although the modified stress calculation seemstover the better ones. This is direct consequehtlee different
signals of the terms in EQ.8, i.e. the high graiiesf the tangential strain near the hole are ristated when the
displacements are differentiated at non-optimahtions. Of course, this effect becomes more conspis when coarse
meshes are used.
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Figure 9. Radial stress recovery. Quadratic elesa¢a) mesh 1, (b) mesh 2.

4.2. L-shaped domain

Figure 10 shows the geometry and boundary comdit@f an L-shaped plate. This problem is a typieat for
adaptive meshing procedures in both the FEM an®EM (Gago et al., 1983, Zhao e Wang, 1999, Zienkie e Zhu,
1992b). It was also used as a numerical examptietoonstrate the accuracy of a formulation for glEment stress
evaluation by boundary elements (Zhao, 1996).

Due to a re-entrant corner the normal stress inrdldéal direction have infinite value at point Bcdording to
Guiggiani (1990), the displacement field near thierinal corner behaves Ks? whereK is the stress concentration
factor,r the distance from the corner andhe strength of the singularity. By contrast,kalindary unknowns are still
bounded and there is only a singularity in the conderivative of the boundary displacement at enB. Moreover,
because there are no tractions on the internalsedfjthe ABC corner, the radial stress (tangerstigdss in the local
coordinates) is obtained through the Hooke’s lammfrthe tangential strain (differentiation of disgmanents), only.
Thus, this stress component has one degree léssiimerpolation than the element interpolatioor Bll that, the two
techniques described for tangential stress caloulgfive identical results on the edge examineithi;example.

The edge BC of the internal corner was used tdy#re smoothing scheme. Two meshes were emplayedh 1,
totaling 32 elements, and mesh 2 with 64 elemehtand 8 elements were used along edge BC, for sadh,
respectively. Additionally, a third, finer mesh (she3) with a total of 268 elements, being 54 ofitten edge BC, was
used as a reference value. The three cases wdygethavith quadratic elements with P = 1). The eiffased in all
elements was 10% of the element lengths. Figurshbivs the radial stress results obtained for mestarsl 2 up to
half of the edge BC. The smoothing scheme genesattisfactory results from the half of the firstmlent, with errors
of less than 1.5%, as shown in Fig. 11a. HoweVer,errors are considerably larger along the areseclto point B.
Moreover, the raw solution is linear, while the sied solution is quadratic (same degree of intatjpm of the
element).

In order to assess the influence of the mesh digat®n, Fig. 11b shows the results for this casiag a mesh with
twice the number of elements (mesh 2). The redutined show good agreement to the smoothed solafionesh 3,
except forr <0.45. Errors related to the radial stresg at 2.5 (position share by two elements in all meshesing
different methodologies to calculate the intereletstress, are shown in Table 3. The relative esroalculated as:
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Figure 10. L-shaped domain.
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Figure 11. Radial stress recovery along edge B@d@atic elements: (a) mesh 1, (b) mesh 2.

Table 3. Radial stress resultg at 2.5 (L-shaped domain)

MESH METHOD ERROR
left extrapolation 7.149 %
Mesh 1 right extrapolation 1.268 %
left and right extrapolation average4.198 %
smoothed solution 1.487 %
left extrapolation 1.093 %
Mesh 2 right extrapolation 0.481 %
left and right extrapolation average0.787 %
smoothed solution 0.284 %
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From the results of Tab.3 it is clear that the esrof the smoothed solution are smaller than apg t9f direct
extrapolation. However, it is interesting to notatt since the first element along each boundagynset presents a
linear interpolation, there may be some loss ofityuia the results when very coarse meshes ard.use

5. CONCLUSIONS

It was developed a method to obtain smoothed edait discontinuous boundary elements in two-diroares
elasticity, based on SPR methods used in FEM cbrltéore accurate interelement values were obtainedmparison
to direct extrapolation of the original discontimusosolutions. The proposed technique performsieffily to recover
results in both types of discontinuous elementéfeRint meshes used indicated that the smoothediGolbecomes
more accurate when the mesh is refined. Moreokersinoothed solutions converge faster to the nedersolutions.

Another goal of the present work was the develogroéan alternative technique for tangential stressmponent
calculation, which showed to estimate more reliabkilts when compared to the standard boundagsstechnique.

Dependence on other factors should be studied,auclumber of integration points, offset values, m@shes with
variable element sizes.

Finally, the increase in the total computationadtds negligible when compared to other processiages. Both
schemes proposed present potential to be used othier types of discontinuous elements or differgoverning
equations without hurdles.
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