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Abstract. The The task of navigation in mobile robots’s cdanteeds methods that use more efficiently theepéual
information collected about the external environmexhigh autonomy degree is desirable to imprdwe mapping
methods performance. One way to this is to incréaseamount of sensory information available, usiiog example,
environment images collected by a camera instaltethe robot structure. Cameras are sensors poadiptuseful,
since images have wealth information for maps cansbn. A vision system not widely used in traxhiéil navigation
of mobile robots is the omnivision system, compbsed camera and a catadioptric mirror. This systenables the
robot collect images of 360° around it, thus ingieg the amount of information available. Clasdizatesearch on
mobile robot navigation has produced two major ghgans for mapping environments: geometrical andlogical
methods. Grid-based methods produce accurate meaigs, but their complexity often prohibits efiitigplanning
and problem solving in large-scale indoor enviromtse Topological maps, on the other hand, can leel usuch more
efficiently, yet accurate and consistent topolobicaps are often difficult to learn and maintain large-scale
environments, particularly if momentary sensor distdnighly ambiguous. In this paper the topologieglproach is
adopted: the environment is represented by a nurabdistinctive places [1] and the environmentépresented by a
graph, where places are vertices or nodes set dhlinks between each pair of nodes are edgesB¥gital image
processing and invariant patterns recognition tages are used together with artificial neural netiss to build a
mapping and localization system for the LACE (Awom and Evolutive Computer Lab - UNESP) mobileato The
system uses a robot on-board sensory system codthpgsaltrasound sensors and a omnivision systencpliect
information about the exploited environment. Theppirag module is composed by three sub moduleshichviwo
will be presented in this paper: the characteriaad the classifier modules. The classifier modidesifies the places
explored by the robot among four default classesngia Hierarchical Neural Network as the main Itad
classification. The characterizer module, using gmaattributes extraction techniques and invariardtt@rs
recognition, characterise the nodes, that is, twage their features in order to make each nodejuwaiand different
from the others at the same class.

Keywords: mobile robots, neural networks, computer visienyironment mapping
1. INTRODUCTION

The development of techniques for autonomous n&wigaf mobile robots is a trend in the roboticeash area.
The autonomy of the mobile robots is important aadessary so that they can detect and deviatedbstacles, auto-
locate and to plan its trajectory. It also is eis€émwhen the robot needs quickly to react to clesnof the environment
or receives external stimulation. The key task myrnavigation of a mobile robot is your capacity mptcise
localization in its environment. It can do thiskascognizing its position through information emlted by a sensorial
system and matching such information with a glahap of the environment, which consists of a repred®n of its
physical structure. In environment exploration tattke robot navigates acquiring information for nhadding and in
this case an additional task appears: the necedsityto-locate the robot while it constructs thapmThe robot can still
navigate based on an existing map, thus solvindattedization and planning of trajectories probleam&l to verify if
the final position was reached. Tasks of local gation, as obstacle avoidance, can be performdubutitthe resource
of environment maps. In global tasks, as navigatibe use of some type of description or represientaf the space
becomes necessary. Moreover, to efficiently playrancomplex missions, autonomous mobile robots rieetde
capable to acquire and to keep models of its enxnients.

The task of navigation in mobile robot’s contextae methods that use more efficiently the percépi@mation
collected about the external environment. Suchrinétion directly affects the autonomy degree ofriiteot, which is
extremely necessary in the context of environmentsleling and robot localization. A high autonomygiee is
desirable to improve the mapping methods performa@ne way to this is to increase the amount oE@sn
information available, using, for example, envir@mhimages collected by a camera installed in thetr structure.
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Cameras are sensors potentially useful, since ismhgee wealth information for maps constructiorvigion system
not widely used in traditional navigation of mobilebots is the omni vision system, which can be mosad by a
camera and a conical mirror. This system enablesdabot collect images of 360° around it, thuséasing the amount
of information available (Matsumoto et al., 199@)assically, research on mobile robot navigatios peoduced two
major paradigms for mapping environments: geonmatand topological methods. While grid-based meshmaduce
accurate metric maps, their complexity often priilefficient problem planning and solving in largeale indoor
environments. Topological maps, on the other hatah be used more efficiently, yet accurate and istamg
topological maps are often difficult to learn andintain in large-scale environments, particulaflysénsor data is
ambiguous.

In this paper the topological approach is adoptieel:environment is represented by a number ofntistie places
and represented by a graph, where places areagdicnodes set and all links between each paiodés are edges set
(Kuipers and Byun, 1991). Digital image processimgl invariant patterns recognition techniques @eduogether
with artificial neural networks to build a mappilagd localization system to the LACE (Automation dfeblutive
Computer Laboratory) mobile robot (Figure 1). Thigsstem uses a robot on-board sensory system coohfmse
ultrasound sensors and an omni vision system, fteatanformation about the exploited environmehhe mapping
module is composed by three sub modules, wheraniihbe presented in this paper: the characterdaat the classifier
modules. The classifier module classifies the dapelored by the robot among four default clasises, intersection,
door and room, using for this a hierarchical ai@#i neural network (RNAH) as the main tool of clifisation. Beyond
the nodes definition and classification, it is resaey to characterize them, that is, to storage fbatures in order to
make each node unique and different from the othietise same class. This is implemented in theaciarizer module
through image attributes extraction techniques iamdriant patterns recognition. (Zitova and Flusg&399; Arsénio
and Ribeiro, 1988; Betke and Gurvits, 1997; Mardlahal., 2001; Se et al.,2002).
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Figure 1. LACE Mobile Robot.

2. ENVIRONMENT MAPPING TECHNIQUES FOR MOBILE ROBOT NAVIGATION

Maps based navigation demands a process of retmgmind analysis of high level, to interpret thepnaand to
establish its correspondence with the real worltk first efforts in navigation of robots based iaps mainly had been
inspired by the cognitive processes of the humass,ming that the errors of sensors and actuatoitd be detected
and be corrected by a process of higher level,sorgusome type of modification of the environmemtbecome the
navigation most easy. Basically, the navigatiorebdasn maps includes three processes (Balakrishraln £999):

» Map Learning — process to adequately represengitironment using data collected during its evgtlon;

« Localization - process that calculates the cumesition of the robot using for this the map;

* Path Planning — task to define a path until didaton place from a known initial position

The third process depends on the two first on@gesihe current position of the robot as well a&sdhvironment
map are necessary to calculate the path betweerplag®s. In a real-time map construction processttio first
processes are closely linked, therefore the masasl to get the current position and this is usetbtstruct the map.
In this context, SLAMB (Simultaneous Localizatiomd\ Map Building) appears. Such interdependence rheso
difficult and complex the problem of learning of psa therefore errors that appear from the calanatf the
localization of the robot are incorporated to thepnand need to be detected and corrected.
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Moreover, the task of auto-localization during tharning of the map (SLAMB) are more difficult far mobile
robot if compared with the same task executed usirepdy and know map of the environment; an auiditiproblem
appears: the robot needs to guarantee that théigmosiirrently explored not yet has been mapped.

The strategies of mobile robot navigation can lvéddd in two approaches (Filliat and Meyer, 2003):

(i) simultaneous treatment of the localization amab learning problems, together with a planninghoétanalysis
and; () localization strategies that uses a catephnd already known map of the environment.

The map building process for mobile robots needed¢eive information from the explored environmant of the
robot movement and state. There are two distirigtree of information that can be used for navigatimsed on maps.
The first origin is odometric, that supply intermaformation about the movements and current sththe robot, as for
example, speed, acceleration, direction of the lghe€he second origin is sensorial, which supplkéegernal
information on the environment. In accordance \filiat (Filliat and Meyer, 2003), the data procegdfrom both
origins can be used to: to directly locate a placea situation; to create a bidimentional spaceessmtation of the
environment through the fusion of both informatiaring for this a metric model (sensor model) tmatverts external
information into a space representation of the remment. In this case, geometric properties ofaifn@ronment, such
as the position of objects, are inferred. The fimhsequence of the use of a metric model, or sosenodel, is the
possibility of the fusion of different origins imfimation in a common geometric representation, wigcsufficiently
natural and expressive for human operators. Anaoitn@ortant consequence is that a sensorial modesilthat
external or sensorial information about not yeggitally explored environment locals are inferreahi other places
already physically explored. The advantages araddentages of these two origins of information@mplementary.
The main problem with the information of odometoiggin is its accumulating error, that are resultdéd integration
process of different information collected fromfdient resources or states of the robot. The carseg of this is the
reduction of the quality of the information, whicannot be taken as true in full time period. Thpagite happens with
the quality of the sensorial information, whichsigtionary throughout the time. However, two maiabbems exist.
The first one occurs when two distinct places demniified by the system as being the same plaeg,ishwhen two
distinct places are confused and identified as only. Such problem is called in literature as peted aliasing. The
second problem occurs when a place seems diff¢éhemtighout the time, for example, with differertihination
conditions.

The integration process of different informatiodlected during the exploration of the environmea be used to
create a representation of the explored environmibat is, the map building of the environment fbe robot.
Classically, the models of space representatioriaided in two categories: geometric maps and lmgioal maps. In
geometric maps, the positions of some objects, Ijndhe obstacles that the robot can find, are stdarea global
reference system. In topological maps, the placeslafined as position that the robot can reacbhSigfinitions are
stored together with some information on the redafiosition between them (Figure 2).

Real
Environment

Geometric Map Topological Map

Figure 2. Geometric and Topological Map.

2.1 Geometric Maps

In geometric model, the environment is represeated set of objects with its respective global dvates in a
two-dimensional space. The environment is represkttirough grids equally spaced, where each giidcee, for
example, to indicate the presence of an obstackanenvironment correspondent region. The odometrigin of
information is very useful in this representatidinerefore it becomes possible the direct managemkttie robot
position in this space. The geometric map buildingcess starts when the sensorial information &ned and later
transformed into a two-dimensional representatidnttee environment, that is, in a geometric modehisT
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transformation produces a set of objects, or olestaand its respective position related to the toblee difference key
in relation to the topological approach is in thee wf sensorial models, which allow the fusion lné tsensors
information with the odometric information in a covan representation of the environment.

Geometric maps can store the characteristics pectdy the robot, together with its position (FigB). Such
characteristics can be represented in diverse aagaising different levels of abstraction. Pointspoint objects can
be used, as a intuitive definition of a landmaskaareference point (Levitt and Lawton, 1990; Rotsd995; Feder et
al., 1999). The difficulty of this technique is frerceiving a single point and using it to estinthterobot position. An
alternative would be to use some spread pointdherstirface of objects, so that the sensors datwsalio define its
space configuration (Lu and Milios, 1997; Gutmand &onolige, 2000; Thrun et al.,2000).

Real Environment Environment
Characteristics Map

Figure 3. Example of environment characteristicppitag with detected segments detected on the dbstadges.

2.2 Topological Maps

In the topological approach, the environment isesented by a set of distinct places, so thatdhetrcan go of a
place to other (Kuipers and Byun, 1991) This apginos based on the established geometric relate@weden the
places identified and not in its respective absopdsitions related to a global coordinate systswith the geometric
approach. The result is the representation of ther@nment in accordance with a graph, in way that identified
places form the set of vertices or nodes and alkttisting links between each pair of vertices fthmset. Kortenkamp
(Kortenkamp and Weymouth, 1994) defined two basicfions of a topological map:

- Recognition of the places: through this functibris determined the current position of the rolitthe
environment. In general, each identified place,defined node, is related to its respective desoripend the
recognition process consists of matching the peecesensorial data with the description of the node

- Path Planning: definition of a path that bindsuarent position to one objective position.

The first advantage of the topological approacth# does not need a metric sensorial model capgahdenvert
sensorial information into a two-dimensional repreation of the environment, that is, does not reepdbcess capable
to fuse the information of both the origins. Theessity is of a method capable to store and togréze the places
from some sensorial input. Moreover, topologicapmare closely related to the perceptual capaafitise robots and
is unnecessary the extraction of the form of theirenment objects, as it happens in the geometodeting. Such
representation of the environment allows the apfibn of processes of high level with low compwtaéil cost. The
main disadvantage of this approach is the necessiphysically explore all the places of the enaim@nt to acquire
sensorial information about the places, whenewesdtare necessary to increase the precision pbiiton estimation.
The result is a more exhausting exploration ofgheironment. Another difficulty is related to theopess of definition
of the places, that can be wronged if the readiniip@® sensors is not trustworthy or the environmentery dynamic.
Such process can be still more difficult if to éxtise possibility of distinct places to be confugpdrceptual aliasing),
or the same place to seem different dependingefample, of the viewpoint captured by the senserogptual
variability).

3. TOPOLOGICAL MAPPING

The environments mapping method proposed in thikwms to build a topological model of the envinment
exploited by the LACE mobile robot. To do thisuges a sensory system composed by ultrasonic semsdra omni
vision system, that provide data to the system’sleting modules. The mapping procedure is runnednguthe
environment exploitation. The data read by the @engare pre-processed by modules with CAN (Comirofirea
Network) nodes network. This data pre-processingemghem appropriate to be used by robot navigatimtem,
where is the map module. This system is composebreé modules: node classifier, node identifiedbor and node
characterization modules. The main task of the nddssifier module is to identify each place viditey robot,
classifying them among four pre-defined classed, smcreate the nodes of the map with their resmentlations of
adjacent (edges). A neural network hierarchicaliyctured into two layers, reason and intuitionused as the main
tool of the node classifier module. Its structunel ¢he classification procedures will be descrilbe8ection 4. The task
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of identification and creation of a new node isfpened by a procedure that receives the informagioout the class of
the place and creates a new node at this same Elgsse 4 illustrates the relation among the meduf the mapping
system. In addition to identificate and to classife nodes, it is necessary to characterizate ttieanijs, each created
node needs to be identified in a unique way anférdiht from the same class nodes. The node chaatien module
is responsible for this task. Its function is tdese good landmarks from the robot point-of-vievsing the nodes
images.

Identifiar / -
Classifier i Criator ti—p| Characteriziar

: : :

Control

!

Sensors Perceptions

Figure 4. Functional diagram of the mapping system

Landmarks can be defined as objects of a sceneathatound on a distinctive way by the robot. lis tork,
natural landmarks are defined using techniquesxtfaetion of attributes of images and recognitidhirovariant
patterns extracted from the nodes images set. Tdmegure adopted to implementation of this modulebe further
described.

3.1 Omni vision system of the LACE mobile robot

The omni vision system installed on the LACE mobdéot used to capture scenes of the exploitedr@mvient
is present above. Figure 5 illustrates the proeedor capturing and processing images. The omeictional images
are captured by a camera with its focus aligneadonical mirror. These images are aligned in theioszision module,
and transformed into a panoramic image of the scEney are preprocessed and, then, used by thsifidation and
characterization procedures of the map nodes. Ghat®ns and the adopted procedure to capture e gs the omni
directional images are defined in Cavani (Cava@i4). Figures 6 and 7 illustrate examples of oniréational and

panoramic images, respectively.
4 I
|::> o I::> B =a o
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Video Omni image capture Ominivision
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Figure 5. Processing stages of the LACE mobile trobmi vision system
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Figure 6. Omni directional image not preprocessed iguré 7. Panoramic image obtained from a omni image
3.2 Hierarchical Neural Network Structure

The hierarchical artificial neural network (RNAH}¥ed in the project is structured into two layeegsonand
intuition, and has the task of classifying the places etqiloby the robot among four predefined classesidmt
intersection, room and door. To accomplish thik,télse network receives images and ultrasonic seresings as
input data. The structure of the RNAH is scheneatiin Figures 8 to 11.
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Figure 10. Reason Layer Structure Figure 11. liotuitayer Structure

The RNAHreasonlayer receives the values read by the ultra-soemda's, which measure the distances of the
robot to objects. Théntuition layer takes an image of 50X6 pixels as input (ihisge is generated by the pre-
processing module, translating a omni image inreopamic image). The ultrasounds sensors are lodatednt and on
the side of the robot. The side ultrasound sensansto move in the horizontal direction. Thus, tlegate a real
number vector, where each number represents tiendes the robot on a object, calculated accordinthé angle
formed between its reading direction and the cépaition reading. This procedure is illustratadhe Figure 9. The
front sensor readings are executed following theesgrocedure, except that it is moving uprightultésy in a real
number array. This is necessary to ensure thaothat detect the height of the free space to d@stfravoiding possible
collisions. Each input layer neuron of the firstvngrk receives the reading of one of the positiohgector and matrix.
Thus, this layer has many neurons as the numheadings taken by the three sensors. This numbixet during the
procedure runned, which may, however, be changed.

Neural Network Training — Places Classification

To classify the places exploited by the robot,RiNAH needs to be trained to acquire the abilityetoognize each
of the four classes defined. Then, we attach tt edass characteristics that make it distinct fribie other, and such
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parameters are taken into account during the amtgin of the patterns set for network trainingisTpatterns set is
provided to the RNAH during its training phase. Thebset provided to the first layer defines sometlef
characteristics of each class modeled taking intwant distance measures the robot to the obstagleb as a wall,
while the subset provided for thetuition layer it is composed by images collected by theéwisystem. Theeason
layer learns to classify with some degree of cetyathe classes whose parameters that charactiwére are well
defined and distinct from the others parameters ifituition network is activated whenever there are any kind of
confusion in the process of recognition of thetfitetwork. A class classified with no doubt is tweridor class. The
parameters set used to definite this class arg cled only based on the distance between the rabdtpossible
obstacles. Thus, the layezasongets to recognize this class based on the sondmg=a The opposite happens in
recognition of the door class. The pattern of ardow a narrow corridor identified by side sonathaf robot can result

in conflicts of recognition. In this moment the dmyntuition is activated. In this situation, theasonnetwork is trained

to enable a neuron of its output, which is the texaieuron of théntuition network. In this moment the second network
starts to be runned and classifies its input pattérat is, the image of the place will be classifiThus, théntuition
network is trained using images of narrow corridangl doors, aiming to learn to distinguish thenereéby solving
possible classification conflicts. The fact desedtabove is what justifies the creation of a higvimal neural network
with the task of classifying exploited places bg thbot The classtersectionis defined as a place where the robot can
possibly changes its journey direction. It shoukdrbapped where there is a meeting between two oe carridors.
Therefore, first the network must recognize thesstzorridor for after concluding that there is a intersectibare.
After the training stage, the RNAH is subject teatidation and testing phase, where a larger affdrdnt patterns set

is presented it. The goal is to validate the presiphase and to test its performance faced diffénpnts patterns.

4. SELECTION AND RECOGNITION OF NATURAL LANDMARKS

In this section we describe the technique propdsedplement the node characterizer module of tlapping
system. The function of this module is to charazéenodes that are identified by the classifier medin order to
make them unique and distinctive from the otherdesoat the same class. The goal is to create h#odimarks for
the nodes from scenes from a set of images. Thessdenes will be used as visual landmarks, whiffarsl from
approaches where landmarks are regarded as indlvithjects of the scene. In our approach, the lamksnare
represented by attributes vectors and affine momneatiants extracted from the images of the nodibs. method used
for extracting attributes vectors and decreasimgy thize is the PCA - Principal Component Analy§sida and Hart,
1973), whose application results in a smaller disiem image representation, taking into accountwtheance of
attributes. The equations used to calculate affinenents were derived by Zitova (Zitova and Flus$889), which are
invariant under general affine transformations. Tnecedure described above select natural landm@dctor of
attributes and affine moments) in each node ofntlap. Thus, during the creation of the map, therzartts of each
node is used to train a neural network, creatingtaral landmarks classifier used for mapping aodlization tasks.

Selection of Visual Landmark s- Vectors of Attidéisu

The approach proposed for the PCA implementatidmaised on the work described in Martinez (Martined
Costa, 2002), and is defined below. Consider thagar, provided by the omni vision system, represtby a matrix
of m x n dimension, in which each element represé¢iné level of gray intensity in that point. Theaige can be
represented as a vector through the

reading column to column of the image matrix amdisg each pixel in a column vector. Thus,

x)=1(@,))toi=1,...,n,j=1,... . mandl=i+({x1)xm (1)

The size of the array of attributes is givendoy m x n Considett training standards are knowxil, x2,. . ., xt
The training set can be seen as a matrix X, whath eolumn contains a training standard,
x@ x@® . . x®@
X= . : : )
[ %(d) % (d) . . x(d)]

The covariance matriX x of the training matrix X, can be defined as
D x=(X =) (X =)' ©)

wherey is the average matrix dfx tdimension, and each column of the matrix contdiessixpected value of the
patterns.

@A) @
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toi=1,...,dandj=1, ... tgiven the covariance matrixx, it is estimated their eingen-vectors and eingaines in
a manner that:

whereli andvi, toi =1,. . ., d,are the eigen-value and eigen-vector&xfrespectively.

The eigen-values indicate the eigen-vectors relexaim the PCA case, if the eigen-vector has laigen-value,
means that the eigen-vector is in one directiom \gtge variance in patterns. Thus, the eigen-veaee arranged in
descending order of eigen-values. The orderedfsatjen-vectors compose the transformation matrasHollows,

H=[e,e,,.....&] 5)

The vector of attributes transformation is accostmid through a change of base, where the matrixthki matrix
of change of base.

Y=HTX (6)
and is the transpose matrix of H.

The matrix of new attributes Y obtained presentseatluction in its dimension, being only a base geanin the
attributes space. However, the H matrix can bet lomly with the self-vectors with the largest sedfiues. Thus, if it
has been chosen k self-valuéss d, the attributes vector dimension is reduced todintension representation. In
patterns recognition tasks, distinctive charadiegsare searched, that is, we search for an at&sbvector that doesn’t
have covariance between them. Through the covariamatrix2X it's possible to check if there is covariance betwe
the defined attributes. By making the transformatid X attributes for the new attributes using PCA, it is observed
that theY matrix has zero mean afy covariance matrix is diagonal, in which the mdiagonal elements are th
self-values, and diagonal outside elements are Z&ie means that the elements of Yrmatrix are uncorrelated.

5. EXPERIMENTAL RESULTS

To create the two layers of the RNAH, as well tleenal network that classify the landmarks, we ingerteural
network simulator SNNS (Stuttgart Neural Networkn8lator), which also provides support for the tiragn validation
and testing. phases. The reason layer createceisagar perceptron network, which has 35 neuroritsimput layer,
each that receives a position of the sonar readiag®r.Reasoroutput has four neurons, and the first three arthen
intersection room and corridor classes, and the last is the exciter neunbuition network. Theintuition layer was
created using single layer and multilayer perceptrdhat's why the results obtained in the firstecasgere
unsatisfactory, presenting a low rate of matcheshe classification. This problem was solved witle tuse of a
multilayer perceptron, whose results were stilldj@aod will be presented in this section. The idayér of theintuition
network has 300 neurons, each of which receivevdhee stored in one of the pixels of 50 X 6 resoluimage. Its
output layer has two neurons that aredbeidor and thedoor classesThe training set provided to tmeasonnetwork
has 95 pattern used to train the network for tikegaition of corridors and intersections, and thelaeses are modeled
taking into account the sonar readings. Ttaition layer set has 65 images of doors and corridorsinuhe testing
stage were presented 24 and 50 patternefmonandintuition networks, respectively. All the 24 patterns prodidiee
first network were completely unknown, that is, eeituations never before presented to it. Toirthgtion network
were presented 30 unknown patterns and the 20sotterne images of doors and corridors presentdakirarlier steps
views, however, under different points-of-view arder different conditions of illumination. Figurd2 shows real
images of corridors and doors used in simulatimtess.

Door 1, Image 1 Door 1, Image 2 Door 1, Image 3 rdor1  Cooridor 1 Cooridor 1
Image 4 Image 5 Image 6
W o 4] = (]
")
Image 1 Image 2 Image 3 Image 4 Image 5 Image 6
Preprocessed Preprocessed Preprocessed Preprocessed Preprocessed Preprocessed

Figure 12. Real images from corridor and doors usesimulation process.
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In figure 12, the preprocessed images are resoftedmni vision system module, and are used astitpthe
classification module.

To implement the characterizer module, we useificat neural network trained with the informati@out the
landmarks extracted in each node. The tests weme #dth perceptrons with different numbers of negrin their
occult layer. Tables 1 to 5 summarizes the obtaiaedits.

Table 1. General Classificatioefcentage rate of the Reason and Intuition Layers

Layer General Classification | Unknown Patterns Modified Patterns
Reason 100% 0% 100%
Intuition 94% 96% 93%

Table 2. Corridor and Door Class Classificatintuition Layer

Class Correct Incorrect Correct with low activatialue
Door 93% 7% 7%
Corridor 93% 5% 0%

Table 3. General Classificatioeycentage rate of the Reason and Intuition Layédrast 2.

Layer General Classification | Unknown Patterns Modified Patterns
Reason 100% 100% 100%
Intuition 82% 77% 93%

Table 4. Corridor and Door Class Classificatintuition Layer — Lateral opening

Class Correct Incorrect Correct with low activatialue
Door 87% 13% 3%
Corridor 79% 21% 0%
Door or Corridor 100% 0% 8%

Table 5. General Classification Result of Reason andtion Layers in two test stages.

Layer Unknown Patterns| Generalization Performance Test Stage
Reason - - 100% Test 1
30% 100% 100% Test 2
Intuition 44% 96% 94% Test 1
70% 7% 82% Test 2

Table 6. General Correct Classification Result ofitin Layer - Test stage 3.

Layer General Classification Unknown Patterns Modified Patterns
Intuition 84% 79% 95%

6. CONCLUSIONS

This work contemplates one mobile robot navigatiechnique based on environment modeling, used tlih
LACE mobile robot, which uses its omnivision systamd sensors of ultrasound to acquire informatiorexternal
environment and to supply the mapping system. Vésemt two modules of the mapping system: nodssiier
module and node characterizer module. The classifedule uses as classification tool a hierarchigalral network
structured in two layers: reason and intuition. Thain use of the structured Artificial Neural Netwads to decide
possible conflicts in the classification process.

When the first neural network will not be able testiohguish the place to be classified using ulttab
information, the second network uses informatistnaeted from images of the place to classify tumes. The phase of
tests, composed by three phases, had as objeotivalitlate the training of the Neural Network. histway, when
necessary the networks had been re-training witardint algorithms, parameters or amount of neuircult layer,
in order to reach optimum performance in the cfasdion of the tested patterns.

The use of one-layer perceptron network in thepbase of the reason network presented excellsattsg(100%
of rightness). Such network architecture is adej@iat the robot real mapping system implementatitre intuition
network reached 84% of correct classificatiorhi@ final tests phase. This value can be considstisfactory because



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil

the proposal for the classification method is teeb¢éhe final decision in a set of results from dhessification of

different situations of the same local, that ish&se the decision of classroom in a bigger saspaee, and not only an
one only situation of each place. Moreover, theegalization rate reached for the reason and iotuitietworks are

75% and 79%; values these considered satisfacidwys, the Hierarchical Artificial Neural Networkaehed the

objective for which it was created: to decide pllssconflicts in the process of classificationlod first sub-net.
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