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Abstract. A numerical model is proposed for the Navier-Stokes three-dimensional equations write under Eulerian for-
mulation. The semi-Lagrangian method was used to discretized the convective terms. The linear system is decomposed
in LU blocks through the discrete projection method and solved by an iterative method. The three-dimensional domain
was represented by a mesh, represented by a topological data structure, formed with cells forming linear wedge elements.
Experiments solving a particular problem were made in order to analyze the consistency of the proposed method on
theoretical basis. The results showed a good approximation and pointed out the stability of the proposed method.
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1. INTRODUCTION

There are many cases in engineering where the simulation of fluid flow becomes necessary. The tridimensional
modeling is the most direct form and the one that the most resemble the reality. However, a simple and efficient approach
is often desirable avoiding the computational high costs of a 3D simulation.

In the study of incompressible fluid flows, the mathematical modeling of the conservation laws is well stated by
Navier–Stokes equations and the mass conservation equations. The need for numerical simulation in CFD is justified by
the lack of analytical solutions of the Navier-Stokes equations for most practical cases.

In this paper, a numerical model is proposed for the solution of three dimensional Navier–Stokes equations (momentum
and mass conservation equations). The finite elements method (Zienkiewicz, 2000)(Becker et al., 1981)(Zienkiewicz and
Cheung, 1965)(Chung, 1978) is used for the discretization of the proposed problem, where the Galerkin method is used
for the spatial discretization and the semi-lagrangean method is used for the discretization of the material derivative. The
latter derivative includes the convective term, responsible for the non linearity of the problem. The experiments showed
properties of a very needed hydroelectric model simulation, where the fluid flows over steps in the reservoir.

2. FORMULATION

The governing equations are the non-dimensional mass and momentum equations in conservative form where in three-
dimensional coordinates can be written as

D(ρu)
Dt

= −∇p+
1
Re
∇ · [µ(∇u +∇uT )] +

1
Fr2

ρg (1)

and the equation of continuity

∇ · u = 0. (2)

where Re = (LU)/ν and Fr = U/(
√
gL) are the non-dimensional Reynolds and Froude numbers, respectively. Hence,

L and U are the length and velocity scales, respectively, ν is the kinematic viscosity, and g denotes the gravitational
constant, g = |g| = |(gx, gy, gz)|. Furthermore, u = (u, v, w)t is the velocity vector while p is the non-dimensional
pressure.
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2.1 Variational Formulation

Considering the Navier–Stokes equations for incompressible flows, written in the eulerian formulation expressed in
the non-dimensional form as

D(ρu)
Dt

+∇p− 1
Re
∇ ·
[
µ
(
∇u +∇uT

)]
− 1
Fr2

ρg = 0 (3)

∇ · u = 0 (4)

valid on a domain Ω ⊂ Rm under the boundary conditions

u = uΓ, em Γ1 (5)

ut = 0 e σnn = 0, em Γ2. (6)

Consider the subspace

V = H1(Ω)m =
{
v = (v1, . . . , vm) : vi ∈ H1(Ω),∀i = 1, . . . ,m

}
(7)

where H1(Ω) is the Sobolev space given by

H1(Ω) =
{
v ∈ L2(Ω) :

∂v

∂xi
∈ L2(Ω), i = 1, . . . ,m

}
(8)

with L2(Ω) being a infinity dimension space defined as

L2(Ω) =
{
v : Ω → R,

∫
Ω

v2dΩ <∞
}

(9)

And V = H1(Ω)m is the cartesian product of m spaces H1(Ω).
Defining

VuΓ = v ∈ V : v = uΓ in Γ1, V0 = v ∈ V : v = 0 in Γ1 (10)

PpΓ = q ∈ L2(Ω) : q = pΓ in Γ2 (11)

the weak formulation of the problem can be written as: find u(x, t) ∈ VuΓ e p(x, t) ∈ PpΓ such that

∫
Ω

D(ρu)
Dt

·wdΩ−
∫

Ω

∇p ·wdΩ−
∫

Ω

1
Re
∇ ·
[
µ
(
∇u +∇uT

)]
: wdΩ−

∫
Ω

1
Fr2

ρg ·wdΩ = 0.

∫
Ω

(∇ · u) qdΩ = 0 (12)

for all w ∈ V0 e q ∈ PpΓ.
The discretization of (12) is made by using linear shape functions and Galerkin weighting functions. Integrating over

the wedge elements results in an ODE system, which is solved using the projection method described as follows. The time
derivatives are integrated by an implicit scheme. As in the Lagrangian formulation the non-linear terms do not appear, the
matrices are defined symmetric positive and thus the conjugate gradient method can be applied to solve the linear systems.

2.2 Galerkin’s Method

After the variational formulation of the governing equations, the approximation phase takes place using the Galerkin’s
method. Consider the governing equations in its non-dimensional and variational form (Eq. 12) and letting NV be the
number of velocity points, NP the number of pressure points and NE the number of finite elements of the mesh that
discretizes the domain Ω. The Galerkin’s method consists on replacing the following terms on Eq. (12):

u(x, t) ≈
NV∑
n=1

ψn(x)un(t), v(x, t) ≈
NV∑
n=1

ψn(x)vn(t) (13)
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w(x, t) ≈
NV∑
n=1

ψn(x)wn(t), p(x, t) ≈
NP∑
n=1

Pn(x)pn(t) (14)

that are semi-continuous approximations, that is, continuous in time (t) and discrete in space (x). Here, ψn(x) represent
the interpolation functions used for the velocity and Pn(x) the interpolating functions for the pressure.

The momentum equation is normally evaluated in all the free nodes of velocity, and then the weight functions wx, wy

and wz are replaced by interpolation functions ψm = ψm(x), m = 1, ..., NV . Applying this procedure for the directions
x, y and z, and restricting the nodal interpolation functions to each element e, in the direction x, we have

∑
e

∫
Ωe

∑
i,j∈e

ρeDuj

Dt
ψe

iψ
e
jdΩ−

∑
e

∫
Ωe

∑
i,k∈e

∂ψe
i

∂x
P e

kpkdΩ−
1
Re

∑
e

∫
Ωe

∑
i,j∈e

µe

(
∂ψe

i

∂x

∂ψe
j

∂x
uj +

∂ψe
i

∂y

∂ψe
j

∂y
uj+

∂ψe
i

∂z

∂ψe
j

∂z
uj +

∂ψe
i

∂x

∂ψe
j

∂x
uj +

∂ψe
i

∂y

∂ψe
j

∂x
vj +

∂ψe
i

∂z

∂ψe
j

∂x
wj

)
dΩ− 1

Fr2

∑
e

∫
Ωe

∑
i,j∈e

ρeψe
iψ

e
jgx,jdΩ = 0 (15)

In the direction y,

∑
e

∫
Ωe

∑
i,j∈e

ρeDvj

Dt
ψe

iψ
e
jdΩ−

∑
e

∫
Ωe

∑
i,k∈e

∂ψe
i

∂y
P e

kpkdΩ−
1
Re

∑
e

∫
Ωe

∑
i,j∈e

µe

(
∂ψe

i

∂x

∂ψe
j

∂x
vj +

∂ψe
i

∂y

∂ψe
j

∂y
vj+

∂ψe
i

∂z

∂ψe
j

∂z
vj +

∂ψe
i

∂x

∂ψe
j

∂y
uj +

∂ψe
i

∂y

∂ψe
j

∂y
vj +

∂ψe
i

∂z

∂ψe
j

∂y
wj

)
dΩ− 1

Fr2

∑
e

∫
Ωe

∑
i,j∈e

ρeψe
iψ

e
jgy,jdΩ = 0 (16)

In the direction z,

∑
e

∫
Ωe

∑
i,j∈e

ρeDwj

Dt
ψe

iψ
e
jdΩ−

∑
e

∫
Ωe

∑
i,k∈e

∂ψe
i

∂z
P e

kpkdΩ−
1
Re

∑
e

∫
Ωe

∑
i,j∈e

µe

(
∂ψe

i

∂x

∂ψe
j

∂x
wj +

∂ψe
i

∂y

∂ψe
j

∂y
wj+

∂ψe
i

∂z

∂ψe
j

∂z
wj +

∂ψe
i

∂x

∂ψe
j

∂z
uj +

∂ψe
i

∂y

∂ψe
j

∂z
vj +

∂ψe
i

∂z

∂ψe
j

∂z
wj

)
dΩ− 1

Fr2

∑
e

∫
Ωe

∑
i,j∈e

ρeψe
iψ

e
jgz,jdΩ = 0 (17)

The equation of continuity Eq. (2) is evaluated on the free nodes of pressure, then weight function q is approximated
by the interpolation functions associated with the pressure Pr(x), resulting

∑
e

∫
Ωe

∑
n

(
∂ψn

∂x
un +

∂ψn

∂y
vn +

∂ψn

∂z
wn

)
PrdΩ = 0 (18)

for r = 1, . . . , NP . Restricting the interpolation functions to each element e, we have

∑
e

∫
Ωe

∑
j,k∈e

(
∂ψe

j

∂x
uj +

∂ψe
j

∂y
vj +

∂ψe
j

∂z
wj

)
P e

kdΩ = 0 (19)

The Eq. (15), (16) e (17) can be represented in an ordinary differential equations system form

Mρ,x
Du

Dt
− 1
Re

((2Kxx + Kyy + Kzz)u + Kxyv + Kxzw)−Gxp−
1
Fr2

Mρ,xgx = 0

Mρ,y
Dv

Dt
− 1
Re

(Kyxu + (Kxx + 2Kyy + Kzz)v + Kyzw)−Gyp−
1
Fr2

Mρ,ygy = 0

Mρ,z
Dw

Dt
− 1
Re

(Kzxu + Kzyv + (Kxx + Kyy + 2Kzz)w+)−Gzp−
1
Fr2

Mρ,zgz = 0

Dxu + Dyv + Dzw = 0 (20)

where u = [u1, . . . , uNV ]T , v = [v1, . . . , vNV ]T , w = [w1, . . . , wNV ]T p = [p1, . . . , pNP ]T , gx = [gx
1 , . . . , g

x
NV ]T ,

gy = [gy
1 , . . . , g

y
NV ]T , gz = [gz

1 , . . . , g
z
NV ]T are the vectors of the nodal values for the velocity and pressure variables,

and the gravity forces.
The dimensions of the matrices of the equations system (20) are NV ×NP for Gx, Gy and Gz , NP ×NV for Dx,

Dy e Dz and NV ×NV for all others.
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2.3 Semi-Lagrangean Method

This method was introduced in the beginning of the 80’s by (Robert, 1981) and (Pironneau, 1982), and the basic idea
is based on the discretization of the solution of the Lagrangean derivative in time instead of the eulerian derivative. As an
example, one can consider a Semi-Lagrangean scheme of any equation of any type convection-diffusion.

The material derivative of a scalar u is given in the three-dimensional space as

Du

Dt
=
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
(21)

The basic idea of the Semi-Lagrangean method is to follow a fluid particle during its path through the mesh during
the flow. The method is explicit, where is necessary the information of the values of the components of velocity in
the current time. Therefore, the method approximate those values in the previous step time on the path. Basically, the
Semi-Lagrangean formulation is given by

Du

Dt
(p) =

un+1
p − un

p∗

∆t
(22)

where

p∗ = p−∆tup (23)

where p is any point in the mesh and p∗ defines the point p in the previous step time. The calculus of u in the point p∗ is
made by a linear interpolation between the neighbors points. This interpolations is dependent from where the point p∗ is
located inside the domain, such as: over an edge, over a vertex, over a face of a wedge element, inside a wedge element
or outside the domain.

Then, the equations system (20) can be written as follows.

Mρ,x

(
un+1

p − un
p∗

∆t

)
− 1
Re

((2Kxx + Kyy + Kzz)u + Kxyv + Kxzw)−Gxp−
1
Fr2

Mρ,xgx = 0

Mρ,y

(
vn+1

p − vn
p∗

∆t

)
− 1
Re

(Kyxu + (Kxx + 2Kyy + Kzz)v + Kyzw)−Gyp−
1
Fr2

Mρ,ygy = 0

Mρ,z

(
wn+1

p − wn
p∗

∆t

)
− 1
Re

(Kzxu + Kzyv + (Kxx + Kyy + 2Kzz)w+)−Gzp−
1
Fr2

Mρ,zgz = 0

Dxu + Dyv + Dzw = 0 (24)

3. NUMERICAL METHOD

The numerical procedure implemented to solve the conservation equations is based on the Projection method, initially
proposed by (Chorin, 1968), and formalized by (Gresho, 1990)(Gresho and Sani, 1987). Thus, instead of solving one
large system, we solve two smaller decoupled systems of equations, reducing the time of computation.

The Projection method based on LU decomposition is obtained though the fatoration in blocks of the resulting linear
system. This suggests that the split of the velocity and pressure is made after the discretization in space and in time of the
governing equations. Consider the discretized equations in time and space as follows

Mρ

(
un+1 − un

∗
∆t

)
− 1
Re

Kun+1 −Gpn+1 − 1
Fr2

Mρg = 0 (25)

Dun+1 = 0 (26)
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The Eq.(25) together with Eq.(26) compose an equation system that can be represented in the following way

[
B −∆tG
D 0

] [
un+1

pn+1

]
=
[

rn

0

]
+
[

bc1

bc2

]
(27)

The matrix B is given by

B = Mρ −
∆t
Re

K (28)

The right side of the equations system (27) represents the variables known in time n, added the boundary conditions,
that are the contributions of the known values of velocity and pressure.

rn = −∆t
(
− 1
Fr2

Mρg
)

+ Mρun
∗ (29)

The method consists on decomposing the equations system (27) though a block fatoration. The work of (Lee et al.,
2001) presented several ways of factoring such type of matrix, where each different factoring results on a new family of
methods. By using a LU canonical block factoring, we obtain the following system

[
B 0
D ∆tDB−1G

] [
I −∆tB−1G
0 I

] [
un+1

pn+1

]
=
[

rn

0

]
+
[

bc1

bc2

]
(30)

The system as given in (30), if solved, results on the method known as Uzawa method (Chang et all., 2002). However,
this method have an high computational cost, because of the need of inversion of the matrix B at each iteration. In this
case, we used a process of approximations called Lumping for the inverse of the matrix B. The new matrix is a diagonal
matrix defined as the sum of the values of each line from the original matrix, storing the sum in the position of the element
on the diagonal. Therefore, we have

Bũ = rn + bc1 (31)

∆tDM−1
ρ Gpn+1 = −Dũ + bc2 (32)

un+1 = ũ + ∆tM−1
ρ Gpn+1 (33)

A procedure for the solution of the equations is given in the following order:

• Evaluate ũ from Eq. (31);

• Evaluate pn+1 from Eq. (32);

• Evaluate the final velocity un+1 using Eq. (33);

• Update the time step and continue until the final time or convergence are reached.

After update the components of the final velocity un+1 and vn+1, is necessary to update the component of the velocity
w by using the equation of continuity, guaranteeing the condition of incompressibility.

4. NUMERICAL RESULTS

The method was validated for the case of stationary incompressible flow, producing nodal values close to the exact
values. A solution that can be compared with the resulting solution of the simulations is the exact solution of the Poisson
equation. The solution matches the corresponding velocity component in direction x of a stationary and developed flow
over a square open duct with height H = L

2 , i.e., the half of width a = L, considering that the surface is a symmetry line.
The exact solution is given by

u(y, z) =

(
1− y2

)
2

− 16
π3

∞∑
k=1,k odd

{
sin (kπ (1 + y) /2)

k3sinh (kπ)
× (sinh (kπ (1 + z) /2) + sinh (kπ (1− z) /2))

}
(34)

A square domain LxL for the surface, where L = 2 m was defined. In this case, no-slip conditions were imposed on
the wall of the domain for the velocity components u, v and w. The pressure has zero value on the outflow of the duct.
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The velocity component in direction z has zero value in the upper and lower levels of the domain. The condition for fully
developed flow defined at the inflow of the duct is given by the Eq. (34). The geometry of the domain is presented in the
Figure 1(b), which shows the dimensions of the sides of the duct and the inflow of fluid.

When the stationary state is achieved, the values of the components of velocities along the duct are the same that those
defined in the inflow of the duct. Then, one can compare the numerical results with the exact solution given by the Eq.
(34). The model for this flow is detailed as follow. Dimension of domain: 2.0 m x 2.0 m x 1.0 m; Width of inflow: 2.0
m; Viscosity: 1.00 Ns/m2; Density 1.0 kg/m3; Mesh 1: 15x15x6 points, total of elements: 1960; Mesh 2: 21x21x6
points, total of elements: 4000, both equally distributed into five layers of elements, and Reynolds number: 10;

The Figure 1(a) shows the numerical result obtained by the simulation. The considered region when comparing the
numerical result with the exact solution for this case is the outflow of the duct. From the figure, it can be seen that the
more refined the mesh is, the more accurate the method is.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

-1 -0.5  0  0.5  1

mesh 21x21
mesh 15x15

Exact Solution

 y

U

(a) (b)

Figure 1. A) Comparison of obtained results with exact solution. B) Domain geometry.

In the simulations, the following boundary conditions were assigned. No-slip conditions were applied to the velocity
components u, v e w on the walls of domain, including the steps regions. The value of pressure is zero at the outflow of
the duct. In the inflow of the duct, we used u = 1.0 m/s, assigning zero value for v and w velocity components. The z
velocity component has value of zero in the surface and the bottom of the domain. The boundary conditions used in the
simulations can be better analized in the Figure 2.

Figure 2. Perspective on y axis e boundary conditions for the simulation using stairs on reservoirs.

In this case was considered in simulations the height of the reservoir H = 1.0 m. Each step of the stair has height
equal to the height of a prism element, length resulting of the combination of two prisms, as showed in Figure 3 and width
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equal to the combination of two prisms in the width of the duct.

Step
                     length 

Step
Height             Step
                       height 

Figure 3. Detail of the dimension of a stair step.

The model for this fluid flow is: Domain dimension: 3.0 m x 1.0 m x 1.0 m; width of fluid inflow: 1.0 m; Viscosity:
1.00 Ns/m2; Density: 1.0 kg/m3; scale parameters: L = 1.0 m and H = 1.0 m; Reynolds number: 10 and 100.

The results presented in Figures 4 and 5 show the velocity component profiles in direction x obtained in the domain
surface and at the outflow of the fluid flow for the Reynolds number 10 e 100. One can note that in the fluid flow, the
velocity component in direction x has high values at the duct entrance, average values in the middle of duct and large
values at the outflow of duct. This behavior is explained by the fact the domain present minor deepness at the beginning
and at the ending of the duct, and major deepness at the middle of the duct, as can be observed in the Figure 2, a perspective
of the domain.

The Figure 4 shows the velocity profiles obtained at the surface of the domain at the middle of the duct, using the
Reynolds number 10 e 100, respectively.

The Figure 6 shows the number of iteration and the maximum residue obtained by the conjugate gradient method used
at simulations for this case of stair steps on domain, by fixing five prisms layers.
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Figure 4. Simulation at a domain with stairs, field of velocity component in direction x with Re = 10, with five layer of
prisms.
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Figure 5. Simulation in a stair steps domain, field of velocity component in direction x with Re = 100, with five layer of
prisms.
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Figure 6. Residue of the conjugate gradient method over the iterations.

5. CONCLUSION

The goal of this work was the mathematical modeling and development of a method for the simulation of fluid flows
in three-dimensional domains. The finite elements method was used to discretize the equations. The Projection method
based on LU decomposition was used to extract the pressure component, and the using of Lumped matrices reduced the
complexity of the algorithms, where the pressure gradient were calculated independently at each iteration. Then, the
velocity value were corrected by the continuity equation, keeping the divergence field null. The solution of the linear
systems was obtained by using the conjugate gradient method.

Future works about validation of the 3D simulation involve comparing the achieved results to real measurements
obtained in controlled experiments and seeking similar works in this field that complement the analysis of the simulation
itself.
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(a) (b)

(c) (d)

Figure 7. Numerical simulation of the flow with stair on domain: a) Field of velocity component at direction x, b) Field
of velocity component at direction y, c) Field of velocity component at direction z e d) Pressure profile using Re = 100.
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(a) (b)

(c)

(d)

Figure 8. Numerical simulation of the flow with stair on domain: a) Field of velocity component at direction x, b) Field
of velocity component at direction y, c) Field of velocity component at direction z e d) Pressure profile using Re = 1.


