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Abstract. In the present work, the main parameters associated with the forced turbulent heat convection in square 

ducts have been determined. Considerations of fully developed and incompressible flow have been confirmed. The 

turbulence models have been validated based on numerical and experimental results of the literature. The researches 

show that in turbulent flow in non-circular ducts, appear secondary flows. In this way, these "insignificant" movements 

can influence the Bulk velocity, with consequences in the thermal energy. Whenever, this energy is transported through 

of the secondary flow. With these particularities, a good choice of the turbulent model should be done for a good 

analysis of the involved physical phenomena. To determine the profiles of velocity, the turbulence k-ε no-linear Model 

(NLEVM) and Reynolds Stress Model (RSM), were adopted and studied. To calculate the temperature field adopted the 

model: Simple Eddy Diffusivity (SED), it is based in the hypothesis of the Turbulent Prandtl number constant. 
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1. INTRODUCTION  

 

Many turbulent flows found in engineering occur in ducts of non-circular cross-section. For instance, in compact 

heat exchangers, gas turbine cooling systems, cooling channels in combustion chambers, nuclear reactors, such flows 

are found. A three-dimensional velocity field is found in all these configurations. It has been known since the 

experimental work of Nikuradse (1926) that a transverse mean flow exists within non-circular ducts even when the flow 

is fully developed. This transverse mean flow is commonly referred to as Prandtl’s secondary flow of the second kind, 

and it is caused by the anisotropy of the turbulent normal stresses. Although this secondary flow amounts to a few 

percent of the axial velocity, it exerts a great influence on the flow field. Turbulence-driven secondary motion 

redistributes the kinetic energy, influences the streamwise velocity, and thereby affects the wall shear stress. Beyond of 

the turbulent flow, in the present work the turbulent heat transfer is studied. The forced turbulent heat convection in a 

square duct is one of the fundamental problems in the thermal science and fluid mechanics. Recently, Qin and Plecther 

(2006) showed that the Prandtl’s secondary flow of the second kind has a significant effect on the transport of heat and 

momentum as revealed by the recent large eddy simulation (LES).   

Several experimental and numerical studies have been conducted on turbulent flow though a non-circular duct, 

namely, (Gessner and Emery, 1976; Gessner and Po, 1976; Melling and Whitelaw, 1976; Nakayama et al., 1983; Myon 

and Kobayashi, 1991; Lee and Jang, 1997; Assato, 2001) and others. Similarly important works in the turbulent heat 

convection were developed (Launder and Ying, 1973; Emery et al., 1980; Hirota et al.,1997; Rokni, 1998; Qin and 

Plecther, 2006) and others.  

The experimental work of Melling and Whitelaw (1976) shows detailed characteristics of turbulent flow in a 

rectangular duct where they used a laser-Doppler anemometer to report the axial development of the mean velocity, 

streamwise turbulence intensity, contours of transverse turbulence intensity, Reynolds shear stress, turbulent kinetic 

energy and secondary mean velocity.  Nakayama et al. (1983), it shows the analysis the fully developed flow field in 

ducts of rectangular and trapezoidal cross-sections using a finite-difference method based on the algebraic turbulence 

stress model of Launder and Ying (1973). On the other hand, Hirota et al. (1997) present an experimental work on the 

turbulent heat transfer in a square duct, shows detailed characteristics of turbulent flow and temperature field, such as 

Reynolds shear stress, temperature fluctuation intensity and turbulent heat fluxes, etc. Likewise, Rokni (1988), in the 

doctoral thesis achievement a comparison of four different turbulence models for predicting the turbulent Reynolds 

Stresses and three turbulent heat fluxes models for ducts of square and trapezoidal cross-sections using a volume finite 

technique.  

It is well known that Linear Eddy Viscosity Models (LEVM) can give rise to inaccurate predictions for the Reynolds 

normal stresses and so that not have the ability to predict secondary flows of the second kind. In spite of that, they are 

one of the most popular models in the engineering due to its simplicity (requires less computational effort than complex 

models, e.g. algebraic or Reynolds stress), good numerical stability and it can be applied to a wide variety of flows. 

Thus, NLEVM represents a progress of the classical LEVM which permits inequality of the Reynolds normal stresses, a 
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necessary condition for calculating turbulence-driven secondary flow in non-circular ducts within the relative cost of a 

two-equation formulation. 

According to mention previously whenever non-isotropic effects are important we might consider other turbulence 

models, just as, RSM, also called the second order or second moment closure model, this model it is very accurate in 

the calculation of mean flow properties and all Reynolds stresses for many simple and more complex flows including 

wall jets, asymmetric channel and non-circular duct flows and curved flows, also present, disadvantages, just as, very 

large computing costs (Six extra, equations differential for the Reynolds stress, flow 3D). 

The SED model for calculated turbulent heat flux have been adopted and studied. The field of temperature will be 

determined with the model: SED, it based in the hypotheses of the Turbulent Prandtl number constant, very utilized in 

commercial codes.  

  

2. GOVERNING EQUATIONS 

 

The governing equations are the continuity, momentum and energy equations (Reynolds Averaged Navier Stokes - 

RANS). It is considered fully developed turbulent flow and heat transfer and the following hypothesis have been 

utilized: steady state, condition of non slip on the wall, fluid with constant properties. The turbulent Reynolds stress 

(
''

jiuuρ− ) and the turbulent heat flux (
''

tu jρ− ) are modeled and solved by solution of algebraic expressions or 

differential (Kays and Crawford, 1980).  
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Where 
'

t , 
'

iu , 
'

ju  are fluctuations of the temperatures and velocities in the direction i and j, respectively.  This 

statistical approach resolves the problem of the handling of the instantaneous values. This is known as "closed 

problem".  However, for the non-linear convective term, it causes the generation of news incognita (Reynolds stress 

tensor).  Then, we defined the turbulent Reynolds stress tensor, as: 
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Where the elements of the diagonal, represent the normal tension components, and the outside elements of the 

diagonal, the shear tensions. This new set of Equations (1 to 2), containing the Reynolds stress, is known in the 

literature as equations Reynolds Averaged Navier Stokes (RANS), or simply, equations of Reynolds.  Basically, they 

are two more utilized forms to find the Reynolds stress: the concept of turbulent viscosity and modeling of the equation 

of transport of the tensor of Reynolds, commonly called of approaches of second order. To first form for the modeling 

of the tensor of Reynolds was supplied by Joseph Boussinesq (1877).  In this work the models of turbulence has been 

based in the approach of Boussinesq, these have produced satisfactory results for some cases of flows, however in many 

others (generally associated with effects of curvature, regions of detachment, strong acceleration, etc.) the concept of 

existence of a linear relation between the tension and the rate of deformation has shown fault.  Equation (5) represents 

such relation:   
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Where tν  is the turbulent viscosity. In this way, the scientific community has found alternatives to contour the 

problem of a linear relation (incapable of represent flows with strong curvature) by means of the enclosure of terms 

non-linear to the constitutive basic equation. In this way, many approaches have been created between these. We have, 

for example, the NLEVM of Speziale (1987). It is worth to emphasize that the turbulent viscosity is not a physical 

phenomenon of the fluid, otherwise a local measure of the level of turbulence, varying of point to point and of flow for 

flow.  On the other hand, the tensor for turbulent heat flux can be represented as:   

 

( )''''''''
twtvtutuii ρρρρτ =−=                                                                      (6) 

 

The models for resolve the turbulent Reynolds stress (
''

jiuuρ− ) will be commented in the sections 2.1 e 2.2, 

already the tensor of turbulent heat flux (-
''

tuiρ ), of order zero, or algebraic models, that will be detailed in the 

sections 2.3 e 2.4. 

 

2.1.  Non-Linear Eddy Viscosity Models NVLME 

 

When Eqs. (1) - (2) are written for the geometry of Fig. (1), the forms below are presented. The momentum 

equations for the calculation of the secondary velocity components U, V and of the axial velocity W, assuming fully 

developed flow in the axial direction (z), can be expressed in the following form: 
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z-momentum:  
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where 
z

P
G

∂

∂
−=  , in Eq. (9) is the axial pressure gradient constant that drives the flow.  

 

 
 

Figure 1.  Fully developed turbulent flow in a square duct. 

 

The modeled transport equations for the turbulent kinetic energy k, and its dissipation rate ε, respectively, are given by: 
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The symbols kP  and tµ , respectively, represent the turbulence kinetic energy production rate and the eddy viscosity, 

and are defined as: 
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In the present work for NLEVM, both high and low Reynolds models are compared. Their basic difference lies in 

the distinct form of the damping functions 2f  and µf  referred in Eqs. (11) and (12). Expressions for them are shown in 

Table 1. These functions and a slightly different set of constants have been used in conjunction with the k-ε equations. 

In the calculating of the shear wall stress with the high Reynolds method (Launder and Spalding, 1974) and in the Table 

1 may be varied to simulate the surface roughness and 41.0=κ  is the von Kármán constant. Subscript P refers to the 

next node to the wall. Thus Pu  and Pk  are, respectively, the value of the velocity and turbulent kinetic energy in this 

point, and Py  is the normal distance to the wall. The symbol n in the low Reynolds model represents the normal 

distance to the wall. The constants µc , 1c , 2c , kσ  and εσ  for the high Reynolds model are set as 0.09, 1.44, 1.92, 1.0 

and 1.33, respectively, and for the low Reynolds model given by 0.09, 1.5, 1.9, 1.4 and 1.3, respectively.  

In this work the expression for the Reynolds stress is given as, 
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Where the second term on the right hand side of Eq. (13) represents the non-linear term. This quadratic form produces a 

certain anisotropy degree between the Reynolds normal stresses, which make possible to predict the presence of 

secondary motion in non-circular ducts. The value of NLc1  proposed by Speziale (1987), is equal to 1.68. Here, NLc1  

will be analyzed and adopted different values for both high and low Reynolds models. 

 The Reynolds normal and shear stresses present in Eqs. (7), (8) and (9), are expressed as: 

 

Table 1. High and Low Reynolds Model 
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 The following difference for the Reynolds normal stresses is: 
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It has been observed that for this type flow, the derivatives of the velocity components U and V relative to W 

derivatives are small and for that they are omitted in Eqs. (14) - (16). 

The turbulence production term is expressed as: 
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2.2. Reynolds Stresses Equations Models (RSM) 

 
The Reynolds stress model (RSM) (Launder et.al, 1975; Launder, 1989) involves calculation of the individual 

Reynolds stresses,
''

jiuu , using differential transport equations. The individual Reynolds stresses are then used to obtain 

closure of the Reynolds-averaged momentum equations Eqs. (1-2); The Eq. (18) describes six partial differential 

equations of the independent Reynolds stresses which are solved along with a equation model for the scalar dissipation 

rate ε  (flow 3D). The strategy modeling originates from work reported in Launder et al (1975).  

The exact transport equations for Reynolds stresses, ρ ''

jiuu  , may be written as follows: 
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(18) 

The terms in these exact equations (18) for Reynolds stresses: 

a) Local time derivate, b) ≡ijC Convection, c) ≡ijTD , Turbulent diffusion,  

   d) ≡ijLD , Molecular diffusion, e) ≡ijP Stress production, f) ≡ijG Buoyancy production , g) ≡ijφ  Pressure strain, h)  

≡ijε Dissipation, i) ≡ijF Production by System Rotation, j) source term.  

Of the various terms in these exact equations, ijC , ijLD , , ijP  and ijF  do not require modeling.                                 

However, ijTD , , ijG , ijφ , e ijε  need to model to close the equations. 

 

2.2.1 Modeling Turbulent Difussive Transport 

 

ijTD ,  can be modeled by the generalized gradient-diffusion model of Daly e Harlow (1970): 
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But, this equation can result in numerical instabilities, therefore Fluent (2003) uses a scalar turbulent diffusive as 

follows (Gibson and Launder, 1978): 
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The turbulent viscosity, tµ , is computed using the Eq. (24). 

Lienand e Leschziner (1994) derived a value of 82.0=kσ  by applying the generalized gradient-diffusion model, Eq 

(19). 

 

2.2.2 Modeling of the Pressure Strain Term 

Quadratic Pressure Strain Model 

 

The pressure strain term, ijφ , in Eq. (18) is modeled according to the proposals by Speziale, Sarkar, and Gatski (1991). 

This model has been demonstrated to give superior performance in a range of basic shear flows, including rotating 

plane shear, and axisymmetric expansion/contraction. This improved accuracy should be beneficial for a wider class of 

complex engineering flows, particularly those with streamline curvature.  

 

2.2.3 Modeling of the Turbulence Kinetic Energy 

 

In general, when the turbulence kinetic energy is necessary for modeling a specific term, it is obtained by taking the 

trace of the Reynolds stress tensor: 

''

2

1
iiuuk =  

 

(21) 

An option available to solve a transport equation for the turbulence kinetic energy in order to obtain boundary 

conditions for the Reynolds stresses is: 
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Where 82.0=kσ  and kS  is a user defined source term. Equation (22) is obtainable by contracting the modeled 

equation for the Reynolds stresses, Eq. (18). As one might expect, it is essentially identical to equation used in the 

standard k-e model. 

Although Eq. (22) is solved globally throughout the flow domain, the values of k obtained are used only for boundary 

conditions. In every other case, k is obtained from Eq. (21). 

 

2.2.4 Modeling of the Dissipation Rate 

 

The scalar dissipation rate, ε , is computed with a model transport equation similar to that used in the standard k-e 

model: 
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Where: ,92.1,44.1,0.1 21 === εεεσ CC 3εC  is evaluated as a function of the local flow direction relative to the 

gravitational vector, and εS is defined source term. 

 

2.2.5 Modeling of the Turbulent Viscosity 

 

The turbulent viscosity tµ  is computed similarly to the k-e models: 
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Where 09.0=µC  

 

 

 

 



2.3. Simple Eddy Diffusivity Model (SED)   

 

This method it based in the model of viscosity of Boussinesq. To the unknown eddy thermal diffusivity, it can be 

expressed as:  
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t
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µα = , where the number of turbulent Prandtl tσ  is prescribed. The zero equation models, SED assumes that 

the number of turbulent Prandtl is constant in all the region; this is 0.89 for the air, independently of the effect of 

proximity of the wall 
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This is one of the simplest models of the literature and they are frequently found in commercial codes.  The main 

disadvantage of this model is that the diffusivities are independent of the direction, which means, they are isotropic. 

 

3. NUMERICAL METHOD 
 

    For Reynolds stress tensor predicted, it has been employed the NLEVM and RSM models. This last has been 

calculated by a CFD commercial package. To obtain the turbulent heat flux in this paper it has been developed a 

FORTRAN computational program, in which solves the non-dimensional energy equation employing SED model. 

Similar methodology was developed by Patankar (1970).  

 

4. RESULTS  
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Figure 2. Axial mean velocity distributions at various streamwise locations (a); Friction coefficient for fully developed 

flows in a square duct (b) 

 

Figure 2a shows comparisons between experimental (Myon et al., 1981) and numerical works (NLEVM and RSM 

models) for the variation of the axial mean velocity component at 1)2//( =dx , with distances from of the wall in the 

interval 1)2//(4.0 ≤≤ dy  (where d is the hydraulic diameter). For the position 1)2//( =dy  the velocities in the 

central region increase with streamwise distance, reaching to local peak values after that, the values decrease 

asymptotically. The maximum center line velocity occurs at downstream of the location where the boundary layers 

begin to merge, approximately in ( 32/ ≅dz ). The comparison among the turbulent models, they agree reasonably 

with experimental data for a determined calculation domain. Figure 2b shows comparisons among various experimental 

works. This figure shows also the prediction for the fanning friction coefficient in two numbers Reynolds for fully 

developed flow (2.5x10
5
 and 65x10

3
), other authors (Rokni, 1998) reported also this subject. The Fanning friction factor 

for a square duct follows: 



     
25.0Re0971.0 −=f                                                                                                                                                  (28) 

 

 
 

Figure 3. Grids and secondary flow vectors. 

 

     Figure 3 represents the grids and also shows the secondary flow vectors for the square duct.  The secondary velocity 

flow is shows in form qualitative. This should be about 2-5 % of the main flow (“bulk”), depending on number of 

Reynolds, Rokni (1998).  

 

 
 

Figure 4.  Reynolds shear stress contours  ( ) 1000/
2

max xWwu ′′  

 

       Comparisons between the experimental work of Melling and Whitelaw (1976) with the computed values for the 

Reynolds shear stress xzτ  reported by Assato (2001) (NLEVM model) are shown in the Fig. 4.  
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Figure 5. Streamwise velocity contours CUU /  (a) ; Mean Temperature )/()( CWW TTTT −− (b) 

 

      Figure 5a presents the values of contours of velocities obtain experimentally by Hirota (1997) for Reynolds 4105.6 x . 

These are compared with RSM and CU  (velocity in the center duct). Figure 5b shows the mean temperature which has 

been utilized the SED model for air with constant wall temperature of 100 ºC. The mean temperature distribution is 

quite similar to primary flow velocity profile; however it is found those distortions of the contour temperatures are 

somewhat smaller than the mean velocity and in this way, the influences of the secondary flows in the heat transport are 



weaker than those in the momentum transport. Finally, we are able to observe that the results agree reasonably well 

with experimental data. 

 

5. CONCLUSIONS 

 

- The classical experimental researches of Gessner et al (1976), Hirota (1997) and  Melling and Whitelaw 

(1976) show that in fully developed turbulent flow in straight square channels the condition of anisotropia 

appears in the flow. 

 

- Figure 2-a shows what should take a special care in the prediction of the axial mean velocity. It is necessary 

to have sure that really we are dealing the zone of with fully developed flow. For example, the experimental 

work of Melling and Whitelaw shows comparisons in the position 8.36/ ≅dz .    

 

- The secondary velocity flow would be about 2-5 % of the main flow (“bulk”), depending on the number of 

Reynolds. 

 

- The secondary flow distors the axial flow and reduces the volumetric flow rate. Likewise affects the wall 

shear stress and the heat transfer at walls. 

 

- The prediction of the two important hydraulic parameters, from engineering point of view, are: friction factor 

and Nusselt number. The secondary flow generation is also very important.  

 

- The equations of transport of the model RSM is of complex implementation and of high cost computational, 

in despite of that the models NLEVM demand lower cost. However the results of the model RSM predict 

much better at axial velocity contours than NELVM (qualitative form), but both models predict very well the 

turbulent quantities. 

 

- The approach of the SED model represents reasonably the mean temperature (Fig. 5-b). Hirota (1997) 

considers the implementation of new models for turbulent heat fluxes in square ducts. The reason of this fact 

is that the properties of eddy thermal diffusivity and turbulent prandtl are only approached at square duct 

corner. 
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