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Abstract. One of the main challenges in positional control of an overhead crane is its tendency to oscillate, especially
when stopping. This paper presents a passivity based solution for this problem by inducing an artificial damping. Over-
head cranes are similar to a gantry cranes and consist of three major parts: the hoist, providing up/down motion to lift
items; the trolley, providing left/right motion for the hoist and payload; and the bridge, providing back/forward motion
for trolley, hoist, and payload. Usually, they are permanently installed in factories, shops, or warehouses to move items
not moveable by humans or forklifts. Since the payload is suspended by a somewhat flexible cable, an unactuated joint
or coupling is formed. So, the mechanical system consisted by the crane and the payload are sub-actuated because it
has more degrees of freedom that actuators. The goal is to control the payload position reducing the swing. In order to
achieve this goal is proposed a nonlinear control based on passivity. The dynamic model is derived using the Lagrangian
formalism using a distinct set of coordinates from the literature. This set of coordinates is singularity free which is the
main difference from other author choice. A Lyapunov function based control is applied. The results are verified by means
of simulation.
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1. INTRODUCTION

An overhead crane is a type of crane very common in factories, warehouses, harbors and other environments where
there is the need for moving heavy payloads. What makes the overhead crane so interesting for the study of non-linear
control techniques is:

1. it’s a underactuated system in which the number of degrees of freedom is greater than the number of actuator;

2. it’s non-linear in nature having a tridimensional (non-planar) pendulum characteristic; and

3. it has a huge practical interest since it’s widely used in the industry.

Many researches have dedicated some work to the improving of this equipment, in particular aiming the elimination or
reduction of swing that the payload is submitted when stopping the translational movement. Strip (1989) showed that, for
an object hanging in a wire, there is a family of control strategies that results in movements free of swing. Nevertheless,
he employed an approximation for little angles to simplify the mathematical treatment of the system under study.

Toxqui et al. (2006) applied a PD (proportional-derivative) controller tuned in real-time by a neural network. This
attempt led to a satisfactory performance only when the angle between the cable and the vertical line is small. Mahfouf
et al. (2000) used a fuzzy controller applied to overhead crane that could move in only one direction to evaluate the
employment of fuzzy control techniques in swing attenuation. More recently, Hayajneh et al. (2006) has worked to reduce
the number of rules and extend fuzzy control to the problem of two directions movement with swing reduction.

Banavar et al. (2006) used an approach called IDA-PBC – Interconnection and Damping Assignment-Passivity Based
Control also to address the two directions movement problem. The results discourage the use of this technique in two
direction movement problem due the difficulties in solving the partial differential equations (PDE) that comes out in the
controller design. Gmes-Estern et al. (2001) and Viola et al. (2005) state that it is only practical to apply this technique
when the system has only one sub-actuated variable. In these particular cases, the PDE’s are transformed in total differen-
tial equations and a solution can be found. When there are more than one sub-actuated variable, as it is so with overhead
crane, the PDE usually became exceptionally complicated to be solved.

Chen et al. (2005) took in to account the cable length variations and developed a partial feedback linearization1.
Despite of controlling the displacement in three dimensions, the control has little efficiency because the obtained trajectory
is quite different from the planed one. Furthermore, the authors’ goal does not seem be in syntony with the main goal
of the overhead cranes: displacing the payload to a final 2D position. There is no need for completely controlling the
displacement in 3D; only the final 2D position is important and not the intermediary one. The tacks performed by an
overhead crane are far different from the task preformed by a robot.

1A partial feedback linearization splits the variable into two groups: actuated and non-actuated.
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Fang et al. (2001, 2003) used a control law based on passivity adapting the ideas from Lozano et al. (2000) originally
formulated to control an inverted pendulum. Despite of presenting very interesting results, they used a kinematically
singular model in which the value of one generalized variable is undetermined when the cable becomes vertical. The very
same definition are employed by Al-Garni et al. (1995).

In this paper, it is used a controller based in the same control law employed by Fang et al. (2001, 2003), but build
upon a non-singular kinematic model. A secondary goal of this work is to determinate the impact of this change over the
controller performance. In Section 2.the constrain hypothesis are stated, the dynamic model of the system is derived using
Lagrangian formulation and passivity of underactuated Euler-Lagrange system is proved. Note that, usually, only fully
actuated or completely unactuated Euler-Lagrangee systems are proved to be passive (Ortega et al., 1998). In Section 3.the
passivity based controller is designed and its stability is established. In Section 4.the system is simulated and the obtained
results are compared with Fang et al. (2001). In Section 5.some conclusions are drawn and some goal for futures works
are stated.

2. DYNAMIC MODEL

Figure 1a shows the schematic representation of an overhead crane with a coordinate reference system, or frame,
Owxwywzw, where w stands for world. It is also pointed out how the angles α and β are measured. These angles
establish how the payload position is affected by the cable inclination. The reference system origin is conveniently
located where the cable touches the wheel when the positioning system is at null displacement. Fang et al. (2001, 2003)
and Al-Garni et al. (1995) use another angles to define the cable orientation, as shown in Fig. 1b, but this representation is
singular because angle φ is undefined where θ = 0. They also claim that this fact seems to be unimportant, but we suspect
that this choice leads to less smooth or even noisy control forces (see Section 4.) Still, the angle θ is appealing because
it measures the cable inclination in respect to the vertical line and its value is the ultimate quantity to be minimized in
anti-swing control.

In normal operation, an overhead crane lifts the payload until a safety height above the floor, usually determined by
the operator; moves the payload to a point (x, y) in a plan parallel to the plan xwyw of the coordinate reference system;
and lows the payload or keep it steadily in this position, it depends on task to be performed. The challenge is to move the
payload until the final position and stop at the final position without swinging.
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(a) Non-singular representation
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(b) Singular representation
Figure 1: Schematic representation of an overhead crane

The dynamic model of the system was elaborated using Lagrangian formalism (Sciavicco and Siciliano, 2000) and its
correctness was verified using the Recursive Newton Euler algorithm presented by Craig (1989). The constants employed
in the model development are: cable length, R (considered constant in what concerns the control2); the trolley mass, mt;
the bridge mass, mb; the payload mass, mp; the moment of inertia of the payload (assumed uniform and symmetric), Ip;
and acceleration due gravity, g.

It was assumed that:

1. the friction is negligible;

2. the cable mass is negligible;

3. the cable is always stretched out what is equivalent to a spherical joint connected to the trolley;

2Since the payload movement is divided in steps, the controller designed in Section 3.is used only to control the movement of the bridge and trolley.
The hoist, responsible the lift and low the payload, is moved only with the bridge and trolley stopped.
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4. the payload does not spin around its own axis;

5. the axes x and y are absolutely horizontal and mutually orthogonal;

6. all constant are perfectly known;

7. all positions and velocities, linear and angular, are measured;

8. all external perturbations like wind forces, vibration produced by other machines, etc. are negligible;

9. the angles α and β are restricted3 to the open range (−π, π) rad.

The payload position in respect to the reference coordinated is:

xp = x+R cosβ sinα; yp = y +R sinβ; zp = −R cosα cosβ (1)

where the angles α and β are defined in Fig. 1a and x and y are coordinates of the trolley (cable connection point). The
kinetic energy T can be split in four terms: 1) the translational kinetic energy of the bridge; 2) the translational kinetic
energy of the trolley; 3) the translational kinetic energy of the payload; and 4) the rotational kinetic energy of the payload.
So:

T = T1 + T2 + T3 + T4 (2)

T1 =
mb

2
ẏ2 (3)

T2 =
mt

2
(
ẋ2 + ẏ2

)
(4)

T3 =
mp

2

(
α̇2R2 cos2 β + 2 cosα α̇R ẋ cosβ + β̇2R2 − 2 sinα sinβ β̇ R ẋ+ 2 β̇ R ẏ cosβ + ẋ2 + ẏ2

)
(5)

T4 =
Ip
2
α̇2 +

Ip
2
β̇2 . (6)

The systems potential energy, U , is equal to the payloads potential energy alone given that the remaining components
moves only horizontally. This potential energy is given by:

U = Rgmp (1− cosα cosβ) . (7)

The Lagrangian is given by (Sciavicco and Siciliano, 2000):

L = T − U . (8)

The vector of external forces applied by actuator, τ , and the vector of system generalized variable, q, are:

τ =


Fx

Fy

0
0

 and q =


x
y
α
β

 (9)

where Fx is the force that must be applied by the actuator in the trolley, Fy is the force that must be applied by other
actuator in the bridge, x é the x-axis coordinate of the trolley (not the payload), y is the y-axis coordinate of the trolley, α
and β are the angle that define the cable orientation and are measured according to Fig. 1a.

The Euler-Lagrange equation is (Sciavicco and Siciliano, 2000):

d

dt

∂L
∂q̇
− ∂L
∂q

= τ (10)

or, in scalar form:

d

dt

∂L
∂ẋ
− ∂L
∂x

= Fx (11)

d

dt

∂L
∂ẏ
− ∂L
∂y

= Fy (12)

d

dt

∂L
∂α̇
− ∂L
∂α

= 0 (13)

d

dt

∂L
∂β̇
− ∂L
∂β

= 0 (14)

3In practice, since the real cable is somewhat flexible, the model is valid only in some neighborhood of zero.
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which, when rewritten in matrix form, gives:

τ = M (q) q̈ +C (q, q̇) q̇ +G (q) (15)

where

M (q) =


mt +mp 0 Rmp cosα cosβ −Rmp sinα sinβ

0 mt +mp +mb 0 Rmp cosβ
Rmp cosα cosβ 0 mpR

2 cos2 β + Ip 0
−Rmp sinα sinβ Rmp cosβ 0 mpR

2 + Ip

 , (16)

C (q, q̇) =


0 0 −Rmp cosβ sinα α̇−Rmp cosα sinβ β̇ −Rmp cosα sinβ α̇−Rmp cosβ sinα β̇
0 0 0 −Rmp sinβ β̇
0 0 −R2mp cosβ sinβ β̇ −R2mp cosβ sinβ α̇
0 0 R2mp cosβ sinβ α̇ 0


(17)

and

G (q) =


0
0

Rgmp sinα cosβ
R gmp cosα sinβ

 (18)

Notice that the model given by Eq. (15) aims the design of a controller and no friction was included. It is possible to
modify Eq. (15) to take into account one or more friction sources. This can be important, for example, for actuators
specification, but is not important for controller design since friction injects even more passivity into the system, exactly
the characteristic which is needed to damp the swinging. So, if the model in open loop is excited by an impulsive force it
will oscillate forever because there is nothing to damp the swinging.

Isolating q̈ in Eq. (15) one can obtain:

q̈ = M (q)−1 (τ −C (q, q̇) q̇ −G (q)) . (19)

Then, the system can be model in the form:

ẋ = f (x) + g (x) u (20)
y = h (x) (21)

where4

x =
[
q
q̇

]
; ẋ =

[
q̇
q̈

]
; u =

[
0
τ

]
; y = h (x) =

[
0
q̇

]
; (22)

f (x) =
[

q̇

−M (q)−1 (C (q, q̇) q̇ +G (q))

]
and g (x) =

[
0 0
0 M (q)−1

]
. (23)

The matrixM (q) in Eq. (16) is symmetric and positive defined.
A very important property of this system is that:

1
2
Ṁ (q)−C (q, q̇)

is skew-symmetric. This propriety is usually referred as the passivity property of a system and it is used to prove that an
Euler-Lagrange system is passive according to Byrnes et al. (1991). The skew-symmetry property implies that:

ξT

(
1
2
Ṁ (q)−C (q, q̇)

)
ξ = 0 (24)

4The vectors x and y shall not be confused with the coordinates x and y is the trolley.
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for any vector ξ. A second important property is that the time derivative of the potential energy, given by Eq. (7), is:

dU (q)
dt

= U̇ (q, q̇) = q̇T G (q) (25)

=
[
ẋ ẏ α̇ β̇

] 
0
0

Rgmp sinα cosβ
R gmp cosα sinβ

 = α̇ R gmp sinα cosβ + β̇ R gmp cosα sinβ . (26)

The total energy of the system is given by:

E (u) = E (q, q̇) = T (q, q̇) + U (q)

=
1
2
q̇T M (q) q̇ + U (q) (27)

where M (q) is given by Eq. (16). It can proved that E (0) = 0 and E (x) ≥ 0 using Eq. (27). Furthermore, E (x) > 0
for q̇ 6= 0 or α, β 6= 0. Computing the time derivative of Eq. (27) and using Eq. (25), (19), (24), and (22), it is obtained:

Ė (q, q̇) =
1
2
q̈T M (q) q̇ +

1
2
q̇T Ṁ (q) q̇ +

1
2
q̇T M (q) q̈ + U̇ (q, q̇)

= q̇T M (q) q̈ +
1
2
q̇T Ṁ (q) q̇ + q̇T G (q)

= q̇T

(
M (q) q̈ +

1
2
Ṁ (q) q̇ +G (q)

)
= q̇T

(
M (q) M (q)−1 (τ −C (q, q̇) q̇ −G (q)) +

1
2
Ṁ (q) q̇ +G (q)

)
= q̇T

(
τ −C (q, q̇) q̇ −G (q) +

1
2
Ṁ (q) q̇ +G (q)

)
= q̇T

(
τ +

1
2
Ṁ (q) q̇ −C (q, q̇) q̇

)
= q̇T τ + q̇T

(
1
2
Ṁ (q)−C (q, q̇)

)
q̇

= q̇T τ = yT u (28)

which is the mechanical power supplied to the system by the actuators. Integrating both sides of Eq. (28) in respect of
time, one gets:∫ t

0

Ė (q, q̇) dt =
∫ t

0

yT u dt (29)

E (t)− E (0) =
∫ t

0

yT u dt (30)

which implies that the system is lossless passive according to Definition 2.6 of Byrnes et al. (1991) with storage function
E (q, q̇) = E (x). Note that, is some friction terms are included in the model, Eq. (30) will have an additional term in the
right side and the system will be strictly passive according to Definition 2.7 of Byrnes et al. (1991). It is general propriety
of the Euler-Lagrange systems.

3. PASSIVITY BASED CONTROLLER DESIGN

The controller goal is to compute the forces necessary to be applied by the actuators in the bridge and trolley in order
to move the payload to a specified location given by the desired coordinates xd and yd. So, the actual and desired position
vectors are defined as:

r =
[
x
y

]
and rd =

[
xd

yd

]
(31)

and the position error and its time derivative are defined as

e = rd − r and ė = −ṙ . (32)

The system passivity characteristic indicates that the total energy, given by:

E (t)− E (0) =
∫ t

0

yT u dt (33)
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may be employed in the controller design (Lozano et al., 2000). When the payload completely stops the quantities e, ṙ
and E are null. Hence, the following functions is adopted as a Lyapunov function candidate:

V (q , q̇) =
kE

2
E (q, q̇)2 + ṙT kv

2
ṙ + eT kp

2
e . (34)

where kv and kp are positive defined square matrices5 and kE is a positive scalar. Equaition (34) is a vector form for the
scalar function proposed by Byrnes et al. (1991) in which the lasts two terms are biquadratics. The output of the controller
are the forces applied by the actuator on the mechanical subsystem and they are given by:

F =
[
Fx

Fy

]
. (35)

Using Eq. (9), (31) and (35) it can shown that:

q̇T τ =
[
ẋ ẏ α̇ β̇

] 
Fx

Fy

0
0

 =
[
ẋ ẏ

] [ Fx

Fy

]
= ṙT F . (36)

After replace the inverse ofM (q), the Eq. (9), (17), (18) and first and second derivatives in respect to times of Eq. (36)
in Eq. (19), it becomes:

r̈ =
1

det (M (q))
(P F +W ) (37)

where

P =
[
p11 p12

p12 p22

]
, and W =

[
w1

w2

]
and (38)

p11 =
(
mpR

2 cos2 β + Ip
) (
mp

(
mp sin2 β +mt +mb

)
R2 + Ip (mt +mp +mb)

)
p12 = −R2m2

p cosβ sinα sinβ
(
mpR

2 cos2 β + Ip
)

p21 = p12

p22 = I2
p (mt +mp) +R4m3

p cos4 β sin2 α+ IpR
2m2

p cos2 α+ IpR
2mtmp +

+R2mp cos2 β
(
mtmpR

2 + Ip
(
2mp sin2 α+mt

))
w1 = R5m3

p (mt +mb) sinα cos3 β sin2 β α̇2 + IpR
3m2

p (mt +mb) sinα cosβ sin2 β α̇2 −

−R3m2
p

(
mp (mt +mb) R2 + Ip (mt +mp +mb)

)
sinα cos3 β

(
α̇2 + β̇2

)
−

−IpRmp

(
mp (mt +mb) R2 + Ip (mt +mp +mb)

) (
sinα cosβ

(
α̇2 + β̇2

)
+ 2 cosα sinβ α̇ β̇

)
+

+IpR2m2
p g (mt +mp +mb) sinα cosα

(
sin2 β − cos2 β

)
−

−R4m3
p g (mt +mb) sinα cosα cos4 β − 2 IpR3m3

p cosα sin3 β α̇ β̇

w2 = sinβ
[
IpR

3m3
p

((
cosα cosβ α̇+ sinα sinβ β̇

)2

− β̇2 − 2 (cosα cosβ α̇)2
)
−

−IpR3m2
pmt cos2 β

(
α̇2 + β̇2

)
−R5mtm

3
p cos2 β

(
cos2 β α̇2 + β̇2

)
−

−IpR2m2
p g (mt +mp) cosα cosβ −R4mtm

3
p g cosα cos3 β−

−IpRmp

(
mtmpR

2 + Ip (mt +mp)
)
β̇2
]

The derivative in respect to times of Eq. (34) is:

V̇ (q, q̇) =
kE

2
2E (q, q̇) Ė (q, q̇) + r̈T kv

2
ṙ + ṙT kv

2
r̈ + ėT kp

2
e+ eT kp

2
ė (39)

= kE E (q, q̇) q̇T τ + ṙT kv r̈ + ėT kp e (40)
= ṙT (kE E (q, q̇) F + kv r̈ − kp e) (41)

= ṙT

(
kE E (q, q̇) I2 F + kv

1
det (M (q))

(P F +W )− kp e

)
(42)

= ṙT

((
kE E (q, q̇) I2 +

kv

det (M (q))
P

)
F +

kv

det (M (q))
W − kp e

)
= −ṙT kd ṙ (43)

5They can be or not a diagonal matrices or even positive scalars, as adopted in the simulations (see Section 4.).
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where the Eq. (28), (36), (32) and (37) were applied, I2 is the identity matrix of order 2, and kd is a positive defined
square matrix6 in order to make the system stable. Note that the passivity propriety implies that Ė (q, q̇) = q̇T τ and it
is quite important to derive Eq. (34).

Isolating F in Eq. (43), we have:

F = Ω−1

(
kp e− kd ṙ −

kv

det (M (q))
W

)
(44)

where

Ω = kE E (q, q̇) I2 +
kv

det (M (q))
P . (45)

Equation (44) is the control law employed.
It can be shown that matrix P is positive defined and, as a consequence, also Ω in Eq. (44) is positive defined because

it results from the sum of two positive defined matrices. So, it is assured that the inverse of Ω exists.
Observing the right hand side of Eq. (43), it can be confirmed that V̇ can be null in others points apart from the

origin7. It is only enough that ṙ = 0 to make V̇ = 0. Consequently, asymptotic stability of origin cannot be assured by
the Lyapunov’s theorem (Khalil, 2002, p. 114). However, it can be proved, using LaSalle’s invariance theorem (Khalil,
2002, p. 128), that x approaches to

[
xd yd 0 0 0 0 0 0

]T
when t → ∞. The proof follows the steps of

Lozano et al. (2000).

4. SIMULATION

The system was simulated using Matlab symulink (The MathWorks Inc., 2007). Figure 2 shows the block diagram
that carries out the physical (mechanical) subsystem. The core of this subsystem is block cranesys, shown in magenta
in Fig. 2. This block contains an implementation of Eq. (19), and also Eq. (16)8, (17) and (18), and was written in
Matlab metalanguage using a computer algebra system (MuPAD, 2008). The initial conditions can be specified in the
cyan blocks, but for the purpose of this work the system was assumed to be at rest in the beginning of the simulations.
In the first simulation, the open loop model of the mechanical subsystem shown in Fig. 2 was excited by a time finite
duration force to confirm the accuracy of the model. As a result, the output oscillated without damping, as expected.
Also, the trolley and bridge moved with an almost constant speed (there are some speed ripple caused by the interaction
of the trolley/bridge translation with payload swing).

Overhead Crane - Physic Model

q, q dot
1

cranesys

Integrador 2

1
sxoIntegrador 1

1
sxo

Initial Speed

[0 0 0 0 ]
Initial Position

[0 0 0 0 ]

Fx, Fy
1

q
q dot

q ddot

Figure 2: Physic model simulation diagram

The control law, given by Eq. (44), is implemented by four blocks shown in Fig. 3: Omega, Fcc, Geneal Inverse

(LU), and Matrix Multiply. The two latter ones are standard Matlab blocks. The two former ones were written in
Matlab metalanguage with the help of MuPAD (2008) and implement Eq. (45) and the right term of Eq. (44), respectively.
Note that Ω, given by Eq. (45), is a quite complicated 2× 2 matrix, but the computational effort the invert it is not too big.
It doesn’t worth to invert Ω analytically because the result demands much more computation effort to be carried out than
the actual scheme that consists in computing Ω, then inverting it. The blocks x_d and y_d are used to specify the desired
final position on plane xy and the block abqp converts angles α and β to θ according to Eq. (46).

6It can be or not a diagonal matrices or even positive scalars, as adopted in the simulations (see Section 4.).
7The origin must be dislocated to xe =

[
xd yd 0 0 0 0 0 0

]T because this is the closed loop equilibrium point
8Actually, the inversion of EQ. (16) was implemented.
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Overhead Crane Passivity Based Controller with Swing Suppression

y_d

3

x_d

10

To Workspace qq

qq

To Workspace Fxy

Fxy

Scope q

Scope ThetaPhysic Model

Fx, Fy q, q dotMatrix
Multiply

Fcc

abqp

Omega

 LU Inverse

General
Inverse

(LU)

Figure 3: Control simulation diagram

Table 1 brings the simulation parameters and their values. The parameters associated with the plant have the same
values employed by Fang et al. (2001).

The simulation scenario used to validate the controller is the execution of a moving command: departing from rest at
position (0, 0), the payload was sent to position (xd; yd) = (10; 3) m. The same scenario was employed by Fang et al.
(2001) and the use of this particular scenario here allows a more straight forward result comparing.

Table 1: Simulation Parameters
Parameters Associated with the Plant Controller Gains

Parameters Symbol Value Gains Symbol Value

Cable Length R 2.5 m Derivative kd 600
Bridge Mass mb 190 kg Proportional kp 120
Trolley Mass mt 23 kg Energetic kE 0.05
Payload Mass mp 160 kg Non-Linear Derivative kv 50
Payload Moment of Inertia Ip 1.5 kg m2

Acceleration Due Gravity g 9.81 m/s2

Figure 4 shows the position (x, y) of the trolley as a time function and the angles α, β . The simultaneous analysis of
these four graphs (Fig. 4a to d) allows to evaluate the controller performance in respect to the requirement of moving and
swing suppression. Both position, x and y, behaves approximately like an overdamped second order linear system output.
The angles shown in Fig. 4c and d display a desired damped behavior.
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Figure 4: Simulation Results – positions x and y, and angles (α and β)
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The force graphs (Fig. 5a and b) give an idea of how the forces delivered by actuators behave.
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Figure 5: Simulation Results – forces applied by the actuator to (a) the trolley and (b) the bridge

The payload relative position (Fig. 6b) shows how an observer moving with the trolley whould see the payload which
gives a good understanding of how the system behaves.

In order to compare the simulation results with the results reported by Fang et al. (2001), which were obtained using
a different definition of angles, it is necessary to convert the angle α and β in φ and θ as follow:

θ = arccos (cosα cosβ) (46)
φ = atan2 (sinα cosβ, sinβ) . (47)

The most important information is given by angle θ (t) which measures the inclination of cable in respect to the vertical
line (Fig. 6a). The faster θ goes to zero the higher the swing attenuation. Figure 6a is much simple to analyze than the
combined data of Fig. 4c and d.
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Figure 6: Simulation Results – (a) angles θ and (b) payload relative position

The results obtained are similar to the ones obtained by Fang et al. (2001). The smaller values of θ obtained here can
be credited to a difference in controller tuning and not necessarily means that this approach is better than theirs. Neither
the smaller setting time obtained by Fang et al. (2001) means that theirs approach is superior. Much need to be done in
the tuning procedure before such a conclusion be reached.

5. CONCLUSIONS

The presented results are similar to the results presented by Fang et al. (2001), but the obtained forces (control actions)
are smoother than theirs. It is not possible to say yet if the reference angles, as defined in Fig. 1a, have any practical
advantages or disadvantages in respect to the angle definitions used by Fang et al. (2001, 2003) and Al-Garni et al. (1995)
(see also Fig. 1b). Since the controller was tuned by trial and error, it is believed that it is possible to obtain a better
performance than the presented in this work if more time would be spent in the tuning process, possibly by employing
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a more elaborated tuning method. It is also important to note that application of kv , kp, and kd as scalars consists in a
subutilization of the controller capabilities. If kv , kp, and kd are taken as matrices they can be used to compensate the
differences perceived by the different actuator and it is very likely that, in this case, the performance will be improved
significantly. Figure 6b gives an insight of how the tendency of swing in x and y is not even. Clearly, the swing amplitude
in y direction is smaller but also smaller is the damping. This tendency cannot be attributed to the difference in the desired
travel distances since the same behavior can be observed if the travel distances are equal. The matrices kv , kp, and kd are
of dimension 2 × 2 what means that, together with the scalar kE , thirteen parameters, at most, can be used to tune the
controller. This can be used in the elaboration of a very sophisticated tuning procedure which shall satisfy very stringent
requirements.

The intense application of computer algebra systems has minimized the mistake possibility in the equation derivation
and simplified the construction of the simulation blocks written in Matlab metalanguage (The MathWorks Inc., 2007).
Besides, the time needed for mathematical manipulation was largely reduced. The main goals of the work: to build up
the dynamic model of an overhead crane; to propose a controller and to show by means of simulation and theoretically
that this controller can effectively reduce the payload swing, were satisfactorily reached. In future works a more effective
method for controller tuning must be developed and others energy or power based Lyapunov function shall be proposed.
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