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Abstract. This paper presents the analysis of Inverse Simulation applied to nonlinear Duffing Equation, which 
represents several nonlinear systems dynamics. Simulations in different initial conditions are presented and the results 
are used with Inverse Simulation technique to obtain the excitation to the system. The phase-planes obtained from both 
cases are presented and requirements of convergence are discussed. The errors caused by the method and sample 
period are estimated, needed to verify real applicability of the technique. The Inverse Simulation approach assesses 
Newton-Raphson method and Jacobian Matrix to obtain the input time histories due to a specific output response. This 
analysis is very useful in aerospace systems in nonlinear control system design and validations. 
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1. INTRODUCTION  
 

The modeling and simulation process consist of finding outputs time histories due to inputs applied to a 
representative model or dynamic system, for a given set of initial conditions. Identification processes find models that 
can represent dynamic systems, using input and output time histories, while Inverse Simulation finds inputs time 
histories that will produce a prescribed output. Several aerospace applications have been stated, in sense of finding 
answers to the presence of limit-cycle, continuous increasing and decreasing of amplitude during oscillations, and 
others. This nonlinear behavior can be observed on hybrid simulations where mathematical equations representing 
Dynamic Equations and real parts are present. The hybrid simulation to the Brazilian Satellite Launcher (VLS) is 
performed with real parts as hydraulic systems, actuators type movable nozzle and sensors, while the vehicle, filters and 
aerodynamic effects are represented by differential dynamic equations. In this way, we can obtain success in finding 
answers to some questions related to behavior due to uncontrollable and unobservable modes that can be present on 
typical complex linear and nonlinear dynamic systems. 

The nonlinear effect, discussed through this work, can appear in terms of elastic potential energy as restoring forces 
or spring forces, and in this way, is presented an application of Inverse Simulation applied to the Duffing Equation, 
where nonlinear effects occur due to elastic potential energy. 

  
2. THE INVERSE SIMULATION APPROACH 
 

The mathematical formulation for Inverse Simulation is presented as follows, based on preliminary system model 
obtained from classical approach for modeling like Newton’s Law, Lagrange Equations and Hamilton’s Principle. The 
Forward Simulation consists of calculating the system response to a known input time history and in case of nonlinear 
dynamic systems, its mathematical model can be expressed by a matrix state-space model as follows.  

 

( )uxfx ,=&                       ( ) 00 xx =&  (1) 

 
The vectors x  and u  represent the state variables and inputs respectively, ( )uxf ,  are nonlinear functions 

describing the system’s dynamic and ( )0x&  the initial values. The output equation is 

 

( )xgy =  (2) 

 
The Inverse Simulation approach finds the input time histories that produced a specific output response obtained 

from the system dynamic, so we can differentiate Eq. (2) producing: 
 

( )uxf
dx

dg
xd

dx

dg
y ,== &&  (3) 

 
If Equation (3) is invertible so it is possible to write the equation as follows. 
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( )yxhu &,=  (4) 

 
Substituting Equation (4) into Eq. (1) gives 

 

( )( ) ( )yxFyxhxfx &&& ,,, ==  (5) 

 

The Equations (4) and (5) provide a complete statement of Inverse Simulation, now withy& as the input vector and 

u  as the output vector. This inverse mathematical model is a new system dynamic and it is so quite different to original 
system. Murray-Smith (2000) and Thomson (1998) have shown applications of Inverse Simulation in many different 
areas based on different methods of inverse simulation, and according to the method and its features can be applied for 
specialized problems. 
 
2.1. Integral and Differentiation-based Approach 
 

Works from Murray-Smith (2000) show that the unknown values of nx  and nu  can be calculated using functions 

defined as follows 
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where the matrix with partial derivatives is the Jacobian J . The method above is the differentiation-based approach and 
used in this work, applied to the Nonlinear Duffing Equation. The integration-based approach, from Hess (1991) is 
evaluated as follows. 
 

( ) ( ) ( )[ ]mnmnmn uxfx 111 , −−− =&  (7) 

( ) ( ) ( )mn

t

t
mnmn xdtxx

n

n

11

1

−− += ∫
−

&  (8) 

( ) ( )[ ]mnmn xgy =  (9) 

 

Defining the error function ne as follows: 

 

( ) ( ) nmnmn yye −=  (10) 

 
computing errors and comparing with predefined threshold values, a Newton-Raphson algorithm is used to obtain: 
 

( ) ( ) [ ] ( )mnmnmn eJuu 1
111

−
−+− −=  (11) 

 
This iterative process continues with m  being incremented until all errors are under prescribed value error. 

 
3. NONLINEAR SYSTEMS AND DUFFING EQUATION 

3.1. Nonlinear Systems 

 
Mechanical and electrical systems can be modeled as nonlinear systems governed by the following differential 

equation 
 

( ) ( ) tBxfxxm ωϕ cos=++ &&&
 (12) 
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According to Stoker (1992) the term xm&&  is referred as the inertia forces, while the nonlinear term ( )x&ϕ   as the 

damping force, ( )xf  as the restoring forces or spring forces and tB ωcos  as the external force or excitation. If the 

functions ( )x&ϕ  and ( )xf  are linear under some simplification hypothesis or linearization process, it leads to classical 

methods to linear systems analysis. At the other hand, physical effects can lead to subclasses of nonlinear systems, e. g. 

nonlinear vibrations with ( ) 33xxx &&& +−=ϕ  known as Rayleigh Equation or Van der Pol Equation. In this case the 

nonlinear damping force tends to increasing on amplitude oscillation, while lower velocities tends to decrease the 
amplitude of oscillation. 

3.1. The Duffing Equation 

 
The Duffing Equation can be obtained from a damped forced nonlinear oscillator or from an electrical nonlinear 

oscillator, where nonlinearity is observed in its elastic potential energy associated to elastic behavior of a beam or 

magnetic effects of an inductor with a ferromagnetic core. Assuming ( ) kxx =&ϕ and ( ) 3xxf =  in Eq. (1), we have 

the nonlinear differential equation to the Duffing Oscillator, as follows. 
 

( )tBxxkxm 0
3 cosω=++ &&&  (13) 

 
The Figure 1 shows typical mechanical and electrical system that can be modeled by Duffing Equation. According 

to Fig. 1(a) the motion of the steel beam is periodically forced and deflected toward two magnets, while in Fig. 1(b) the 
inductor produces nonlinear behavior through the ferromagnetic core. 

 

(a)  (b) 
Figure 1. (a) Mechanical and (b) Electrical nonlinear oscillator 

 
The Figure 2 shows the influences from values to k-B parameters and the regimes of the various long-term 

behaviors of Duffing Equation as mapped by Ueda (1980). 
 

 
 

Figure 2. k-B mapping of Duffing Equation from Ueda (1980) 
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In this work, is chosen five periodic attractors leading to synchronous oscillations and sub-harmonics, so the 
parameters are m = 1 (mass), B = 10.2 (forced term amplitude) and k = 0.08 (damping term magnitude). The angular 

velocity to the forced term is0ω  = 1 rd/s and initial conditions to the simulations (five attractors A1 to A5) are 

presented in Table 1. 
 

Table 1. Initial conditions to attractors A1 to A5.  
 

Attractor )0(x = )0(1x = )0(x& = )0(2x = 

A1 -0.21 0.02 
A2 1.05 0.77 
A3 -0.67 0.02 
A4 -0.46 0.30 
A5 -0.43 0.12 

 
The Figure 3 shows the model used to forward simulations. 
 
 

 
 

Figure 3. Duffing Equation Forward Simulation 
 
The figures as follow show results from forward simulations, assuming a sinusoidal input and sample period 

T=0.002 s. The Fig. 4(a) shows the phase plane and Fig. 4(b) the state variables time histories due to initial conditions 
of attractor A1. 
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Figure 4. Forward simulation to Duffing Equation, Attractor A1  
(a) phase plane (b) input, state variables and  3x  time histories 

 
The Figure 5(a) shows the phase plane and Fig. 5(b) the state variables time histories due to initial conditions to 

attractor A2, while Fig. 6 due to attractor A3. 
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Figure 5. Forward simulation to Duffing Equation, Attractor A2 (a) phase plane  
(b) input, state variables and  3x  time histories 
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Figure 6. Forward simulation Duffing Equation, Attractor A3 (a) phase plane and (b) )(tu , 1x , 2x  and 3x time histories 

 
The Figure 7(a) shows the phase plane and Fig. 7(b) the state variables time histories due to initial conditions to 

attractor A4. 
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Figure 7. Forward simulation to Duffing Equation, Attractor A4 (a) phase plane  
(b) input, state variables and  3x  time histories 
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The Figure 8(a) shows the phase plane to Duffing Equation, attractor A5 and Fig. 8(b) the input, state variables and  
3x&  time histories. 
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Figure 8. Forward simulation to Duffing Equation, Attractor A5 (a) phase plane  

(b) input, state variables and  3x  time histories 
 

The time histories due to state variables and output were applied to the Inverse Simulation and the results are 
presented in sections as follow. 
 
4. INVERSE SIMULATIONS 

 
This section presents the application of Inverse Simulation based on differentiation-based approach according to 

Equations (6) to (13). The energy and state variables are defined as follow 
 

xx =1  (Displacement)    xx &=2   (Velocity) 

xx && =1  (Velocity)    xx &&& =2   (Acceleration) 
 
Resulting the nonlinear state-space equation: 
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4.1. Inverse Simulation - Attractor A4 and A5 

 
The results from application of differentiation-based approach to the Inverse Simulation (InvSim) are presented in 

the figures as follow, based on time histories obtained from Forward Simulations (ForwSim) with attractors A4 and A5. 
The Newton-Raphson algorithm was used to determine values of input and state variables time histories, in what 
according to Murray-Smith (2000) is appropriate for a problem of this kind. 
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Figure 9. Results from Inverse Simulation, attractor A5, T = 100ms (a) Time histories (b) Phase plane comparison 
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Figure 10. Results from Inverse Simulation, attractor A5, T=50ms: (a) Time histories (b) Zoom 
   
The figure 11 shows the results obtained from application of Inverse Simulation considering Attractor A4. 
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Figure 11. Results from Inverse Simulation for attractor A4, T = 100ms: (a) time histories and  
(b) Phase plane comparison 

 
The root mean squared error (RMSE) associated to Inverse simulation considering attractors A4 and A5 are 

presented in Table 2 as follows. 
 

Table 2. Root Mean Square Error (RMSE). 
 )(sT  u  

1x  2x  

RMSE – Attractor A4 0.1 0.02100 0.00000 0.00850 
RMSE – Attractor A5 0.1 0.02588 0.00000 0.01131 
RMSE – Attractor A4 0.01 0.00455 0.00000 0.00113 
RMSE – Attractor A5 0.01 0.00428 0.00000 0.00085 

 

It can be observed from Table 2, low values RMSE to displacement 2x  and relative RMSE to the input time 

history u  obtained from the Inverse Simulation. 

4.2. Inverse Simulation - chaotic movement 

 
The results from the application of differentiation-based approach to the Inverse Simulation are presented in the 

figures as follow, based on time histories from forward simulations with the chaotic movement case. The parameters are 
m = 1, k = 0.05, B = 7.5, 5)0( −=x and 0)0( =x& . The Fig. 10 (a) shows results using T=50ms and can be observed 

greater errors in 0-25s during the transient period, while lower errors to the steady-state period. In Fig. 12(b) the errors 
are better using sample period T=5ms. 
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Figure 12. Results from Inverse Simulation: (a) T = 50ms (b) T = 5ms 
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The Figure 13 shows details from Fig. 12(b). 
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Figure 13. Zoom in Figure 12(b): (a) Transient regime and (b) steady-state regime 
 

The Table 3 compiles the errors obtained from Inverse Simulation comparing results with T=50ms and T=5ms. 
 

Table 3. Root Mean Square Error (RMSE) – Transients setting to steady-state chaos. 
 

)(sT  u  
1x  2x  

0.05 6.31747 0.00000 0.54541 
0.005 0.84730 0.00000 0.05473 

 
The attractor due to chaotic movement produces signals with harmonics tuned on excitation frequency and other 

component type narrow-band white noise.  
 

5. CONCLUSIONS  
 

The main objective of this paper is to present Inverse Simulation Approach applied to nonlinear system making use 
of Duffing Equation. In this way, results in finding input and states time histories to a specific and desired output show 
coherence and low values on errors RMSE. The convergence on inverse simulation process was obtained although 
effects from sampling time, initial conditions, amplitude of excitation, nonlinear models, chaos on transient and steady-
state regimes. The interest on input time histories to a specific output is to find what efforts has to be applied from pilots 
or control systems to vehicles, e. g., VLS, Unmanned Aerial Vehicles (UAVs), submarines and airplanes. So this work 
has widely application in civil and military areas. 

In this work only effects from nonlinearities in potential elastic energy were considered and it can be extended the 
interest on other effects from nonlinearities in kinetics energy expression. This analysis is very useful in aerospace 
systems on nonlinear control system design and validation, because some results due to typical behavior of nonlinear 
systems have been observed in VLS Hybrid Simulations (Hardware-in-the-Loop simulations). So results from analysis 
of inverse simulations are of great interest mainly in find answers to some questions in nonlinear systems concerning 
the VLS hybrid simulation. 

Dynamic Systems with several modes of vibration requires short sample periods but requires long time to the 
inverse simulation. In these cases is recommended simulations with different sample periods according to the dynamic 
(time constants) respectively to the faster and to the slower mode. It is recommended to analyze the Power Spectral 
Density function on results from Forward Simulation before performing Inverse Simulation, to verify the presence of 
frequencies due to slow and fast modes and to different modes of vibrations. 

The presence of chaotic behavior due to system dynamics, external disturbance, excitation amplitudes and initial 
conditions are very important to Inverse Simulations, mainly to choice preliminary models, sample periods and stability 
analysis. 

The reason for error values RMSE=0 for 1x  is due to output equation 1xy = , but in many other cases the output 

can be a combination of variables. It can be observed the direct influence of sample period on RMSE values, where fast 
sample periods leads on low RMSE. The Forward Simulation with different initial conditions affects the nonlinear 
behavior of the movement but do not affect the results from Inverse Simulations.  
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