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Abstract. This paper presents the analysis of Inverse Sitinlaapplied to nonlinear Duffing Equation, which
represents several nonlinear systems dynamics.|&ions in different initial conditions are preseqtand the results
are used with Inverse Simulation technique to abthé excitation to the system. The phase-planesnga from both
cases are presented and requirements of convergamceliscussed. The errors caused by the methodsantple
period are estimated, needed to verify real apility of the technique. The Inverse Simulation rapgh assesses
Newton-Raphson method and Jacobian Matrix to olitagninput time histories due to a specific out@sponse. This
analysis is very useful in aerospace systems ifimear control system design and validations.
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1. INTRODUCTION

The modeling and simulation process consist of ifigdoutputs time histories due to inputs applied ato
representative model or dynamic system, for a gaetrof initial conditions. Identification processind models that
can represent dynamic systems, using input andubdime histories, while Inverse Simulation findgputs time
histories that will produce a prescribed outputveal aerospace applications have been statedenisesof finding
answers to the presence of limit-cycle, continubwseasing and decreasing of amplitude during lagicihs, and
others. This nonlinear behavior can be observedydid simulations where mathematical equationgasgnting
Dynamic Equations and real parts are present. Mueich simulation to the Brazilian Satellite Launch@/LS) is
performed with real parts as hydraulic systemsjaots type movable nozzle and sensors, while ¢hécle, filters and
aerodynamic effects are represented by differedifalamic equations. In this way, we can obtain ssisdn finding
answers to some questions related to behavior @umdontrollable and unobservable modes that caprésent on
typical complex linear and nonlinear dynamic sysem

The nonlinear effect, discussed through this wosk appear in terms of elastic potential energest®ring forces
or spring forces, and in this way, is presentechjplication of Inverse Simulation applied to theffilng Equation,
where nonlinear effects occur due to elastic patkanergy.

2. THE INVERSE SIMULATION APPROACH
The mathematical formulation for Inverse Simulatisrpresented as follows, based on preliminaryesysiodel
obtained from classical approach for modeling Newton’s Law, Lagrange Equations and Hamilton's €igle. The

Forward Simulation consists of calculating the systesponse to a known input time history and seaz nonlinear
dynamic systems, its mathematical model can beesgpd by a matrix state-space model as follows.

x=f (X, u) X(O) =X, 1)

The vectors X and U represent the state variables and inputs resgdgtivf (x,u) are nonlinear functions
describing the system’s dynamic apf@) the initial values. The output equation is

y= Q(X) )

The Inverse Simulation approach finds the inputetinistories that produced a specific output respaigained
from the system dynamic, so we can differentiate(Egproducing:

. _dg , d
y:d—gdx:d—sf(x,u) (3)

If Equation (3) is invertible so it is possiblevoite the equation as follows.
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u=h(x,y) (@)
Substituting Equation (4) into Eq. (1) gives
x = f(x h(x y) = F(x,y) 5)

The Equations (4) and (5) provide a complete stategrof Inverse Simulation, now Wifﬁ as the input vector and

U as the output vector. This inverse mathematicalehis a new system dynamic and it is so quiteedifiit to original
system. Murray-Smith (2000) and Thomson (1998) hehawn applications of Inverse Simulation in maiifedent
areas based on different methods of inverse simualadnd according to the method and its featuagshe applied for
specialized problems.

2.1. Integral and Differentiation-based Approach

Works from Murray-Smith (2000) show that the unkmovelues of X, and U,, can be calculated using functions
defined as follows

-1

oF, OF

{()H(w o {a((mm-l,(un)m_l)}

@ ﬁ I:2 ((Xn )m—l’ (un)m—l)
ox  0OX

(6)

where the matrix with partial derivatives is thedian J . The method above is the differentiation-based@ggh and

used in this work, applied to the Nonlinear Duffieguation. The integration-based approach, fromsH&9891) is
evaluated as follows.

(Xn—l)m = f [(Xn—l)m7 (un—l)m] )

ty

() = [ Ga )t + (%), ®

t

(yn)m = ng_l[(xn)m] ©)

Defining the error functior€, as follows:

(en)m = (yn)m ~Yn (10)

computing errors and comparing with predefinedshodd values, a Newton-Raphson algorithm is usexbtain:

(Uns) s = (), =31 (e0),, an

This iterative process continues with being incremented until all errors are under pibed value error.
3. NONLINEAR SYSTEMS AND DUFFING EQUATION

3.1. Nonlinear Systems

Mechanical and electrical systems can be modeledoanear systems governed by the following ddfeial
equation

mx + ¢(x)+ f (x) = Bcoswt (12)
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According to Stoker (1992) the teriiX is referred as the inertia forces, while the roedir term¢(X) as the
damping force, f (X) as therestoring forcesor spring forcesand BCcosat as the external force or excitation. If the
functions ¢(X) and f (X) are linear under some simplification hypothesifirerarization process, it leads to classical
methods to linear systems analysis. At the othadhphysical effects can lead to subclasses ofimgan systems, e. g.

nonlinear vibrations With¢()'() =—-X+ )'(3/3 known asRayleighEquationor Van der Pol Equationin this case the

nonlinear damping force tends to increasing on #uog# oscillation, while lower velocities tends decrease the
amplitude of oscillation.

3.1. The Duffing Equation

The Duffing Equation can be obtained from a damfmeded nonlinear oscillator or from an electricanfinear
oscillator, where nonlinearity is observed in itasiic potential energy associated to elastic behaf a beam or
magnetic effects of an inductor with a ferromagnetre. Assumin@()'() = kxand f(X) =x%in Eq. (1), we have
the nonlinear differential equation to the Duffi@gcillator, as follows.

mx + kx+ x° = Beodwt) (13)

The Figure 1 shows typical mechanical and eledtegatem that can be modeled by Duffing Equatioocdkding
to Fig. 1(a) the motion of the steel beam is pecialty forced and deflected toward two magnets,levhii Fig. 1(b) the
inductor produces nonlinear behavior through theofaeagnetic core.
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Figure 1. (a) Mechanical and (b) Electrical nordinescillator

The Figure 2 shows the influences from values 8 karameters and the regimes of the various long-te
behaviors of Duffing Equation as mapped by Ued&().9
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Figure 2. k-B mapping of Duffing Equation from Ue(d#®80)
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In this work, is chosen five periodic attractors&deng to synchronous oscillations and sub-harmorsosthe
parameters are m = 1 (mass), B = 10.2 (forced temnplitude) and k = 0.08 (damping term magnituddie angular

velocity to the forced term &), = 1 rd/s and initial conditions to the simulations/€f attractors Al to A5) are
presented in Table 1.

Table 1. Initial conditions to attractors Al to A5.

Atractor | x(0)= %, (0)= [ X(0)= %, 0)=
Al -0.21 0.02
A2 1.05 0.77
A3 -0.67 0.02
A4 -0.46 0.30
A5 -0.43 0.12

The Figure 3 shows the model used to forward sitiaula.

5 i A e
u(t) = LS "
B sin{wo.t)

-3
X £ 3 le

Figure 3. Duffing Equation Forward Simulation

The figures as follow show results from forward glations, assuming a sinusoidal input and samphioge
T=0.002 s. The Fig. 4(a) shows the phase pland=and4(b) the state variables time histories duaitial conditions
of attractor Al.
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Figure 4. Forward simulation to Duffing EquatiorttrActor Al
(a) phase plane (b) input, state variables aidiime histories

The Figure 5(a) shows the phase plane and Fig.tBé¥tate variables time histories due to inici@ahditions to
attractor A2, while Fig. 6 due to attractor A3.
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Figure 5. Forward simulation to Duffing EquatiortfrActor A2 (a) phase plane
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Figure 6. Forward simulation Duffing Equation, Aittor A3 (a) phase plane and {}) , x, , X, and x*time histories

The Figure 7(a) shows the phase plane and Fig.tfiéo¥tate variables time histories due to initiahditions to
attractor A4.

Phase plane, T=0.002 s _ Time histories, T=0.002 s
0.5 ‘ : ‘ ; £ 0.2 ‘ : .
] | |
£ -0.2 . :
0 10 20 30 40

x2
o

time(s)
(a) (b)
Figure 7. Forward simulation to Duffing EquatiortfrActor A4 (a) phase plane
(b) input, state variables ang® time histories
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The Figure 8(a) shows the phase plane to Duffingaign, attractor A5 and Fig. 8(b) the input, stzeables and
x® time histories.
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Figure 8. Forward simulation to Duffing EquatiortfrActor A5 (a) phase plane
(b) input, state variables ang® time histories

The time histories due to state variables and dautymre applied to the Inverse Simulation and thsulte are
presented in sections as follow.

4. INVERSE SIMULATIONS

This section presents the application of Inversaukition based on differentiation-based approacoraing to
Equations (6) to (13). The energy and state vargahte defined as follow

X =X (Displacement) (Velocity)
X =X (Velocity) X =X (Acceleration)
Resulting the nonlinear state-space equation:
X =X,
%, =-x, -1 X +-—=u
2 2
=X
Obtaining:
n_ n1
X, = TN 0
T
k 1 1 x)-x
xS —u-2" "2 = (15)
m m m T
%~ Yn=0
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4.1. Inverse Simulation - Attractor A4 and A5

The results from application of differentiation-bdsapproach to the Inverse Simulation (InvSim)@esented in
the figures as follow, based on time histories iolei@ from Forward Simulations (ForwSim) with attias A4 and A5.
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The Newton-Raphson algorithm was used to determalees of input and state variables time historiesyhat
according to Murray-Smith (2000) is appropriatedgsroblem of this kind.
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Figure 9. Results from Inverse Simulation, attraé¢td, T = 100ms (a) Time histories (b) Phase pleamparison
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Figure 10. Results from Inverse Simulation, attvaét5, T=50ms: (a) Time histories (b) Zoom

The figure 11 shows the results obtained from a&pfibn of Inverse Simulation considering Attractar.
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Figure 11. Results from Inverse Simulation foraator A4, T = 100ms: (a) time histories and
(b) Phase plane comparison

The root mean squared error (RMSE) associated werde simulation considering attractors A4 and A& a
presented in Table 2 as follows.

Table 2. Root Mean Square Error (RMSE).

T(s) u X X,
RMSE — Attractor A4 0.1 0.02100 0.00000 0.00850
RMSE — Attractor A5 0.1 0.02588 0.00000 0.01131
RMSE — Attractor A4 0.01 0.00455 0.00000 0.00113
RMSE — Attractor A5 0.01 0.00428 0.00000 0.00085

It can be observed from Table 2, low values RMSHligplacementX, and relative RMSE to the input time
history U obtained from the Inverse Simulation.

4.2. Inverse Simulation - chaotic movement

The results from the application of differentiatibbased approach to the Inverse Simulation are pteden the
figures as follow, based on time histories fromwlard simulations with the chaotic movement case jarameters are
m =1, k =0.05, B = 7.5x(0) = -5and x(0) = 0. The Fig. 10 (a) shows results using T=50ms amdbeaobserved
greater errors in 0-25s during the transient pendule lower errors to the steady-state periodrim 12(b) the errors
are better using sample period T=5ms.
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Figure 12. Results from Inverse Simulation: (a) $0ms (b) T = 5ms
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The Figure 13 shows details from Fig. 12(b).
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Figure 13. Zoom in Figure 12(b): (a) Transient negiand (b) steady-state regime
The Table 3 compiles the errors obtained from Isg&imulation comparing results with T=50ms andms5

Table 3. Root Mean Square Error (RMSE) — Transisettng to steady-state chaos.

T(s) u X X,
0.05 6.31747 0.00000 0.54541
0.005 0.84730 0.00000 0.05473

The attractor due to chaotic movement producesatgrith harmonics tuned on excitation frequencg ather
component type narrow-band white noise.

5. CONCLUSIONS

The main objective of this paper is to present isgeSimulation Approach applied to nonlinear systeaking use
of Duffing Equation. In this way, results in findjinput and states time histories to a specific deslred output show
coherence and low values on errors RMSE. The cgewee on inverse simulation process was obtaintduagh
effects from sampling time, initial conditions, alitygle of excitation, nonlinear models, chaos @msient and steady-
state regimes. The interest on input time histdoes specific output is to find what efforts hase applied from pilots
or control systems to vehicles, e. g., VLS, UnmanAerial Vehicles (UAVs), submarines and airplars.this work
has widely application in civil and military areas.

In this work only effects from nonlinearities intpatial elastic energy were considered and it Gaeiended the
interest on other effects from nonlinearities imekics energy expression. This analysis is verjulise aerospace
systems on nonlinear control system design andiatidin, because some results due to typical beha¥inonlinear
systems have been observed in VLS Hybrid Simulatigtardware-in-the-Loop simulations). So resultsrfranalysis
of inverse simulations are of great interest mainlyind answers to some questions in nonlineatesys concerning
the VLS hybrid simulation.

Dynamic Systems with several modes of vibrationunesg short sample periods but requires long timehe
inverse simulation. In these cases is recommenidadations with different sample periods accordinghe dynamic
(time constants) respectively to the faster anth&éoslower mode. It is recommended to analyze theeP Spectral
Density function on results from Forward Simulatioafore performing Inverse Simulation, to verifythresence of
frequencies due to slow and fast modes and tordiffenodes of vibrations.

The presence of chaotic behavior due to systemrdipsa external disturbance, excitation amplituded mitial
conditions are very important to Inverse Simulasiomainly to choice preliminary models, sample gasiand stability
analysis.

The reason for error values RMSE=0 fi is due to output equation= X;, but in many other cases the output

can be a combination of variables. It can be oleskthie direct influence of sample period on RMSHkes where fast
sample periods leads on low RMSE. The Forward Sitrari with different initial conditions affects theonlinear
behavior of the movement but do not affect theltegtom Inverse Simulations.
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