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Abstract. This paper presents sufficient conditions that guarantee an upper bound γ on the L2 gain of discrete-

time Linear Parameter-Varying (LPV) systems. Moreover, synthesis conditions for gain-scheduled L2 static output

feedback controllers are also provided. The proposed stability and synthesis conditions are described in terms of

linear matrix inequality (LMIs). LPV systems are systems whose dynamics changes according to a varying param-

eter, usually called the scheduling parameter. Practical examples of such systems are: aerospace structures that

are constantly exposed to extreme variation of temperature and robotic systems commonly used in pick-and-place

applications. In this work, it is assumed that the system matrices of the LPV model belong to a convex polytope.

The stability condition, derived using Lyapunov theory, is described by an LMI which depends on the time-varying

parameter and have to be satisfied at each time instant. This is an infinite dimensional problem which can not be

solved numerically. To overcome this difficulty, a finite set of sufficient LMI conditions is derived by imposing on

the Lyapunov matrix a polytopic structure. The proposed set of LMIs can take into account bounds on the rate of

variation of the scheduling parameter. Thus, providing less conservative results than those obtained using stability

conditions that allow the scheduling parameter to vary infinitely fast, as quadratic stability. Numerical simulations

are performed to show the benefits of the proposed technique.
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1. INTRODUCTION

Control design and identification of linear parameter varying (LPV) systems have received a lot of attention from the

control community (Shamma and Athans, 1991; Apkarian and Adams, 1998; Scherer, 2001; De Caigny et al., 2009b). This

stems from the fact that LPV models are useful to describe the dynamics of linear systems with time-varying parameters

as well as to represent nonlinear systems in terms of a family of linear models (Rugh and Shamma, 2000; De Caigny

et al., 2009d,e). In the LPV control framework, the scheduling parameters that govern the variation of the dynamics of

the system are usually unknown, but supposed to be measured or estimated in real-time (Shamma and Athans, 1991; De

Caigny et al., 2009c). There is a continuing effort towards the design of LPV controllers, scheduled as a function of the

varying parameters, to achieve higher performance while still guaranteeing stability for all possible parameter variations

(Apkarian and Adams, 1998; Scherer, 2001; De Caigny et al., 2009a).

Several analysis and synthesis results for LPV systems have been proposed in the literature based on different types of

Lyapunov functions that are able to guarantee stability and performance. The appeal of Lyapunov theory comes from the

fact that it allows to recast many analysis and synthesis problems as linear matrix inequality (LMI) optimization problems

(Boyd et al., 1994). For LPV systems, the resulting parameter dependent LMI conditions need to be satisfied for the entire

parameter space and, consequently, these LMI problems are infinite-dimensional. To arrive at a finite-dimensional set of

LMI conditions, the choice of the parameterization (or the structure) of the Lyapunov matrix is essential.

Many of the existing Lyapunov approaches (Kaminer et al., 1993; Bernussou et al., 1989; Montagner et al., 2005b) use

the notion of quadratic stability where the Lyapunov matrix is constant. This yields a finite set of LMIs that are usually

conservative for practical applications, since it allows arbitrarily fast variation of the scheduling parameters. To alleviate

some of the conservatism associated with the quadratic stability-based approaches, many works have proposed the use

of parameter-dependent Lyapunov functions: for time-varying systems, piecewise Lyapunov matrices are considered by,

amongst others, Leite and Peres (2004) and Amato et al. (2005), affine and polytopic structures are used in, for instance,

Daafouz and Bernussou (2001); Montagner et al. (2005a); Oliveira and Peres (2008); De Caigny et al. (2008b,a).

The aim of this paper is to provide linear matrix inequality (LMI) conditions that enforces an upper bound on the L2

gain for discrete-time linear systems with time-varying parameters belonging to a polytope with a prescribed bound on

the rate of parameter variation. This paper also provide synthesis condition for gain-scheduled L2 static output feedback

controllers. The proposed bound on the rate of parameter variation is more conservative than the bound used in De Caigny
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et al. (2008b). However, this new bound has a more realistic interpretation from a physical point of view.

This paper is organized as follows: Section 2 presents general theoretical background regarding L2 gain of discrete-

time LTV systems. Section 3 introduces some preliminaries with respect to the modeling of the uncertain domain, and

then applies the results of Section 2 to the specific case of discrete-time polytopic LPV systems with known bounds on

the rate of the parameter variation. Section 4 extends the analysis results and presents synthesis procedures for both

gain scheduled and robust static output feedback controllers. A numerical example is presented in Section 5 that shows

the benefits of the proposed approach. The conclusions and final remarks are presented in Section 6 and the Appendix

presents the proof of main theorems.

1.1 Notation

The Ln
2 space of square-summable sequences on the set of nonnegative integers Z+ is given by Ln

2 := {f : Z+ →
Rn :

∑∞
k=0 f [k]T f [k] < ∞}. The corresponding 2-norm is defined as ‖x[k]‖2

2 =
∑∞

k=0 x[k]T x[k]. The identity matrix

of size r×r is denoted as Ir. The notation 0n,m indicates an n×m matrix of zeros. The convex hull of a set X in denoted

by co{ X }.

2. L2 GAIN OF DISCRETE-TIME LTV SYSTEMS

Consider the following discrete-time linear time-varying (LTV) system

x[k + 1] = A[k]x[k] + Bw[k]w[k], x[0] = 0

z[k] = Cz[k]x[k] + Dw[k]w[k]
(1)

where the state vector x[k] ∈ R
n, the exogenous input w[k] ∈ R

r and the system output z[k] ∈ R
p. The system matrices

are denoted by A[k] ∈ R
n×n, Bw[k] ∈ R

n×r, Cz[k] ∈ R
p×n and Dw[k] ∈ R

p×r.

The L2 gain γ∗ of system (1) is defined by the quantity γ∗ = sup‖w[k]‖2 6=0 ‖z[k]‖2/‖w[k]‖2, with w[k] ∈ Lm
2 and

z[k] ∈ Lp
2. The next theorem provide an upper bound γ on the L2 gain.

Theorem 1 If there exist symmetric positive-definite matrix P [k], such that V (x[k], k) = x[k]T P [k]x[k] > 0 for all

k ≥ 0 and

∆V (x[k], k) + z[k]T z[k] − γ2w[k]T w[k] ≤ 0, with ∆V (x[k], k) = V (x[k + 1], k + 1) − V (x[k], k) (2)

for all x[k] and z[k] satisfying system (1), then the L2 gain is less than γ.

The proof of the Theorem 1 is presented in the Appendix. An upper bound on the L2 gain of system (1) can be

characterized using a parameter-dependent LMI as described in the next theorem.

Theorem 2 If there exist symmetric positive-definite matrix P [k], such that








P [k + 1] ∗ ∗ ∗
A[k]T P [k + 1] P [k] ∗ ∗
Bw[k]T P [k + 1] 0m,n γ2Im ∗

0p,n Cz[k] Dw[k] Ip









≥ 0, (3)

then γ is an upper bound on the L2 gain of system (1).

The LMI condition in Theorem 2 are easily derived from Theorem 1. The proof is given in the Appendix.

3. L2 GAIN OF DISCRETE-TIME POLYTOPIC LPV SYSTEMS

In this section, Theorem 2 is particularized for the specific case of polytopic LPV systems. For this class of systems, it

is provided a finite set of LMIs, defined in the vertices of a polytope, that guarantees an upper bound on the L2 gain of the

polytopic LPV system. Bounds on the rate of variation of the scheduling parameter are also considered. The modeling of

the polytopic domain is first presented, afterwards, the finite sets of LMIs that guarantee an upper bound on the L2 gain

of the system are introduced.

3.1 Modeling of the Uncertainty Domain

Consider the following discrete-time polytopic time-varying system

x[k + 1] = A(α[k])x[k] + Bu(α[k])u[k] + Bw(α[k])w[k], x[0] = 0

z[k] = Cz(α[k])x[k] + Du(α[k])u[k] + Dw(α[k])w[k]
(4)
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where the state vector x[k] ∈ R
n, the exogenous input w[k] ∈ R

r, the control input u[k] ∈ R
m and the system out-

put z[k] ∈ R
p. The system matrices A(α[k]) ∈ R

n×n, Bw(α[k]) ∈ R
n×r, Bu(α[k]) ∈ R

n×m, Cz(α[k]) ∈ R
p×n,

Dw(α[k]) ∈ R
p×r and Du(α[k]) ∈ R

p×m belong to the polytope

P =

{

(A,Bu, Bw, Cz,Du,Dw)(α[k]) : (A,Bu, Bw, Cz,Du,Dw)(α[k]) =
N

∑

i=1

αi[k](A,Bu, Bw, Cz,Du,Dw)i

}

.

This model depends on α[k] ∈ ΛN , a vector of time-varying parameters lying in the unit simplex ΛN for all k ≥ 0, where

ΛN = {α ∈ R
N :

N
∑

i=1

αi = 1, αi ≥ 0, i = 1, . . . , N}. (5)

The rate of the parameter variation is given by

∆αi[k] = α[k + 1] − α[k], i = 1, . . . , N. (6)

Observe that due to (5) and (6), we have

N
∑

i=1

∆αi[k] = 0,∀ k ≥ 0. (7)

It is assumed the rate of parameter variation ∆α[k] is limited by an a priori known bound b such that

−b ≤ ∆αi[k] ≤ b, i = 1, . . . , N (8)

with b ∈ [0, 1]. Using similar ideas as in Oliveira and Peres (2008), the geometric aspects of the domain of the time-

varying parameters are exploited to derive a model for the space where the vector ∆α[k] can lie. We now briefly present

this model. The vector ∆α[k] is assumed to belong, for all k ≥ 0, to the compact set

Γb = {δ ∈ R
N : δ ∈ co{h1, . . . , hM},

N
∑

i=1

hj
i = 0, j = 1, . . . ,M}.

From (7) and (8) the columns hj , j = 1, . . . ,M of the set Γb can be constructed as

[

h1 h2 . . . hM
]

= b























1 1 1 . . . 0
−1 0 0 . . . 0
0 −1 0 . . . 0
0 0 −1 . . . 0
...

...
...

. . .
...

0 0 0 . . . −1
0 0 0 . . . 1























by construction, the number of columns M is given by M = N(N − 1). Now, taking a convex combination of these M
columns, we obtain

∆α[k] = bΓbβ[k], where β[k] ∈ ΛM .

Let Γ
(i)
j be the ij-element (i-th row and j-th column) of the N × M matrix Γb, then ∆αi[k] is given by

∆αi[k] =
M
∑

j=1

bΓ
(i)
j βj [k].

3.2 L2 Gain of Discrete-Time Polytopic LPV Systems

The LMI condition in Theorem 2 is now particularized for the polytopic systems (4) with u[k] = 0. This LMI condition

follows directly from (3) in Theorem 2 by considering the specific time dependency of system (1) on the time-varying

parameter α[k].
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Theorem 3 If there exist parameter-dependent symmetric positive-definite matrix P (α[k]), for all α[k] ∈ ΛN , such that

Φ(α[k]) =









P (α[k + 1]) ∗ ∗ ∗
A(α[k])T P (α[k + 1]) P (α[k]) ∗ ∗
Bw(α[k])T P (α[k + 1]) 0m,n γIm ∗

0p,n Cz(α[k]) Dw(α[k]) Ip









≥ 0, (9)

then γ is an upper bound on the L2 gain of system (4).

The conditions of Theorem 3, which consist of evaluating the parameter-dependent LMI for all α[k] in the unit simplex

ΛN , lead to an infinite dimensional problem. However, by imposing on the Lyapunov matrix P (α[k]) the affine parameter-

dependent polytopic structure P (α[k]) =
∑N

i=1 αi[k]Pi, a finite-dimensional set of LMIs in terms of the vertices of

polytope P can be obtained, as shown in the next theorem.

Theorem 4 If there exist symmetric positive-definite matrices Pi ∈ R
n×n, i = 1, . . . , N such that the following LMIs

hold:

Φil =









Pi + bP̄l ∗ ∗ ∗
AT

i (Pi + bP̄l) Pi ∗ ∗
BT

wi(Pi + bP̄l) 0m,n γ2Im ∗
0p,n Czi Dwi Ip









≥ 0 (10)

with P̄l =
∑N

m=1 Γ
(m)
l Pm for l = 1, . . . ,M, i = 1, . . . , N, and

Φijl =









Pi + Pj + 2bP̄l ∗ ∗ ∗
AT

i (Pj + bP̄l) + AT
j (Pi + bP̄l) Pi + Pj ∗ ∗

BT
wi(Pj + bP̄l) + BT

wj(Pi + bP̄l) 0m,n 2γ2Im ∗
0p,n Czi + Czj Dwi + Dwj 2Ip









≥ 0 (11)

with P̄l =
∑N

m=1 Γ
(m)
l Pm for l = 1, . . . ,M, i = 1, . . . , N − 1, j = i + 1, . . . , N , then γ is an upper bound on the L2

gain of system (4).

Proof: Multiply (10) by α2
i [k]βl[k] and sum for l = 1, . . . ,M, i = 1, . . . , N . Multiply (11) by αi[k]αj [k]βl[k] and

sum for l = 1, . . . ,M, i = 1, . . . , N − 1, j = i + 1, . . . , N . Summing the results yields

Φ(α[k]) =

M
∑

l=1

N
∑

i=1

α2
i [k]βl[k]Φil +

M
∑

l=1

N−1
∑

i=1

N
∑

j=i+1

αi[k]αj [k]βl[k]Φijl

The set of LMIs (10)-(11) guarantees that Φ(α[k]) is positive semidefinite.

3.3 Extended L2 Gain of Discrete-Time Polytopic LPV Systems

It is possible to extend the previous L2 gain conditions given by Theorem 3 using additional free variables. These

extra variables will prove themselves valuable for control design. This is the context of Theorem 5.

Theorem 5 The L2 gain of system (4) has as an upper bound γ if the following LMI is feasible

Ψ =









Q(α[k + 1]) ∗ ∗ ∗
G(α[k])T A(α[k])T G(α[k]) + G(α[k])T − Q(α[k]) ∗ ∗

Bw(α[k])T 0m,n γ2Im ∗
0p,n Cz(α[k])G(α[k]) Dw(α[k]) Ip









≥ 0. (12)

The proof can be found in De Caigny et al. (2008b). A computational finite-dimensional set of LMIs conditions are

given in the next theorem.

Theorem 6 If there exist symmetric matrices Qi ∈ R
n×n and matrices Gi ∈ R

n×n, i = 1, . . . , N such that the following

LMIs hold

Ψil =









Qi + bQ̄l ∗ ∗ ∗
GT

i AT
i Gi + GT

i − Qi ∗ ∗
BT

wi 0m,n γ2Im ∗
0p,n CziGj Dwi Ip









≥ 0
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with Q̄l =
∑N

m=1 Γ
(m)
l Qm for l = 1, . . . ,M, i = 1, . . . , N, and

Ψijl =









Qi + Qj + 2bQ̄l ∗ ∗ ∗
GT

i AT
j + GT

j AT
i Gi + Gj + GT

i + GT
j − Qi − Qj ∗ ∗

BT
wi + BT

wj 0m,n 2γ2Im ∗
0p,n CziGj + CzjGi Dwi + Dwj 2Ip









≥ 0

with Q̄l =
∑N

m=1 Γ
(m)
l Qm for l = 1, . . . ,M, i = 1, . . . , N − 1, j = i + 1, . . . , N , then γ is an upper bound on the L2

gain of system (4).

The proof of Theorem 6 is similar to the proof of Theorem 4.

4. L2 GAIN STATIC OUTPUT FEEDBACK

In this section, the analysis result presented in Theorem 6 is extended to provide a finite set of LMI conditions for the

synthesis of robust and gain scheduled static output feedback controller that guarantee an upper bound on the closed-loop

system L2 gain for the discrete-time polytopic linear time-varying system (4).

4.1 Gain Scheduled Case

We assume the first q states of the system can be measured in real-time for feedback without corruption by the

exogenous input w[k] or the control input u[k], that is, y[k] = Cyx[k] where y[k] ∈ R
q is the measured output. The

matrix Cy is assumed to have the structure

Cy =
[

Iq Oq,n−q

]

. (13)

If this is not the case, one can use a similarity transformation as proposed in Geromel et al. (1996), whenever the

output matrix is not affected by the time-varying parameter.

The aim is to provide a parameter-dependent control law u[k] = K(α[k])y[k] with K(α[k]) ∈ R
m×q such that the

closed-loop system

x[k + 1] = Acl(α[k])x[k] + Bw(α[k])w[k]

z[k] = Ccl(α[k])x[k] + Dw(α[k])w[k]
(14)

with

Acl(α[k]) = A(α[k]) + Bu(α[k])K(α[k])Cy

Ccl(α[k]) = Cz(α[k]) + Du(α[k])K(α[k])Cy

is asymptotically stable with a guaranteed bound γ on the L2 gain of the closed-loop system, from w[k] to z[k], for all

possible variation of the parameter α[k] ∈ ΛN .

The LMI from Theorem 5 is now applied to the closed-loop system matrices. By replacing the state-space matrices

A(α[k]) and Cz(α[k]) from (12) with Acl(α[k]) and Ccl(α[k]) from the closed-loop system (14), we obtain

Θ(α[k]) =









Q(α[k + 1]) ∗ ∗ ∗
Θ21 G(α[k]) + G(α[k])T − Q(α[k]) ∗ ∗

Bw(α[k])T 0m,n γ2Im ∗
0p,n (Cz(α[k]) + Du(α[k])K(α[k]))G(α[k]) Dw(α[k]) Ip









≥ 0

with Θ21 = G(α[k])T (A(α[k]) + Bu(α[k])K(α[k]))T . Note that this matrix inequality is nonlinear due do the product

of K(α[k]) and G(α[k]). Now, applying the change of variable Z(α[k]) = K(α[k])G(α[k]), we arrive at the following

LMI

Ω(α[k]) =









Q(α[k + 1]) ∗ ∗ ∗
Ω21 G(α[k]) + G(α[k])T − Q(α[k]) ∗ ∗

Bw(α[k])T 0m,n γ2Im ∗
0p,n Cz(α[k])G(α[k]) + Du(α[k])Z(α[k]) Dw(α[k]) Ip









≥ 0

with Ω21 = G(α[k])T A(α[k])T + Z(α[k])T Bu(α[k])T .
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Theorem 7 If there exist symmetric matrices Qi ∈ R
n×n , Gi,1 ∈ R

q×q, Gi,2 ∈ R
n−q×q, Gi,3 ∈ R

n−q×n−q and

Zi,1 ∈ R
m×q, i = 1, . . . , N such that the following LMIs holds

Ωil =









Qi + bQ̄l ∗ ∗ ∗
GT

i AT
i + ZT

i BT
ui Gi + GT

i − Qi ∗ ∗
BT

wi 0m,n γ2Im ∗
0p,n CziGi + DuiZi Dwi Ip









≥ 0 (15)

with Q̄l =
∑N

m=1 Γ
(m)
l Qm for l = 1, . . . ,M, i = 1, . . . , N, and

Ωijl =









Qi + Qj + 2bQ̄l ∗ ∗ ∗
GT

i AT
j + GT

j AT
i + ZT

i Buj + ZT
j BT

ui Gi + Gj + GT
i + GT

j − Qi − Qj ∗ ∗
BT

wi + BT
wj 0m,n 2γ2Im ∗

0p,n CziGj + CzjGi + DuiZj + DujZi Dwi + Dwj 2Ip









≥ 0

(16)

with Q̄l =
∑N

m=1 Γ
(m)
l Qm for l = 1, . . . ,M, i = 1, . . . , N − 1, j = i + 1, . . . , N , with

Gi =

[

Gi,1 0q,n−q

Gi,2 Gi,3

]

and Zi=
[

Zi,1 0m,n−q

]

(17)

are feasible, then the parameter-dependent controller

K(α[k]) = Z(α[k])G(α[k])−1 (18)

stabilizes the open loop system with γ is an upper bound on the L2 gain of the closed-loop system (14).

Proof: Multiply (15) by α2
i [k]βl[k] and sum for l = 1, . . . ,M, i = 1, . . . , N . Multiply (16) by αi[k]αj [k]βl[k] and

sum for l = 1, . . . ,M, i = 1, . . . , N − 1, j = 1, . . . , N . Summing the results yields

Ω(α[k]) =

M
∑

l=1

N
∑

i=1

α2
i [k]βl[k]Ωil +

M
∑

l=1

N−1
∑

i=1

N
∑

j=i+1

αi[k]αj [k]βl[k]Ωijl

using (17) and (18) and considering the specific structure (13) for Cy , the LMI Ω(α[k]) can be written as









Q(α[k + 1]) ∗ ∗ ∗
G(α[k])T Acl(α[k])T G(α[k]) + G(α[k])T − Q(α[k]) ∗ ∗

Bw(α[k])T 0m,n γ2Im ∗
0p,n Ccl(α[k])G(α[k]) Dw(α[k]) Ip









≥ 0

Therefore, as a result of Theorem 5, feasibility of the LMIs (15) and (16) ensures that the closed-loop system (14) is

asymptotically stable with an upper bound γ on its L2 gain.

4.2 Robust Static Case

Robust L2 gain static output feedback controller u[k] = KCyx[k] is a particular case of gain-scheduled controller and

can be calculated using theorem 7 by fixing K = ZG−1 with Zi = Z and Gi = G.

5. NUMERICAL EXAMPLE

Consider the polytopic time-varying system (4) for n = 3 and N = 2 with the following system matrices:

[

A1 A2

]

=µ





1 0 −2 0 0 −1
2 −1 1 1 −1 0
−1 1 0 0 −2 −1



 ,
[

Bw,1 Bw,2

]

=





0 0
1 0
0 1



 , Bu,i =





1
0
0



 , Cz,i =





1
1
1





T

,Du,i = Dw,i = 0,

with i = 1, 2 and µ > 0. These system matrices are borrowed from Oliveira and Peres (2008). The aim in this example

is to determine the maximum bound bmax on the rate of parameter variation b as a function of the scalar µ such that the

system can be stabilized by an L2 gain static output feedback controller. Both gain-scheduled and robust output feedback

controllers are designed using the measurement equation y[k] = Cyx[k], with all states available for feedback (Cy = In).

The proposed designs are compared with the results presented in De Caigny et al. (2008b).
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Figure 1. Maximal bound bmax on the rate of parameter variation as a function of the scalar µ.

Figure 1 shows bmax as a function of µ. The curves R1 and R2 are the robust controllers, and the curves G1 and

G2 are the gain-scheduled controllers, with R1 and G1 denoting the controllers proposed in this paper and R2 and G2

denoting the controllers presented in De Caigny et al. (2008b).

For values of µ ≤ 0.5864, all control designs result in controllers that allow the parameters to vary arbitrarily fast in the

unit simplex since bmax = 1. However, as µ increases, the maximal allowed bound bmax becomes smaller. Obviously, this

occurs first for the robust case R1, since it is the most restrictive control design. Note also that since the gain-scheduled

controllers are less restrictive than the robust controllers, the curves associated with the gain-scheduled controllers are

always on the right of the curves associated with the corresponding (in terms of output measurements) robust controllers.

To check the achieved L2 performance, µ is now fixed to be µ = 0.6185. Figure 2 shows the achieved upper bound γ
on the closed-loop system L2 gain as a function of the allowed bound 0 ≤ b ≤ 1 on the rate of parameter variation.
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Figure 2. Guaranteed upper bound γ on the L2 gain as a function of the scalar b.

For all control designs, it is clear from Figure 2, that as the bound b increases, the performance becomes worse since

the upper bound γ increases. In the robust case R1 and R2, the upper bound γ increases very fast as the value of the bound

b increases. This can be expected since Figure 1 shows that for the robust case R1 with µ = 0.6185 the LMI conditions

become infeasible for b > 0.2422 and for the robust case R2 the LMIs become infeasible for b > 0.6836. In the gain

scheduled case G1 and G2, the conditions are feasible for all values of b.

For the specific case b = 1, where the parameters can vary arbitrarily fast in the unit simplex ΛN , the gain-scheduled

case G1 yields the gain γ = 7.2569, in case G2 the gain is γ = 6.0642. As seen in Figure 2, the LMI conditions in

Theorem 7, by explicitly considering the bound b on the rate of variation, can provide a value very near L2 gain bound γ
for the gain-scheduled case G1 as compared to the results of the G2, same more conservative. For the case b= 0, the robust

cases R1 and R2 presented same yields γ = 7.4563 and gain-scheduled cases G1 and G2 presented yields γ = 1, 9935.

As shown in Figure 2, the results of the controllers G1 and G2 are near, but the results presented this paper with

controller G1 are more reliable, by be more conservative.
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6. CONCLUSION

In this work, new LMI conditions are presented for the synthesis of robust and gain-scheduled L2 gain static output

feedback controllers for discrete-time polytopic linear time-varying systems based on parameter dependent Lyapunov

functions. The synthesis procedures explicitly take an a priori known bound on the rate of parameter variation into

account, thus reducing the conservatism generally associated with methods that allow arbitrarily fast parameter variation.

Compared to the conditions in De Caigny et al. (2008b), the proposed approach yields similar results. They have

different modeling for the rate of the parameter variation which has a more realistic physical interpretation.
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APPENDIX

Proof of Theorem 1

Summing Eq. (2) for k = 0, . . . , T , with x[0] = 0, gives

V (x[T + 1], T + 1) +

T
∑

k=0

(z[k]T z[k] − γ2w[k]T w[k]) ≤ 0.

Since V (x[T + 1], T + 1) > 0, this implies

T
∑

k=0

z[k]T z[k] ≤ γ2
T

∑

k=0

w[k]T w[k]

and consequently

‖z[k]‖2 ≤ γ‖w[k]‖2.

Since Eq. (2) holds for all w[k] ∈ Lm
2 and z[k] ∈ Lp

2, we conclude that

sup
‖w[k]‖6=0

‖z[k]‖2/‖w[k]‖2 ≤ γ.

Proof of Theorem 2

The LMI (3) using Schur complement is equivalent to





P [k] − A[k]T P [k + 1]A[k] − P [k] −A[k]T P [k + 1]Bw[k] − Cz[k]T Dw[k] Cz[k]T

−Bw[k]T P [k + 1]A[k] −Bw[k]T P [k + 1]Bw[k] + γ2I Dw[k]T

Cz[k] Dw[k] I



 ≥ 0

using Schur complement again we have

[

P [k] − A[k]T P [k + 1]A[k] − Cz[k]T Cz[k] −A[k]T P [k + 1]Bw[k] − Cz[k]T Dw[k]
−Bw[k]T P [k + 1]A[k] − Dw[k]T Cz[k] −Bw[k]T P [k + 1]Bw[k] − Dw[k]T Dw[k] + γ2I

]

≥ 0

Now, this condition is satisfied if the following LMI holds

»

x
w

–T »

A[k]T P [k + 1]A[k] − P [k] + Cz[k]T Cz[k] A[k]T P [k + 1]Bw[k] + Cz[k]T Dw[k]
Bw[k]T P [k + 1]A[k] + Dw[k]T Cz[k] Bw[k]T P [k + 1]Bw[k] + Dw[k]T Dw[k] − γ2I

– »

x
w

–

≤ 0.

This last inequality is equivalent to

∆V (x[k], k) + z[k]T z[k] − γ2w[k]T w[k] ≤ 0.

Thus, from Theorem 1, the L2 gain is less than γ.

Proof of Theorem 4

First note that if P (α[k]) is given by P (α[k]) =
∑N

i=1 αi[k]Pi. Then P (α[k + 1]) can be written as

P (α[k + 1]) =

N
∑

i=1

αi[k + 1]Pi =

N
∑

i=1

(αi[k] + ∆αi[k])Pi

=
N

∑

i=1

αi[k]Pi +
N

∑

l=1

∆αl[k]Pl =
N

∑

i=1

αi[k]Pi +
M
∑

j=1

N
∑

l=1

bΓ
(l)
j βj [k]Pl

Define P̄j =
∑N

l=1 Γ
(l)
j Pl, we obtain

P (α[k + 1]) =

N
∑

i=1

αi[k]Pi +

M
∑

j=1

bβj [k]P̄j .
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We will only proof the (2,1)-element of Φ(α[k]). All the others follows similar steps. Note that

Φ(α[k])(2,1) = A(α[k])T P (α[k + 1])

Now, using the above formula for P (α[k + 1]), we obtain

Φ(α[k])(2,1) =

N
∑

i=1

αi[k]AT
i (

N
∑

j=1

αj [k]Pj +

M
∑

l=1

bβl[k]P̄l)

that can be write (denoting α[k] and β[k] by α and β) as

Φ(α)(2,1) = (

N
∑

i=1

αiA
T
i )(

N
∑

j=1

αjPj) + (

N
∑

i=1

αiA
T
i )(

M
∑

l=1

bβlP̄l).

Multiplying the first term by
∑M

l=1 βl = 1 and the second term by
∑N

j=1 αj = 1 we obtain

Φ(α)(2,1) = (

N
∑

i=1

αiA
T
i )(

N
∑

j=1

αjPj)(

M
∑

l=1

βl) + (

N
∑

i=1

αiA
T
i )(

M
∑

l=1

bβlP̄l)(

N
∑

j=1

αj).

The first term can be worked out as

(
N

∑

i=1

α2
i A

T
i Pi +

N−1
∑

i=1

N
∑

j=i+1

αiαj(A
T
i Pj + AT

j Pi))(
M
∑

l=1

βl)

and the second term can be worked out as

(

N
∑

i=1

α2
i A

T
i +

N−1
∑

i=1

N
∑

j=i+1

αiαj(A
T
i + AT

j ))(

M
∑

l=1

bβlP̄l).

Summing these two up and rearranging the terms, we obtain

Φ(α)(2,1) =
M
∑

l=1

N
∑

i=1

α2
i βlA

T
i (Pi + bP̄l) +

M
∑

l=1

N−1
∑

i=1

N
∑

j=i+1

αiαjβl(A
T
i (Pi + bP̄l) + AT

i (Pi + 2bP̄l))

or equivalently as

Φ(α)(2,1) =

M
∑

l=1

N
∑

i=1

α2
i βlΦil(2,1) +

M
∑

l=1

N−1
∑

i=1

N
∑

j=i+1

αiαjβlΦijl(2,1).

In this case Φ(α) can be written as

Φ(α) =

M
∑

l=1

N
∑

i=1

α2
i βlΦil +

M
∑

l=1

N−1
∑

i=1

N
∑

j=i+1

αiαjβlΦijl.


