
Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

COMPOSITE WING OPTIMIZATION WITH PROGRESSIVE MESH 

REFINEMENT 

 (single blank line size 14) 
Saullo Giovani Pereira Castro, saullo.castro@embraer.com.br (Times New Roman, Bold, size 10) 
José Antônio Hernandes, hernandes@ita.br (Times New Roman, Bold, size 10) 

Eliseu Lucena Neto, eliseu@ita.br 
Instituto Tecnológico de Aeronáutica 
Praça Marechal Eduardo Gome, 50 – Vila das Acácias –CEP 12.228-900-São José dos Campos, SP 

(single space  line, size 10) 
Abstract. The optimized subject of this article is a composite wing where the variables are the number of plies in four 

different orientations, -45º, +45º, 0º and 90º composing the laminates and the orientation of these plies. The measured 

output variables are the critical buckling load factor and the structural weight, the first used as design constraint for 

finding feasible and non feasible designs, the second for finding the best design among feasible ones. It is applied a 

usual mutation ratio (10% of the population is mutated with a string mutation ratio of 5%) and suggested a 

methodology for speeding up the convergence of optimization.  The refinement is progressively done as the 

optimization goes on until the final refinement. The computational cost of this progressively refined optimization is 

compared with the computational cost of the optimization using refined mesh since the beginning. It was also studied 

the effect of the number of generations used with the coarser mesh in the final best result for the structural weight, and 

then the importance of the initial search was noticed. It is taken the advantage of fast running – low computational cost 

– using coarser mesh for searching sample space combined with the reliable results from the refined mesh. As the 

sample space was better explored the results given by progressively refined optimization are expected to be better than 

those from the optimization using refined mesh only.  
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1. INTRODUCTION (Times New Roman, bold, size 10) 
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Since nineteen fifties computational scientists have been studying evolutional systems keeping in mind that 
mechanisms relative to evolution could be used as a tool for optimization in daily engineering problems. 

The required processing capability to perform such a task in a practical and cheaper way has been available since 
80ties, with a new generation of high speed low cost computers. Since then engineers have applied computer assisted 
optimization widely by using algorithms that couldn’t be used earlier. 

Despite the fact computational costs get lower the problems get proportionally more complex. Due to this the issue 
of efficiency of optimization algorithms has been kept alive. A very effective algorithm, which finds the best solution, 
but not very efficiently, with high processing time, may be better replaced by a less effective and more efficient one, 
that would find a good solution faster. 

The eingenvalue solution for finding critical buckling load factor in finite element analysis may be computationally 
very demanding. In these problems the limited computational resources can lead a multivariable analysis to a poor 
solution far away from the best solution, since the sample space search may not be conveniently explored. This fact 
clearly limits the widespread usage of optimization in large finite element problems with many design variables.  

 

 
Figure 1:  Three views of the studied aircraft. 
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Castro, 2009 studied the optimization of composite structures through the use of genetic algorithms. The chosen 
structure is a composite wing of an ultra long range aircraft studied by EMBRAER Program of Engineering 
Specializing, group 10. Basically the aircraft cruises at Mach 0.92 in a maximum altitude of 51000 ft to reach the 
maximum range of 7460 nm (nautical miles). The maximum takeoff weight of this airplane is 95000 lb. Figure 1 shows 
the three views of the airplane. The fuel tank volume is totally contained in the wing structure. Figure 2 shows the 
structural main components of the wing. The rear spar has a kink at the wing break to increase available fuel tank 
volume in the wing box and in the wing stub (below fuselage floor). 

The optimization objective is basically the minimization of the structural weight. This is performed by finding the 
best laminates build up the wing. As the wing load increases from the tip to the root it is also expected for the wing root 
laminates (near fuselage) to be more reinforced. So the optimum laminate for the wing root is not the optimum laminate 
for the wing tip. Surely for the wing tip it will be thinner and lighter when compared to the root laminates. A good 
optimization need to take this fact into account to allow further weight reduction. To allow further optimization the 
laminates for the rear spar, front spar, upper skin and lower skin were divided in three zones, called zone 1, zone 2 and 
zone 3. Landing gear extra spar also has a laminate, but due to the smaller size of this spar the laminate was optimized 
considering just one zone. Figure 4 shows these zones. 

For each zone the variables are the number of plies for each of the four chosen orientations: 0º, 90º, -45º and +45º; 
relatively to the laminate main direction. This main direction also is a variable for the upper and lower skins. Figure 4 
shows the main direction of the laminate (X1). For the spars the laminate main direction is chosen as the longitudinal 
direction of the respective beam (parallel to the neutral axis). The zones closer to the tip will be the base laminate for 
the zones closer to the root. For these zones necessary plies are added as reinforcement for the less loaded zones. Figure 
5 shows the adopted stacking sequence scheme, which allows the chosen laminates to be manufactured through 
automated processes, such as automatic tape laying (ATL).  

 
Table 1 shows the total number of laminate variables for all the wing components. The possible plies orientations 

are: 0º, 90º, -45º and +45º; so there are 4 variables. The optimization problem involves 54 variables. 
 

Table 1. Laminate Variables for optimization. 
 

 Lower Skin Upper Skin Frontal Spar Rear Spar Landing Gear Spar 

Laminate direction variables 1 1 0 0 0 

Number of possible plies 
orientations x number of zones 

4x3 = 12 4x3 = 12 4x3 = 12 4x3 = 12 4x1 = 4 

Variables per component 13 13 12 12 4 

TOTAL variables 54 

 
 

 
 

Figure 2:  Structure scratch showing a complete view of the wing contained fuel tank. 
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In the presented wing and laminates it will be tested the suggested methodology studied by Castro, 2009, for 
optimizing the weight of a composite wing. In his work the number of variables is closer to 300 and it also considers 
geometry variations (ribs angles and positioning along wing span). This methodology consists in the use of progressive 
mesh refinement along the optimization. It will be compared with the traditional optimization method using fixed mesh 
refinement.  

The minimum population size here used is a result of the study (Castro, 2009). Figure 3 shows a set of experiments 
in which the computational cost has been kept constant, varying just the population size and the number of generations 
inversely. As can be seen the minimum population size which generated stable results was the one with 25 individuals.  

Using this minimum population size for the same problem (Castro, 2009) with the reduced number of variables it 
was possible to eliminate instabilities in convergence. The 10 x 2000 graphic of Figure 3 illustrates one case with 
instabilities in the results due to insufficient individuals in the population.   

In the present article the effect of the number of generation used to explore the sample space with the coarser mesh 
is also investigated. 
 (single space line, size 10) 

 

 

 

 

 

(single space line, size 10) 
Figure 3: Population size X number of generations with constant computational cost. Copied 

from Castro, 2009. 
 

The genetic algorithm applied for optimization is a MOGA II (Multi Objective Genetic Algorithm) available in the 
ESTECO software MODEFRONTIER, version 3.2. This software integrates all analysis steps: mesh generation, solver 
execution and buckling load factor output and weight output measuring. In the mesh generation step the laminate 
variable values are inputted for the generation of composite properties for the solver. The solver used here is the 
Optstructure, available in the Altair Hyperworks software package, release 8.0. This solver is fully compatible with 
NASTRAN. The composite property card is also the same, PCOMP. So, the task of MODEFRONTIER is only to set 
adequate PCOMP cards as the optimization runs to find a minimum weight that keep structure constrained with a 
buckling load factor higher than 1 (one). Each individual being analyzed by the genetic algorithm is consisted of a 
group of these PCOMP. The chromosome is then consisted of a group of variables which carry the necessary 

Minimum weight = 902 kg 

Minimum weight = 895 kg 

Population size 100 x 200 generations 
 

Population size 200 x 100 generations 
 

Population size 50 x 400 generations 
 

Minimum weight = 902 kg 

Population size 25 x 800 generations 
 

Minimum weight = 896 kg 

Population size 400 x 50 generations 

Minimum weight = 930 kg 

Population size 10 x 2000 generations 
 

Minimum weight = 926 kg 
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information for stacking all laminates. In other words, all PCOMPs of an individual form the respective chromosome. 
The best individuals identified along optimization will be preferentially crossed to generate new generations with 
progressively better laminates, or PCOMP cards. 

 

 
Figure 4:  Zones distribution of the laminates. 

 (single space line, size 10)line,  

2. METHODOLOGY 

(single space line, size 10) 
Table 2 shows the set of experiments that has been built in this study. This table shows the ID range for each mesh 

refinement for each design. It can be noticed that the ‘Refined Mesh’ design only evaluates runs at the maximum level 
of mesh refinement used in this article. Designs labeled as ‘Progressive’ use the same number of runs at mesh 
refinement levels 2 and 3 and vary the number of runs with the coarsest mesh to evaluate how the step using the coarser 
mesh, called here as ‘sample space searching’, affects the result. The last refinement level (‘Refinement 4’) is used until 
convergence of the structural weight output variable.  

Figure 6 brings the mesh refinement visualization and further information about each refinement level. It can be 
seen a considerable increase in the average processing time for each run as the mesh gets refined. 

All the runs were done in a Personal Computer with the following specification: 2Gb of 1066MHz RAM Memory, 
2.7GHz Core to Duo Processor (Intel), Hard Drive of 7000rpm speed. 
 (single space line, size 10)(single space line, size 10) 
3.RESULTS 

(single space line, size 10) 
Figure 7 shows the structural weight history chart for each experiment. As the initial population is random, for all 

experiments this structural weight tends to raise in a first step, where the genetic algorithms is looking for a ‘feasible’ 
wing, or a design constrained wing, which has the buckling load factor for all components higher than 1. The weight 
keeps rising until a feasible design is found. The Fuzzy logical applied for comparing how much a design is far from 
design constraints has allowed genetic algorithms to go fast into a set of feasible designs. After finding these feasible 
designs the genetic algorithm then starts looking for the best designs by performing directional crossover, selection and 
mutation operations. This step goes until the convergence is reached. For all designs evaluated in this study the runs 
were kept until convergence. 

Figure 8 shows the total elapsed time for the experiments shown in Figure 7. As it can be seen, the ‘Refined Mesh’ 
experiment which has started and gone until convergence with the refined mesh has an elapsed time one order superior. 
The remaining experiments have more similar elapsed times. By this great difference among elapsed times it can be said 
for sure that optimization using refined mesh since the beginning for multivariable problems isn’t the best way to go. 
The penalty by going this way is the computational cost increase. 

Some experiments were allowed to run long time after convergence. Due to this the direct comparison of the total 
elapsed time is not correct. It would be correct only if a convergence criterion was applied for stopping evaluated 
designs. This criterion wasn’t developed and it isn’t necessary since the comparison can be done by finding the run ID 
in which convergence of structural weight has occurred for each experiment, even considering that the runs can go 
beyond this point. With this run ID it is possible to calculate the time that would be enough for reaching convergence 
multiplying the average time by the number of runs. Table 3 shows these values of ‘time that would be enough’ to all 
experiments. 

Zone 3 (less reinforced) 

Zone 2 (medium reinforced) 

Zone 1 (more  reinforced) 
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The computational cost is then calculated as the time that would be enough by the run ID at convergence, giving the 
units of ‘seconds’. If the user wants to convert this value to monetary units it is only necessary to know the price of 
keeping a computed running a second, giving unit of $$/second, multiplying this by the computational cost in seconds. 

The experiment using only refined mesh has shown a high computational cost and it is curious the fact it hasn’t 
shown the best weight result among the six experiments. Surprisingly, it has shown the worst result, with the highest 
final weight of 1011 kg and the highest computational cost of 97.5 seconds. 

Among experiments with progressive refined mesh the more experiments analyzed in the Refinement 1 level the 
better the results for the minimum structural weight. These better results come with a very small penalty in the 
computational cost. For each 500 runs evaluated in the Refinement 1 level the optimization time is increased about one 
hour in the CPU used. The best experiment is ‘Progressive 5’ which reached the minimum weight of 950 kg with a final 
buckling load factor of 1.0036. The computational cost of this experiment was 9.5 seconds, 10 times lower than 
experiment using only the refined mesh. 

In a real optimization the user would face the doubt of keeping raising the number of generations until full 
convergence is reached or stopping earlier due to computational costs limitations as done here. The best approach is to 
optimize until the global minimum is found for the current mesh refinement level, but costs limitations would probably 
limit this approach. A control algorithm can be coded to monitor the convergence for each refinement level. An 
adequate convergence criteria such as weight variation below 1 kg, for example, will then allow further refinement to be 
started. 

 

 
 

Figure 5: Stacking sequence for the laminate, showing consistence with automated 
lamination processes. 
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Figure 6: The four mesh refinements used in this article. 
+. 
 
 
 
 
 
 
 
 
 
 
 

Refinement Level 1 

Nodes:    286 

Elements:   346 

Degrees of freedom:  1656 

One run time (s):   8.6 

Refinement Level 2 

Nodes:    756 

Elements:   885 

Degrees of freedom:  4440 

One run time (s):   10.7 

Refinement Level 3 

Nodes:    2946 

Elements:   3230 

Degrees of freedom:  17490 

One run time (s):   23.0 

Refinamento Nível 4 

Nodes:    11299 

Elements:   11896 

Degrees of freedom:  67428 

One run time (s):   140.1 
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Table 2. Experiment set showing that number of runs with mesh at “Refinement 1” level is 
increased from 0 in “Refined Mesh” design to 3000 in “Progressive 5” design. 

(single space line, size 10) 

 
single space line, size 10) 

 
   ‘Refined Mesh’     ‘Progressive 1’ 

 
   ‘Progressive 2’     ‘Progressive 3’ 

 
   ‘Progressive 4’     ‘Progressive 5’ 

(single space line, size 10) 
Figure 7: Population size X number of generations with constant computational cost. 

(single space line, size 10) 
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‘Refined Mesh’     ‘Progressive 1’ 

  
‘Progressive 2’     ‘Progressive 3’ 

  
‘Progressive 4’     ‘Progressive 5’ 

(single space line, size 10) 
Figure 8: Elapsed time for the six designs evaluated. Copied from Castro (Reference 0) 

(single space line, size 10) 
Table 3 Resume of the results. 
(single space line, size 10) 
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4. CONCLUSION 

   
The idea of using progressive mesh refinement was applied to the wing structural optimization with the hope of 

getting faster optimization, therefore the observed gain in weight was totally unexpected when comparing the 
progressive mesh refinement experiments to the experiments with the fixed most refined mesh.  It is believed that the 
better results for structural weight when changing from constant mesh to progressive refinement are due to the extra 
sample space searching that occurs when jumping from the current to the next mesh refinement level. In the jump the 
current designs become unfeasible. In that way some generations have to be run until results become feasible again. The 
unfeasible initial designs can be explained by the fact that a more refined mesh lead to a less rigid structure, needing 
more composite laminated plies. It was also observed that among all experiments using progressive refinement the 
better results were given by the ones with populations with more individuals in the first level of mesh refinement, as 
expected since sample space exploration is higher for these experiments. 

The reduction of the computational cost by 10 times when using progressive mesh refinement supports the 
application of this methodology for complex designs involving a high number of variables. 
(single space line, size 1 
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