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Abstract. In the present paper we present a higher order finite volume method with a “Modified Implicit Pressure, Explicit 

Saturation” (MIMPES) to model the 3-D incompressible and immiscible two-phase flow of water and oil in heterogeneous 

and anisotropic porous media. We use the vertex centered finite volume method with an edge-based data structure to 

discretize both, the elliptic pressure and the hyperbolic saturation equations. The classical IMPES approach involves three 

steps: first, the pressure equation is solved implicitly from an initial saturation distribution; then, the velocity field is 

computed explicitly from the pressure field and finally the saturation equation solved explicitly. This saturation field is then 

used to re-compute the pressure field and the process follows until the end of the simulation is reached. Due to explicit 

solution of the saturation equation, severe time restrictions are imposed on the simulation. In order to circumvent this 

problem, an edge-based implementation of the MIMPES method was used. In the modified IMPES method used here, 

pressure equation is solved and the velocity field is computed much less frequently than the saturation field, using the fact 

that, usually, the velocity field varies slowly throughout the simulation implying that the saturation field can be updated 

several times before we have to update the pressure/velocity fields. Following the work of  Hurtado, we have used the mean 

relative variation of the velocity field throughout the simulation to automatically control the updating process, allowing for 

much larger time-steps in a very simple way. The solution of the pressure equation is performed using a modification of 

Crumpton’s two step approach which was designed to handle material discontinuity properly. In the first step, gradients 

(fluxes) are computed. In the second step, these fluxes are used to compute the diffusion terms. The saturation equation is 

solved explicitly using an edge-based implementation of a modified second order MUSCL (Monotone Upwind Scheme for 

Conservation Laws) type method. Some examples are presented in order to validate the proposed formulation. Results match 

quite well with others found in literature.  

 

Keywords: Porous media, MIMPES, edge data structure, finite volume method, high order approximation. 

 

1. INTRODUCTION 

 

 One of the most popular methodologies used to describe the fluid flow in petroleum reservoir simulation is the 

IMPES (Implicit Pressure Explicit Saturation) procedure (Ewing, 1983; Chen et al., 2002; Hurtado et al., 2006; 

Carvalho et al. 2007). In this technique, a sequential time stepping procedure is used to split the computation of the 

pressure field from the saturation field. In the classical IMPES method, initially, the pressure equation is solved 

implicitly from an initial saturation distribution, and then, velocities are computed from this pressure field. In sequence, 

the velocity field is used as an input for the saturation equation, which is finally solved explicitly. The process is 

repeated until the end of the analysis.  

 The pressure field is governed by a parabolic/elliptic type equation that can have strong discontinuous coefficients 

(i.e. permeabilities) and, in general, the saturation equation is similar to a convection-diffusion type equation, in which 

the diffusion coefficients are associated to capillary effects. In many situations, capillarity is small and can be neglected. 

In such cases, the saturation equation behaves essentially as a first order non-linear hyperbolic conservation law. 

 The pressure field calculation involves the solution of a system of equations that represents a higher CPU cost when 

compared to the saturation equation evaluation. For large scale problems CPU cost can become prohibitive which leads 

researchers to find other ways to make simulation viable. 

 Due to explicit solution of the saturation equation, severe time restrictions are imposed on the simulation. In order to 

circumvent this problem, an edge-based implementation of the modified IMPES method was used. In the Modified 

IMPES method (MIMPES) used here, pressure equation is solved and the velocity field is computed much less 

frequently than the saturation field, using the fact that, generally, the velocity field varies slowly throughout the 

simulation implying that the saturation field can be updated several times before we have to update the pressure/velocity 

fields (Chen et al., 2002; Hurtado et al., 2005;  Hurtado et al., 2006). 

 The governing equations are discretized by a node-centered conservative fully finite volume formulation with an 

edge-based data structure (Carvalho et al., 2005; Carvalho et at., 2007), where geometrical coefficients, computed once 

in a pre-processing stage, are associated to the edges and nodes of the primal mesh to define the surface and the volume 

of all control volumes, respectively. This formulation has been chosen due to the fact that node-centered FV schemes 

are usually superior to cell centered schemes in terms of memory usage and because edge-based data structures are 

known to be more computationally efficient than their element-based counterparts (Luo et al., 1995; Lyra and Morgan, 

2002; Rees et al., 2004). 
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 In our approach, the finite volume method is used to accurately solve both, the elliptic pressure equation and the 

hyperbolic saturation equation. For the solution of the pressure equation, we devise an alternative way of computing 

continuous diffusive fluxes through control surfaces faces in heterogeneous media with strong discontinuous 

coefficients by a modification of Crumpton’s two step approach (Crumpton et al., 1997). The hyperbolic saturation 

equation is solved using a higher order MUSCL type scheme adapted for use with multidimensional unstructured 

meshes (Lyra and Morgan, 2002; Carvalho et al., 2007), with the slope limiter proposed by Woodfield et al. (2005), 

which has some resemble with the multidimensional slope limiter of Zalezak (1979).  

 

2. MATHEMATICAL FORMULATION 

 

 In this section, we briefly describe the governing equations for incompressible, immiscible two-phase flows of water 

and oil through rigid porous media. This model (which can be directly extended to miscible, three phase flow) is 

obtained combining Darcy’s Law with the mass conservation equation for each phase. The model adopted here has been 

successfully used by many authors (Ewing, 1983; Chen et al., 2002; Hurtado et al., 2006; Carvalho et al., 2005; 

Carvalho et al., 2007), though it is still not commonly used in commercial reservoir simulators. 

 First, we assume that the phase velocities obey the Darcy’s law, which, ignoring gravitational effects can be written 

for phase i, as 

 

 
i i i

v P    (1) 

 

 

where the phase mobility tensor 
i
  is defined as 

 

 i

i

i
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K   (2) 

 

 In Equation (2),  K  denotes the absolute permeability tensor of the rock, 
i i i

k   is the scalar phase mobility, 

with 
i

k  being the phase relative permeability and 
i

  the phase viscosity. Henceforth, we will assume incompressible 

medium and fluids. We will also ignore the capillary pressure and assume that 
w o

P P P  , where (w) and (o) stand, 

respectively, for the wetting (water) and the non-wetting (oil) phases. Additionally, conservation of mass for each phase 

i can be written as 
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 In Equation (3),   is the porosity, i.e. fraction of the rock which can be occupied by fluids, 
i

q  denotes sources or 

sinks, 
i

  is the phase density and 
i

S  is the saturation of phase i, which represents the percentage of the available pore 

space occupied by this phase. Due to this last definition, we can write 

 

 
o w

S S 1                               (4)

  

 Combining equations (1) to (4) and after some algebraic manipulation we obtain the following pressure equation 

 

  P Q     or v Q                          (5) 

 

where, 
o w

     is the total fluid mobility tensor, 
o w

v v v P      is the total velocity field and 
w o

Q Q Q  , 

with  i i i
Q q  , is the total injection or production specific rate. By introducing the fractional flow function 

 i i o w
f     , we can also derive a hyperbolic equation for the water saturation, which can be written as 
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                         (6) 
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 The term 
w w

F f v  is the flux function which is dependent on the water phase saturation. As it can be seen, the 

pressure and saturation fields are connected through the total velocity v . 

 

3. FINITE VOLUME FORMULATION 

 

In order to discretize Equations (5) and (6), i.e. the pressure and the saturation equations, respectively, we have 

adopted a node centered, median dual full finite volume (FV) technique, in which the coefficients necessary to our 

calculation are associated to the edges and to the nodes of the mesh (Luo et al., 1995; Lyra et al., 2004; Rees et al., 

2004; Carvalho et al., 2007). These edge and node coefficients are pre-computed in a pre-processing stage from the 

more traditional element data structure which is commonly used in the finite element method (Smith, 2001).  

Even though, there is, in principle, no restriction to the shape of the elements utilized to discretize the spatial 

domain, it is important to keep in mind that FV edge-based schemes are only linearly preserving (i.e., they exactly 

represent a linear field) on triangular (2D), tetrahedral (3D) or structured quadrilateral (2D) and hexahedral (3D) meshes 

(Müller, 1998), even though linearity can be recovered through the use of “ghost edges”. Therefore, extra care must be 

taken when using different element types, especially when considering highly distorted meshes.  

The median dual control volumes (CV) adopted are built connecting centroids of elements to the middle point of the 

edges that surround a specific mesh node, even though different control volumes could be used. In edge-based node 

centered schemes, fluxes are usually integrated on the dual mesh through one or more loops over the edges, and the 

computational cost is, essentially, proportional to the number of edges of the mesh. In order to properly handle material 

discontinuities we perform the integration over the whole domain in a sub-domain by sub-domain approach, where a 

sub-domain is defined by a group of elements that share the same physical properties such as permeability and porosity.  

Node centered finite volume schemes in which physical properties are uniform in the elements of the primal mesh 

are named “cell distributed schemes” in opposition to the so called “point distributed schemes” in which properties are 

uniform inside the control volumes of the dual mesh (Verma 1996). 

 In the present work, we have chosen to use the cell distributed methodology due to the easiness of associating rock 

properties to sub-domains which encompass groups of elements (e.g. triangles or tetrahedral) that naturally fit to 

reservoir bed boundaries. 

 A detailed description of all steps to obtain the discretized pressure, velocity and saturation equations are detailed in 

Carvalho et al. (2007). Here, these steps were omitted and only the final equations are presented. 

 

3.1. Implicit pressure equation 

 

For 2-D and 3-D problems, Eq. (7) is the discretized form of the pressure equation which is solved through a system 

of linear equations assembled edge-by-edge. 
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The nodal gradients presented in Eq. (7) can be approximated for 2-D domains by Eq. (8), as 
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For 3-D domains gradients can be computed as 
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 Note that, even though Equation (9) can be assembled in a pure edge-based manner, we have decided to use an 

auxiliary data structure for the boundary faces (external and between domains) as there is no clear improvement by 

using a pure edge-based data structure in this case. 
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 In this work, all calculations are performed using an parallel reservoir simulator (Silva, 2008) written in C++ in 

which we have incorporated some free packages, such as the FMDB (Seol, 2005), used for mesh management, the 

PARMETIS, used for mesh partioning and the PETSc used as a library of linear solvers and pre-conditioners. Due the 

fact that the discretization of the pressure equation generates a sparse, non-symmetric and positive defined, global 

matrix, the Generalized Minimum Residual Solver (GMRES).  

After pressure field is computed, nodal gradients are explicit recovered by Eq. (8), in 2-D,  or Eq. (9), in 3-D, and 

the mid-edge velocity field is obtained by Eq. (10) 

 

     
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2 2
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L
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In this work, we have dealt only with isotropic porous media, even though there is no restriction to handle 

anisotropic media (Carvalho et al., 2009), therefore we have assumed that R R

L LIJ IJ
K  

 , where R R

LIJ
K k I 

 , with 

constantRk   for each sub-domain 
R , and I  is the identity matrix. The edge values of the scalar mobility terms 

are approximated using a mid-point rule in order to formally guarantee second order accuracy (Rees, 2004), i.e. 

  2
L LIJ I J

     and viscosity is constant under the assumption of incompressible flow.  

 Now, we can redefine Eq. (7)  using this new mid-edge velocity approximation as 
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and Ndom refers to the number of domains that surrounds node I. 

 

3.2. The explicit saturation equation 

 

Usually, in petroleum reservoir simulators, the discretization of the advective term that characterize the hyperbolic 

saturation equation is performed by the classical first order upwind type method, which is capable of completely 

eliminating spurious oscillations at the cost of introducing a large amount of artificial diffusion, (Ewing, 1983). On the 

other hand, pure second order schemes produce physically unrealistic results, with overshoots and/or undershoot in the 

vicinity of sudden changes in the saturation field (i.e. shocks).  

In the present paper, we have used an edge-based higher order upwind type method which was developed by 

Woodfield et al. (2005). In our preliminary tests, this scheme has proved to be more robust than other edge-based 

schemes that rely only on gradient extrapolation or artificial dissipation schemes such as those presented in Lyra and 

Morgan (2002) and Carvalho et al. (2005). The method proposed by Woodfield et al. (2005), is essentially a variation of 

the MUSCL (Monotone Upstream Scheme for Conservation Laws) scheme of Van Leer (Hirsch, 1988) in which local 

boundness is reinforced by using a limiting procedure that resembles the Zalesak’s procedure (Zalesak, 1979). In this 

case monotonicity is enforced through a scalar limiting function applied to the piecewise polynomial reconstruction 

procedure. The monotonic constrains are normally introduced in the form of slope limiters in order to avoid undershoots 

and overshoots in the numerical solution. Below, we present a brief description of the scheme. For further details, see 

Woodfield et al. (2005).  

By integrating Eq. (6) and applying the divergence theorem we can write, 

 

 w
w w w

S
F S n Q

t
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  


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                        (12) 

 

 The source term, which was treated using a simple fractional step approach (Le Veque, 1992), is non zero only at 

production wells and for a particular mesh node I, the second term in the left hand side is approximated as, 
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where    L L L L
IJ IJ IJ w IJ w

v f S    , with              
L L L LIJ w IJ w J w I w J w I w

f S f f S S      and the superscripts (-) and 

(+) are used to indicate that fluxes are computed using the following linear extrapolated saturation values, 
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where 
LIJ  is the length vector in the edge direction (i.e. 

LJ Ix x ), and *

I  is a slope limiter which must smoothly 

switch from one (second order scheme) to zero (first order scheme) in the vicinity of saturation shocks. This slope 

limiter is computed using the following expression, 

 
*

LI I IJ                                   (15) 

 

 In Equation (15), 
I  is responsible for switching the scheme from second order to first order whenever necessary 

and 
LIJ  is responsible for the edge interpolative boundedness, i.e. it guarantees that the extrapolated values of the 

saturation values throughout the edge remain between  I w
S  and  LJ w

S .  

Before defining 
I  and for convenience of notation, we define the following dimensionless parameter, 

 

   
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
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In Equation (16), 
 LJ min w

S  and  LJ max w
S  are, respectively, the minimum and the maximum values of the saturation 

considering all nodes directly connected to node I (i.e. LJ ) excluding I itself. In multi-dimensional problems, the 

saturation is said to be “bounded” for every node I in the computational domain, if the following relation is true, 

 

I0 1                                    (17) 

 

The use of the second order scheme at the whole computational domain except where Eq. (17) applies is not a safe 

strategy because there is not a smooth transition between the second order and the first order schemes. A safer approach 

consists in introducing a user defined free parameter which ranges from 0 0.5  , such as, 

 

I 1                                     (18) 

 

Using the definitions of equations (16) and (18), we can compute the parameter 
I  as, 
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                      (19) 

 

It is worth mentioning that the first requirement avoids division by zero in the definition of 
I . In the present paper, 

we have used 0.2  . Note that, smaller values of this parameter will turn the scheme less diffusive as the limiter will 

tend to switch on and off more abruptly, as   tends to zero, while larger values of the parameter will imply in a smaller 

range of values of   for which the second order scheme is used.  

On the other hand, to ensure edge interpolative boundedness the parameter 
LIJ  can be defined as, 

 

 max 0,
LIJ  , with 

    

  

2
min 1,

LJ w I w

I LI w

S S

S IJ




 
 
  
 

                    (20) 
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 As previously mentioned, we have chosen this method due to its robustness and relatively low computational cost. 

Whenever using elements with high aspect ratios, which are common in mesh adaptive processes, other alternatives, 

such as the gradient extrapolation approach or the artificial dissipation scheme ((Lyra and Morgan, 2002; Carvalho et 

al., 2005), have, respectively, produced erroneous solutions with noticeable over and undershoots or overly diffusive 

solutions (Carvalho et al, 2007). At least, in the case of the gradient extrapolation method, errors associated to the 

gradient recovery can be blamed for the lack of monotonicity of the final solution. 

 

4. MODIFIED IMPES APPROACH (MIMPES) 
 

The IMPES method is a segregated type method in which the flow equations are manipulated in order to produce an 

elliptic pressure equation, solved implicitly and a hyperbolic type saturation equation, which is then solved explicitly. In 

classical IMPES method the pressure and the saturation fields are updated simultaneously, i.e. the pressure field is 

solved assuming a time step which is also used for the velocity and the saturation fields. In fact, for incompressible fluid 

flow, the pressure equation is elliptic, and the time step used for advancing the solution of the system of equations as a 

whole is defined by the explicit solution of the hyperbolic saturation equation, which is limited by the CFL condition.  

 On the other hand, the Modified Implicit Pressure Explict Saturation approach (MIMPES) consists in assigning 

larger time steps to the implicit pressure equation than those used to solve the saturation equation (limited by the CFL 

restriction). The latter is solved repeatedly until the saturation filed reaches the same instant of the pressure field. The 

major advantage of this strategy is that the implicit pressure equation, which represents more than 90% of all 

calculations, is solved several times less than the explicit saturation equation. 

 The MIMPES algorithm, we are using in the present paper, is a slightly edge-based modification of the original 

element-based algorithm proposed by Hurtado et al. (2006). We have chosen this algorithm because it appears to give 

more robust results than others found in literature (Chen et al, 2004), in a simpler manner and at a lower computational 

cost. Besides it can be easily adapted for our edge-based data structure, which, essentially, makes it readily available for 

use in 2-D and 3-D simulations. The basic difference between the strategies proposed in Hurtado et al. (2006) and Chen 

et al. (2004) is related to the controlling of the time range used to update the pressure and the velocity fields. The time 

step controlling proposed by Chen is based on the maximum local saturation variation, while in the Hurtado’s 

technique, the same task is based on the velocity field variation.  

An algorithm containing the basic steps to implement the modified IMPES is presented in Fig. (4.1). After 

calculating the velocity field, a L2 norm, 
n

Tv , of all mid-edge velocities is calculated. The new time-step (
1n

Pt
 ) 

for the pressure equation is computed through Eq. (21), as 
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DVTOL
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(21)      

 

 At the very first simulation time step, 
n

Pt  assumes, the value defined by the CFL restriction, i.e. 
0n

P CFLt t   . 

From a slightly modification on Hurtado’s work, the velocity L
2 
norm can be obtained by edges as  

 

 

 
2

, , 1r r r

r

r

n n

IJ IJ IJn

T

IJ IJ

v v C
v

C

   



  
  
 
 


                                                                                                            

(22)      

 

 

Sw(t=0); 

while (simulation_time < final_time){ 

loop over domains { 

loop over edges and boundary face (if 3-D) to: 

pressure field calculation; 

} 

Implicit_ts = true; 

Explicit_ts = true; 

sum_time = 0; 

while (Explicit_ts){ 

Loop over domains{ 

If (Implicit_ts){ 

Loop over edges and boundary faces (if 3-D) to: 

Gradient recovery; 
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Loop over edges to:{ 

Velocity field calculation; 

 
2

, , 1r r r

r

r

n n

IJ IJ IJn

T

IJ IJ

v v C
v

C

   



  
  
 
 

  

} 

Implicit_ts=false; 

} 

Loop over edges to: 

Nodal fluxes calculation; 

rt calculation; 

}// end-domains loop 

( )rt min t


   ;          // explicit time-step advance 

1n n

P Pn

T

DVTOL
t t

v

  
   // implicit time-step advance 

_ _ ;sum time sum time t 
 

1( _ )n

Pif sum time t  
 

Explicit_ts=false; 

else 

loop over nodes: 
1n

wS calculation

 
} 

} 
1_ _ n

Psimulation time simulation time t    

} // end-of-while 

Figure 4.1 – MIMPES algorithm. 

 

 Equation (22)  represents the variation of the velocity fields during the time range (
n

Pt ) calculated on the mean 

flux variation (normal fluxes) through the control volumes surfaces for all mesh control volumes. In Figure (4.1), 

sum_time accumulates all explicit time-steps within the same implicit time-step. While sum_time is less than 
1n

Pt
 , 

both, the pressure and the velocity fields are not modified. 

 To avoid too large time-steps for the pressure field, which could affect the accuracy, or too small time-steps that 

would diminish the efficiency of the procedure even more the simulation time, the following control procedure was 

adopted (Hurtado et al., 2006) 

 
1

0.75 1.25
n

P

n

P

t

t


 


    (23) 

 

 Therefore, if 
1n

Pt
  is calculated by Eq. (21), and if it is out of the bounds determined by Eq. (23), the new implicit 

time-step is calculate as follows: 1 0.75n n

P Pt t    or 1 1.25n n

P Pt t   . 

 In order to use this methodology in a safety way, it is necessary to check its effect on the accuracy of the numerical 

solutions obtained. Initially, it must be determined which values of DVTOL give the best accuracy/CPU time ratio.  

 

 

5. NUMERICAL RESULTS 

 
This problem, which was adapted from Durlofsky (1993) and Souza et al. (2004), consists in a ¼ of five spot 

problem. The porous media is assumed to be homogeneous and isotropic with K I throughout the whole domain. We 

also assume that porosity is homogeneous even though its actual value is not relevant because we are only using it to 

define the non-dimensional time or PVI (Pore Volumes Injected).  Water and oil viscosities are, respectively, 1.0w   

and 4.0,o   therefore, the viscosity ratio (essentially the mobility ratio) is   4.0.o wM     Boundary conditions 

are no-flux at the external boundaries, 1.0iS   in the injection well, and 0.0ul brP P  at the upper left and bottom right 

corners. Durlofsky (1993) solved this problem using a combined mixed finite element (used to solve the 
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pressure/velocity problem) and finite volume (used to solve the saturation problem) approach. Figures (1a) and (1b) 

present, respectively, the computational mesh with 1236 nodes and 3892 tetrahedral elements, and the pressure field at 

t=1.0 PVI, obtained with the classical IMPES approach. In figures (2a) and (2b), we show the saturation fields obtained 

with the classical IMPES and with the MIMPES (DVTOL=10
-1

) approaches at t=1.0 PVI. As we can clearly see, results 

are essentially the same. Figure (3) and (4) present, respectively, the recovered oil and the cumulative oil obtained using 

the classical IMPES and the MIMPES approaches with different values of DVTOL, ranging from 10
-3

 to 10
-1

. Our 

results are in excellent agreement with those of Durlofsky (1993). 

 

               
 (a)                (b) 

Figure 1. ¼ homogeneous five-spot: a) Computational Mesh with 1236 nodes and 3892 tetrahedral elements; b) 

Pressure Field at t=1.0 PVI obtained with the classical IMPES method. 

 

 
 

 (a)                (b) 

 

Figure 2. ¼ homogeneous five-spot problem: a) Saturation field obtained with the classical IMPES method at t=1.0 

PVI; b) Saturation field obtained with the MIMPES method at t=1.0 PVI, with DVTOL=10
-1

. 
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Figure 3. Recovered oil for the ¼ homogeneous five-spot problem with the classical IMPES and with the MIMPES 

for DVTOL raging from 10
-3

 to 10
-1

 (zoom on the right of the figure). 
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Figure (5) compares the relative CPU time and the relative difference of the cumulative oil for the classical IMPES 

and the MIMPES approaches for different values of DVTOL. Considering the results obtained with the classical IMPES 

method as our reference, it can be clearly seen that, small values of DVTOL produce more accurate results, while 

higher DVTOL values produce the poorest results. This is expected, since smaller values of DVTOL make the 

MIMPES scheme gets closer to the classical IMPES approach (i.e. with more pressure/velocity updates). 

 

 

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0,50

0,55

0,60

0,65

0,70

0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00

C
u

m
u

la
ti
v
e

 O
il

PVI

IMPES

dvtol: 1E-1

dvtol: 1E-2

dvtol: 1E-3

     

0,40

0,45

0,50

0,55

0,60

0,65

0,70

0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95 1,00

C
u

m
u

la
ti
v
e

 O
il

PVI

IMPES

dvtol: 1E-1

dvtol: 1E-2

dvtol: 1E-3

 
 

Figure 4. Cumulative oil for the ¼ homogeneous five-spot problem with the classical IMPES and with the MIMPES 

for DVTOL raging from 10
-3

 to 10
-1

 (zoom on the right of the figure). 
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Figure 5. CPU time and relative difference of the cumulative oil between the classical IMPES and MIMPES for 

DVTOL ranging from 10
-3

 to 10
-1

. 

 

6. CONCLUSIONS 

 

 In the present paper, we have briefly presented a node-centered, edge-based, higher order finite volume method with 

a “Modified Implicit Pressure, Explicit Saturation” (MIMPES) which is capable to model the 3-D incompressible and 

immiscible two-phase flow of water and oil in heterogeneous and anisotropic porous media. The solution of the 

pressure equation is performed by using a variation of the two step Crumpton’s method (Crumpton, 1997) and the 

saturation equation is solved by a MUSCL-type method proposed by Woodfield et al. (2005), with a multidimensional 

limiter that resembles the one proposed by Zalezak (1979). We have also used a MIMPES approach (Hurtado et al. 

2006) that allows for larger time steps for the pressure/velocity problem while the explicit solution of the saturation 

equation, which is still restricted by the CFL condition, is performed many times before the pressure/velocity fields is 

updated. This approach produces very acceptable results with a considerable reduction in CPU time. Through a very 

simple benchmark problem, we have showed that the combination of these different techniques allow for a very 

accurate simulation at a reasonably computational cost. In the near future, we intend to implement a fully implicit 

higher order, edge-based finite volume procedure in order to solve more complex and demanding problems. 

 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

 

7. ACKNOWLEDGEMENTS 

 

 The authors would like to thank the following agencies: “Coordenação de Aperfeiçoamento de Pessoal de Nível 

Superior (CAPES)”, “Agência Nacional de Petróleo (ANP PRH-26)” and the “Conselho Nacional de Desenvolvimento  

Científico e Tecnológico (CNPq)”, for their financial support during the development of this work.  

 

8. REFERENCES 

 

Carvalho, D.K.E., Lyra, P.R.M., Willmersdorf, R.B., Araújo, F.D.S., 2005, “An Unstructured Edge-Based Finite 

Volume Formulation for Solving Immiscible Two-Phase Flows in Porous Media” Communications in Numerical 

Methods in Engineering, Vol. 21, pp. 747-756. 

Carvalho, D.K.E. ; Willmersdorf, R.B. ; Lyra, P.R.M., 2009, “Some results on the accuracy of an edge-based finite 

volume formulation for the solution of elliptic problems in non-homogeneous and non-isotropic media”, 

International Journal for Numerical Methods in Fluids, DOI: 10.1002/fld.1948.  

Chen, Z., Huan, G., Li, B., Li, W., Espin, D., 2002, “Comparison of Practical Approaches to Reservoir Simulation”, 2
nd

 

Meeting on Reservoir Simulation, Buenos Aires, Argentina (in CD-ROM). 

Crumpton, P.I., Moinier P., Giles, M.B.T.J., 1997, “An Unstructured Algorithm for High Reynolds Number Flows on 

Highly Stretched Grids”, In: Numerical Methods in Laminar and Turbulent Flow, Taylor C, Cross J.T. (Eds). 

Pineridge Press: Swansea, pp. 561–572. 

Durlofsky, L.J.A., 1993, “Triangle Based Mixed Finite Element-Finite Volume Technique for Modeling Two Phase 

Flow Through Porous Media”, Journal of Computational Physics, v. 105, p. 252-266, 1993. 

Ewing, R.E., 1983, “The Mathematics of Reservoir Simulation”, Siam, Philadelphia. 

Helmig R, Huber R., 1998, “Comparison of Galerkin-Type Discretization Techniques for Two-Phase Flow Problems in 

Heterogeneous Porous Media”, Advances in Water Resources, Vol. 21, pp. 697-711. 

Hurtado, F. S. V., Cordazzo, J., Maliska, C. R., Silva, A. F. C., 2006, “Advanced Numerical Techniques for Improving 

Reservoir Simulation”, Rio Oil and Gas, 2006, in CD ROM. 

LeVeque, R. J., 1992, In: Numerical Methods for Conservation Laws. Berlin, Birkhauser.  

Luo, H., Baum, J.D., Löhner, R., 1995, “An Improved Finite Volume Scheme for Compressible Flows on Unstructured 

Grids”, Technical Report, AIAA Paper, pp. 95-0348. 

Lyra, P.R.M., Morgan, K., 2002, “A Review and Comparative Study of Upwind Biased Schemes for Compressible 

Flow Computations: Part III: Multidimensional Extension on Unstructured Grids”, Archives of Computational 

Methods in Engineering, Barcelona - Espanha, Vol. 9, pp. 207-256. 

Müller D, Giles MB.  Edge-based multigrid schemes for hybrid grids. 6th ICFD Conference on Numerical Methods for 

Fluid Dynamics, Oxford, UK, 1998; 1-7. 

Rees I. Development of an edge-based finite volume solver for porous media applications. Department of Civil 

Engineering – University of Wales/Swansea- UK, Ph.D. thesis, 2004. 

Seol, E. S. FMDB: Flexible Distributed Mesh Database For Parallel Automated Adaptive Analysis, Doctor Of 

Philosophy, Faculty of Rensselaer Polytechnic Institute, 2005. 

Silva, R. S., 2008, “Simulação de Escoamento Bifásico Óleo-Água em Reservatórios de Petróleo usando Computadores 

Paralelos de Memória Distribuída”, Tese de Doutorado, DECIV-UFPE. 

Smith MI, Griffiths DV.  Programming the finite element method. John Wiley & Sons, Chichester, 2001. 

Souza, D. A. F.; Coutinho, A.L.G.A.; Alves, J.L.D., 2004 “Three Dimensional Finite Element Solutions of Immiscible 

Two-Phase Flow Through Porous Media”, Congresso Íbero-Latino Americano de Métodos Computacionais em 

Engenharia (CILAMCE 2004), (Em CD-ROM). 

Verma S, Aziz K., 1996, “Two and Three Dimensional Flexible Grids For Reservoir Simulation.”, 5
th

 European 

Conference on the Mathematics of Oil Recovery (ECMOR V), 1-14, Leoben, Austria. 

Woodfield, P.L., Suzuki, K., Nakabe, K., 2004, “A Simple Strategy for Constructing Bounded Convection Schemes for 

Unstructured Grids”, International Journal for Numerical Methods in Fluids, Vol. 46, pp. 1007-1024.  

 Zalesak, S.T., 1979, “Fully multidimensional flux-corrected transport algorithms for fluids.” J. Comput. Phys. v31. 335-

362. 

 

 

 

5. RESPONSIBILITY NOTICE 

 

The authors are the only responsible for the printed material included in this paper. 


