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Abstract. Shape Memory Alloys (SMA) are classified as smart materials mainly due to their ability to recover their 

original shape upon heating. In addition, they present large recovery forces and damping capacity when compared to 

traditional materials. Despite a great number of papers dealing with SMA abilities applied to vibration control in 

structures, there are only a few reports about applications of SMA in rotordynamics. This paper focuses basic aspects 

of the application of SMA for vibration control in rotating machines. It is divided into two parts. The first one describes 

the implementation of an algorithm to predict the behavior of SMA springs during the activation (heating) and de-

activation (cooling) processes. The results show the elastic range in low-temperature (martensite) and high-

temperature (austenite) phase and the variation of the stiffness between these two states. A well-know one-dimensional 

thermomechanical constitutive model for SMA was considered for the simulations. In the second part we present two 

case studies which deal with vibration control in rotors subjected to unbalance forces by menas of a finite element 

model to compute the complex response of the system. It has been used the SMA spring’s linear elastic characteristics 

determined in the first part of this work and some comparisons are made in terms of vibration amplitude reduction and 

application of the activation process of the SMA spring to suppress unwanted vibrations in the rotating system. 

 

Keywords: shape memory alloys, vibration control, adaptive control, rotordynamics. 

 

1. INTRODUCTION 
 

Shape Memory Alloys (SMA) are metallic alloys that can undergo martensitic phase transformations as a result of 

applied thermomechanical loads and are capable of recovering a original shape when heated above a certain 

temperature. In addition, they present large recovery forces and damping capacity when compared to traditional 

materials. These smart materials have unique properties which are not present in many materials traditionally used in 

engineering applications. Accordingly, their use introduces new design capabilities, which make it possible to improve 

device performance as well as to propose innovative solutions (Auricchio et al., 1997). 

Extensive recent research has shown that shape memory alloy components can be successfully integrated within 

structural elements in order to improve, enhance, or control both their static and dynamic characteristics (Zak et al., 

2003). However, despite large number of papers that deal with vibration control using SMA in structures, there are only 

a few reports on vibration control for a rotating machine using SMA (Iwata and Nonami, 1983; Zak et al., 2000; He et 

al., 2007a; He et al., 2007b). 

The present work deals with numerical simulations of vibration control in rotating systems by means of SMA. The 

paper is divided into two parts. The first one consists of implementation of an one-dimensional algorithm to predict the 

behavior of SMA springs during the activation and de-activation processes. It has been possible by means of the results 

generated to visualize the elastic limits in low-temperature (martensite) and high-temperature (austenite) phases and the 

variation of the stiffness between the two states. Furthermore, in the second part, some numerical simulations of a rotor 

system with two disks supported at both ends by flexible bearings have been made. A set of SMA springs was placed at 

the right-hand end the shaft, externally to bearing, and then the vibration control is accomplished by altering the bearing 

stiffness through SMA springs activation (austenite phase) or de-activation (martensite phase). Subsequently, the 

numerical model is assumed to be asymmetrical in relation to disks position and bearing stiffness. The results show that 

SMA springs may be used to suppress the backward and mixed operational modes that arise from this new arrangement. 

 

2. MACRO-MECHANICAL CONSTITUTIVE MODELS 

 
To represent the SMA thermomechanical behavior two well known models were considered: the Liang and Rogers’ 

model (1990) and the Brinson’s model (1993).  

 

2.1. Liang and Rogers’ Model 
 

The Liang and Rogers’ model (Liang and Rogers, 1990) is based on the model proposed by Tanaka (1986). 

However, to characterize the evolution of the martensite fraction a cosine function is employed instead of an 
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exponential one. In their work they presented a methodology for determination of the evolution equation and discussed 

it experimentally. Hence, the constitutive equation which describes the stress-strain-temperature-martensite fraction for 

the Liang and Rogers’ model is defined as follows (Liang and Rogers, 1990): 

 

( ) ( ) ( )0 0 0 0
D T Tσ σ ε ε ξ ξ− = − + Ω − + Θ −  (1) 

 

where σ, D, ε, Ω, ξ, Θ and T represent the stress, Young’s modulus, phase-transformation tensor, martensite fraction, 

thermo-elastic tensor and temperature respectively. The subscript “0” represents the initial conditions before 

transformation. The relation between D and Ω is described as Ω = -εLD, where εL is the maximum recoverable 

deformation for a SMA material. Thus, the evolution equations are expressed for direct (austenite → martensite) and 

reverse (martensite → austenite) transformation according to situations described below. 

 

• Variable Stress and Constant Temperature: A → M Transformation 

 

1 1
cos( ( ) )

2 2

A A

M f Ma T M b
ξ ξ

ξ σ
− +

= − + +  (2) 

 

• Variable Stress and Constant Temperature: M → A Transformation 

 

cos( ( ) ) 1
2

= − + +M

A S Aa T A b
ξ

ξ σ  (3) 

 

where Mf and AS are the temperatures corresponding to martensite finish and austenite start, respectively. The constant 

parameters aA, aM, bA, bM and Θ are defined by Liang (1990) and the subscripts M and A indicate the martensite and 

austenite states, respectively. 

One of the main limitations of this model is that it describes only the martensite transformation into austenite and 

vice-versa, and it is not able to describe the re-orientation of twinned martensite in temperatures below MS (martensite 

finish). Brinson (1993) proposed to separate the martensite volume fraction into temperature-induced and stress-induced 

components, as explained in the following section. 

 

2.2. Brinson’s Model 

 
The Brinson’s model (Brinson, 1993), as well as the Liang and Rogers’s model (Liang and Rogers, 1990), is based 

on the model proposed by Tanaka (1986). One of the main differences between them is that Brinson’s model comprises 

all the temperature range, from Mf up to Af (austenite finish). In addition, this model distinguishes the martensite 

fractions in its components induced by stress and temperature, i.e.: 

 

S M
ξ ξ ξ= +  (4) 

 

where 
S

ξ  is the single-variant fraction and 
M

ξ  the multi-variant fraction. The constitutive equation considering the new 

definition on martensite fractions is written as: 

 

= + Ω + Ω + Θ
S S M M

d Dd d d dTσ ε ξ ξ  (5) 

 

and the evolution laws for the Brinson’s model are defined for different temperature range as: 

 

• T > MS – Direct Transformation for Single-variant Martensite  
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• T < MS – Direct Transformation for Single-variant Martensite  
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otherwise, 0
Tξ∆ = . 

 

• T > AS – Reverse Transformation of Single-variant Martensite into Austenite 
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cr

s
σ  and 

cr

f
σ  denote the initial and final stresses for the stress induced martensite (SIM) transformation during the A → 

M transformation. CM and CA are material properties associated to the relations between temperature and phase 

transformation stresses. 

 

3. THE THERMOMECHANICAL MODEL OF THE SMA SPRING 
 

A formulation for SMA springs was proposed by Liang and Rogers (1993). However, because of the limitations 

previously mentioned for this model, some modifications were considered in the present work in order to represent 

more realistically the mechanical behavior of these components. Such adjustments consist basically of employing the 

Liang and Rogers’ SMA spring formulation adapted to conditions exhibited into Brinson’s (1993) model. This means 

that some changes in terms of equations evolution, work temperatures and critical stress must be made. 

According to Shigley et al. (2005) the maximum shear stress of a linear spring is given by: 

 

max 3

2FR
K

r
τ

π
=  (14) 

 

where K is called the Wahl correction factor (considered equal to one by Liang-Rogers, 1993), F is the external force, R 

the mean springs radius and r the radius of the spring wire. The deflection of linear elastic spring can be found by 

considering the deformation of an element of length dx cut from a wire of radius r as showed in Fig. 1. 

 

 
 

Figure 1. Cross-section of the helical spring element (Liang e Rogers, 1993). 

 

The quantity γ denotes the angle originated from a spring torsion deformation and its equation is: 
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τ
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= =  (15) 

 

where G represents the shear modulus. The angle dα in which the section of the element rotates can be written as: 

 

d dx
r

γ
α =  (16) 

 

and the angular deflection at a wire end in relation to other one is: 

 
2 2

4

0

4
RN

FR N
dx

r r G

π γ
α = =∫  (17) 

 

where N is the number of active coils. Therefore, the total deflection is expressed as: 

 
3

4

4FR N
y R

r G
α= =  (18) 

 

with the spring constant defined by: 

 
4

34

r G
k

R N
=  (19) 

 

The elastic modulus of the SMA is function of ξ and according to Liang (1990) can be represented by: 

 

( )A M A
D D D D ξ= + −  (20) 

 

The relation between the elastic and shear modulii is: 

 

( )2 1

D
G

µ
=

+
 (21) 

 

where µ is the Poisson’s ratio. Considering the relation between normal and shear stresses as 3=D G  and supposing 

that the shear modulus only depends on total martensite fraction, the thermoelastic sensor and temperature are constant 

and all initial conditions are null, the Eq. (5) described by Brinson (1993) can be rewritten as: 

 

0
( )

3 3

Ω Θ
= + + −

S
G T Tτ γ ξ  (22) 

 

The shear stress of a SMA coil can still be expressed from Equation (15) as: 

 

3

2
=

FR

r
τ

π
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and the angle γ  can be solved from Equation (22) resulting in: 

 

0
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From Equations (17) and (18) it is possible to obtain the deflection of a SMA spring as: 
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Substituting Equation (23) into Equation (25) yields: 

 
3 2

4

4 2

3

R N R N
y F

Gr Gr

π
ξ

Ω
= −  (26) 

 

The Equation (26) above describes the load-deflection relation for SMA springs. 

 

4. NUMERICAL SIMULATIONS 
 

4.1. Symmetrical Rotating Model 
 

The rotor system under analysis in this work (Figure 2) consists of a shaft of length 800 mm and 16 mm in diameter, 

two disks of 50 mm thick and outside diameter of 164 mm, positioned to l1 and l2 distances from ends. The constants of 

the shaft and disks dimensions are summarized in Fig. 2. 

 

  

Parameter Dimension (mm) 

l1 = l3 250 

l2 300 

dd 164 

ds 16 

t 50  

 

Figure 2. Schematic of rotor system with two disks and its main features. 

 

Initially, the numerical complex response is computed employing a conventional bearing model, that is, bearings in 

which there is no SMA element inserted. A finite element model developed in MATLAB
®

 code is used to determine the 

numerical response of the system, where the stiffness and damping constants for each bearing are kyy = kzz = 10
5
 N.m

-1 

and cyy = czz = 2.5x10
-3

 N.s.mm
-1

. In this model, the cross stiffness and damping are null, i.e., kyz = kzy = 0 and cyz = czy = 

0. The shaft’s and disks’ properties are assumed to be: Young’s modulus E = 210 GPa, specific mass ρ = 7850x10
-9

 

kg.mm
-3

, and Poisson’s ratio µ = 0.3. 

The finite element model response is obtained in terms of natural frequencies (critical speeds) and mechanical 

unbalance, that is characterized by an eccentric mass m = 3.05 g placed in the radial position ε = 82 mm (node 6). The 

analyzed frequency range comprises the first two critical speeds of the system. Some changes have been made in order 

to build the numerical model with variable stiffness. First, a set of SMA springs was externally positioned at the right-

hand end of the shaft and the modified bearing is schematically represented in Fig. 3. 

 

 

 

Parameter 
Not-activated 

Bearing Model 

Activated Bearing 

Model 

kS 23 N.mm
-1

 58.7 N.mm
-1

 

kEQ ~23 N.mm
-1

 ~58.7 N.mm
-1

 

k 10
5
 N.mm

-1
 

c 2.5x10
-3

 N.s.mm
-1

 

N 4 

R 6.85 mm 

r 1.85 mm  

 
Figure 3. Representation of the bearing with SMA springs and conditions for the not-activation and activation states. 

 

The values of SMA spring stiffness were obtained from Liang and Rogers’ macro-mechanical model (Liang and 

Rogers, 1993). However, due to the limitations of this model, it was necessary to adapt this model to Brinson’s 

conditions, i.e., some changes were made in terms of evolution equations, work temperatures and critical stresses. A 

numerical code written in MATLAB
®
 environment was implemented for this purpose. These stiffness values are 

described in Fig. 3 for the two thermomechanical states. The equivalent stiffness (kEQ) resulting of the association of 

springs in series (where k and kS are respectively the bearing’s and spring’s stiffnesses) is also showed in this figure. 

The principle considered for spring activation and de-activation is based on the Active Property Tuning method (APT), 

in which only changes in the SMA material properties are took into account (Zak et al., 2003). 

For this simulation, two points of the finite element model are analyzed. The first one is the node 17 (spring) that is 

used to verify whether the SMA spring deflection is within the elastic range (see the section 5.1). The second point is 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 
the node 6 (disk) that is used to analyze the influence of SMA spring activation and de-activation processes on the 

vibration amplitude of the system. 

 

4.2. Asymmetrical Rotating Model 
 

The second finite element model has been developed with the same physical configuration than the first one. 

Nevertheless, the disks have been positioned at non-symmetric location in relation to the ends. For this model l1 = 400 

mm and l3 = 150 mm. We also considered different stiffnesses in the y and z directions of the SMA bearing (kEQyy = 23 

N.mm
-1

 and kEQzz = 28 N.mm
-1

). Hence, this arrangement is able to stimulate the arising of the backward whirling, 

which is a quite dangerous precessional motion and causes cyclical stresses in the rotor system. Such a configuration 

also enables the arising of mixed operational modes that can be as hazardous as the backward whirling. 

An appropriate way to visualize how each station of the rotor whirls when it is subjected to unbalance forces is 

through the SDI (Shape and Directivity Index) Plot or 3D SDI (Dias Jr. and Allemang, 2000). This plot is built by 

computing the SDI for all nodes and each rotational speed. Specific colors are assigned to each SDI value and a 

convenient color map must be used in order to be possible to easily distinguish between backward and forward 

precessional motion of the stations of the rotor. The SDI is mathematically defined by (Han and Lee, 1998) as: 

  

| | | |
1 1

| | | |

−
− ≤ = ≤

+

f b

f b

P P
SDI

P P
 (27) 

 

where Pf and Pb are the vectors that describe the forward and backward precessional motions respectively. The 

relationships between the values of the SDI, the shape of the orbit of a station of the rotor and the direction of the 

precessional motion are defined by Han and Lee (1998) as following: 

 

• SDI = -1 → Circular backward precessional motion; 

• -1 < SDI < 0 → Elliptical backward precessional motion; 

• SDI = 0 → Rectilinear motion; 

• 0 < SDI < 1 → Elliptical forward precessional motion; 

• SDI = 1 → Circular forward precessional motion. 

 

The sign of the SDI defines the direction of the precessional motion while the shape of the orbit is defined by its 

absolute value (Dias Jr. and Allemang, 2000). Finally, the numerical model is again submitted to activation process and 

in this situation the system becomes an isotropic one. The values of the equivalent stiffness coefficients in the y and z 

directions of the SMA bearing are: kEQyy = kEQzz = 58.7 N.mm
-1

. The numerical response of the model has been plotted 

in terms of its critical speeds, operational modes and vibration amplitudes due to mechanical unbalance induced by a 

unbalance mass me = 250 g.mm is applied at both disks. 

 

5. RESULTS 

 

5.1. Thermomechanical Behavior of the SMA Spring 
 

In this section we present the numerical simulations of the SMA spring behavior for the two thermomechanical 

states (martensite and austenite). By means of the isothermal curves it is possible to identify the elastic ranges in which 

the SMA spring behavior is valid in this work. The material parameters for this numerical simulation are defined by 

Liang (1990) and Brinson (1993) as being: Mf = 282 K, MS = 291.4 K, AS = 307.5 K, Af = 322 K, DM = 26.3 GPa, DA = 

67 GPa, CM = 8 MPa, CA = 13.8 MPa, εL = 0.067, Θ = 0.55, cr

s
σ = 100 MPa and 

cr

f
σ = 170 MPa. 

Figure 4 shows the load-deflection and stress-strain plots with the elastic ranges for the martensite and austenite 

phases below Mf (T = 278 K) and above Af (T = 333 K) respectively. When the SMA spring is in the martensite state the 

maximum elastic deflection supported by it is yM = 3.64 mm and the corresponding load is 83.83 N. On the other hand, 

in the austenite state, the maximum deflection is yA = 6.19 mm and the load is 363 N. The stiffnesses for these states are 

23 N.mm
-1

 and 58.7 N.mm
-1

, respectively. There is a residual deflection in the low-temperature curve due to the 

quasiplastic behavior of the SMA spring. The high-temperature curve in turn shows the superelastic behavior of the 

SMA springs, where the stress induced martensite (SIM) is accomplished and there is no residual deformation. 

As far as the martensite fraction variation with the load is concerned, Fig. 5 shows five isothermal curves that 

include different points on the SMA spring transformation: T < Mf (T = 278 K), Mf < T < MS (T = 287 K), MS < T < AS 

(T = 301 K), AS < T < Af (T = 315 K), T > Af (T = 333 K). In the case of the single-variant martensite all the curves 

present a null initial martensite because of the load is also null. On the other hand, the multi-variant martensite fraction 

depends on the work temperature and decreases as the load is applied. 
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Figure 4. Isothermal load-deflection and stress-strain curves for SMA spring. The highlighted points represent the 

elastic limits in which the SMA behavior is valid for this work. 

 

  
 

 Figure 5. Isothermal martensite fraction vs. load curves for SMA spring. 

 

5.2. Symmetrical Rotating Model 
 

In the first case study it is shown how an adaptive vibration control with SMA springs can be used for reducing 

vibration levels of rotating systems. The symmetrical model described in section 4 is used and the comparisons are 

made with the vibration amplitudes measured at nodes 6 and 17. In this case it is assumed that the system has two 

operating frequencies: 11.67 Hz and 23.58 Hz. In the case of the conventional bearing model, the displacement 

amplitudes in these frequencies are 4.36 mm and 0.012 mm for node 6 and 1.02x10
-3

 mm and 1.23x10
-5

 mm for node 

17, respectively (Fig. 6). The first amplitude (node 6) is very high because it coincides with the first critical speed of the 

system. 

 

  
 

Figure 6. Unbalance response measured at nodes 6 (disk) and 17 (spring) respectively for the symmetric model with 

conventional bearing. 
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In relation to the amplitudes calculated at node 17 for the models with the not-activated and activated springs, the 

vibration amplitudes for the two operating frequencies are within the elastic ranges (yM = 3.64 mm and yA = 6.19 mm) 

(Figs. 7 and 8). It is important to emphasize that the aim in this work is to explore only the stiffness change through 

temperature change, not the shape memory or pseudoelastic effects. 

At node 6 the amplitudes with the not-activated springs in the operating frequencies are 0.013 mm and 0.021 mm 

(Fig. 7). In this situation, there was a reduction of 99.7 % in the magnitude of vibration at the first operational 

frequency, but in the second operational frequency the level of vibration increased in 75 %. In the case of the model 

with the activated springs the amplitudes of the first disk in the operating frequencies become 0.035 mm and 0.0037 

mm, respectively. Compared to model with conventional bearing, the level of vibration due to activation of SMA 

springs decreased for the two operating frequencies (99.2 % and 69.2 %, respectively). On the other hand, when 

compared to the model with not-activated bearing, there was an increase (169.2 %) in the magnitude of vibration at the 

first operational frequency but in the second one the level was reduced in 82.4 % (Fig. 8). Thus, for the last situation, 

the correct manner of operation is to use the SMA springs disabled when operating in the first frequency of work and 

use the springs activated when operating in the second frequency of work. 

 

  
 

Figure 7. Unbalance response measured at nodes 6 (disk) and 17 (spring) respectively for the symmetric model with 

not-activated bearing. 

   

  
 

Figure 8. Unbalance response measured at nodes 6 (disk) and 17 (spring) respectively for the symmetric model with 

activated bearing. 

 

5.3. Asymmetrical Rotating Model 
 

Regarding the asymmetrical model and the new configuration imposes on it, we are able to detect the presence of 

backward whirling by means of unbalance response function (measured at node 14) shown in Fig. 9. The backward 

whirling appears in dashed line and forward whirling in solid line. In this case, as the system is anisotropic, there are 

also the critical speeds that correspond to coincidence between the operational speed and the backward natural 

frequencies. 

The 3D SDI shown in Fig. 9 shows that for the analyzed frequency range the model is in backward whirling (in ~7.5 

Hz) and in mixed whirling (in ~26-27 Hz), that is, some rotor stations are in forward whirling and others ones are in 

backward whirling simultaneously. The forward whirling is dominant in the considered frequency range. 
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Figure 9. Unbalance response for the asymmetric model with not-activated bearing and 3D SDI for the asymmetric 

model with not-activated bearing. 

 

  
 

Figure 10. Operational deflection shape type elliptical-backward in 7.49 Hz and operational deflection shape type mixed 

in 25.79 Hz. 

 

  
 

Figure 11. Unbalance response for the asymmetric model with activated bearing and 3D SDI for the asymmetric model 

with activated bearing. 

 

In Figure 10 we can observe the operational deflection shape (ODS) of the backward precessional motion at 7.49 

Hz. All the rotor stations are under elliptical whirling, i.e., the -1 < SDI < 0. In this figure we can also notice the 

operational deflection shape of the mixed precessional motion at 25.79 Hz. We can also notice the stations moving in 

forward whirling (nodes 5 to 17) present higher amplitudes in comparison to ones moving in backward whirling (nodes 

1 to 4). Besides, one rotor station describes a circular motion (node 12) while others ones describe an elliptical motion. 

Upon SMA springs activation process, the forced response has been measured at node 14 and is described in Fig. 11. 

As mentioned in previous sections, the model becomes an isotropic system. In this plot, the whole backward frequency 

range has been suppressed, and the only precessional motion encountered is the forward one. It means that the SMA 

springs may be an exploited successfully for controlling two hazardous rotational motions, as previously mentioned. 
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Finally, the 3D SDI for the asymmetric model with activated bearing (Fig. 11) confirms that there is only forward 

whirling in the range between 0 and 50 Hz. Moreover, almost all the rotor stations are in the condition SDI = 1, that is, 

whirling happens in a circular manner. 

 

6. CONCLUDING REMARKS 
 

This paper has addressed some basic aspects of the application of SMA in adaptive vibration control of rotating 

machinery. The methodology of control is to use springs made of shape memory alloy (SMA) connecting them to one 

of the bearings of the system and using the control process properly. When the springs are activated, which correspond 

to be heated, there is a solid phase transformation. This phase transformation corresponds to change of the martensite 

into austenite phase. In this case the elasticity modulus is increased and consequently the stiffness is also increased. 

In the first part of this work some numerical simulations have been performed in order to predict the SMA spring 

behavior and obtain the stiffness of this component in the elastic range for martensite and austenite phases. A well-

know macro-mechanical constitutive models have been together employed for this purpose. 

As case studies, two rotating systems are presented: the first one is a symmetrical (isotropic) model and the second 

is an asymmetric (anisotropic) model. In the first case, it is shown how the activation of the springs can reduce the 

amplitude levels of vibration subject to unbalance forces. In the last case, due the anisotropy and others parameter of the 

system, the results presented a range of frequency of backward precession and also operational mixed modes appear. 

Then, with the activation of the SMA springs the whirling movement of the rotor becomes fully of forward type. 
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