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Abstract. This paper presents a method to calculate airfoils and cascades in potential flow based upon the distribution 

of vortices on the profile surface and develops a computational code and validates the predictions with available well 

accepted results. The technique is based upon Martensen (1959), Murugesan (1969) and Lewis (1991). Cascades are 

usually specified according to the application and they can be stationary or moving. The aerodynamic behavior and 

the aerodynamic characteristics of isolated foil are known and there are many techniques to calculate these foils such 

as the singularity method, conformal mapping and other technique where the singularity may be distributed over the 

camber line or on the surface of the foil. These analytic techniques can be extended to deal nicely with experimental 

foils such as the NACA´s. In the present paper, the method of distributing the vortices over the surface of the foil is in 

the reverse sense. Initially a distribution of velocity is specified at the leading edge stagnation point. The calculated 

velocity distribution over the surface of an initial arbitrary foil is compared with that required. The difference between 

them is used as an additional distribution of vortices imposed over the surface. A distribution of velocity component 

normal to the surface appears and this violates the concept of the stream line. The contour turns to be a streamline 

when its local inclination is adopted according to the ratio of the normal velocity and the required velocity. The 

resultant foil is reanalyzed in a direct form and the velocity distribution obtained is compared with the required 

distribution. The calculations are repeated until convergence is obtained. The resultant numerical code was applied to 

analytic symmetrical Joukowski foils and to experimental and asymmetrical foil NACA 65-1210. In all the cases the 

foils were generated using the vortex distribution technique and the resulting profiles were compared with the original 

profiles indicating a reasonably good agreement. Having showed that the proposed technique and the developed code 

are valid and produce good results, they are applied to analyse a cascade of NACA 65-1210 foils. 
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1. INTRODUCTION 

 
 The use of cascades are very extensive in rotodynamic machines working with fluids and slurries, wind tunnels, 

blowers, ventilation units, air conditioning units and many other applications. A good and efficient pump, compressor 

or blower must have a good cascade design. 

 Some fifty years ago or more, cascade theories were not considered when dealing with small equipments because of 

the complexity of their calculations and hence the projects were realized using engineering experience and practical 

engineering data. These projects always suffered from low efficiency, bad functioning and maybe some additional 

serious problems such as flow induced vibrations, noise and cavitation when working with liquids. In recent years more 

attention is given to ambient comfort, high efficiency and low failure risk. This is aggravated when the equipment is 

crucial for safe operation as in gas turbines and compressors for aviation. These new tendencies, the need to have silent 

and efficient machines with low maintenance and high reliability urged the necessity for more research in the different 

areas to achieve a good quality project. 

 The essential part of rotodynamic machines is the cascade which converts energy from one form to another; it must 

be efficient, silent and as small as possible. These new requirements can only be achieved by a good design and hence 

cascade analysis. 

 The literature is rich with experimental and theoretical studies related to this area. The recent computational 

facilities led to a great deal of numerical studies on the different aspects of cascade design. Among these studies one 

mention Horlock’s, Lewis’ and others have very dense contributions to both the theoretical, numerical and experimental 

aspects of cascades. 

 This paper presents a method to calculate the geometry and aerodynamic characteristics of airfoils and cascades 

based upon surface distribution of singularities. The numerical code was applied to calculate Joukowski airfoils with 

and without angle of attack and to analyze a NACA cascade using the NACA 65-1210 airfoil. 

 

2. FORMULATION 
 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

 

 Martensen (1959) presented a solution of the two dimensional potential flow problem over a cascade. In his 

development he used the Green’s function technique to obtain the stream line function ψ  over a closed contour C . The 

differentiation of this function with respect to the normal to this contour combined with the Dirichlet boundary 

condition results 
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where ms  and s  are distances measured around the profile. The coupling coefficient ( )tssK m ;,  in terms of the cascade 

pitch t  is  
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and for an isolated profile it is  
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where ∞U  and ∞V  are the components of the flow relative velocity  ∞W  with inclination ∞β  relative the x-axis. For 

the isolated airfoil ∞W  is the non perturbed velocity far away from the airfoil 1W , while ∞W  for the cascade is the 

equivalent mean velocity defined as the mean vector average of the velocities far away from the cascade  1W  and 2W . 

 

 
Figure 1. Geometry of cascade and triangles of velocity 

 

 Using the Dirichlet boundary condition and the properties of ψ  one can obtain 0=∂∂
i

nψ  and 
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 In the solution of the potential flow around an isolated profile or cascade, the contour is substituted by a vortex sheet 

of strength )(sγ . The velocity of the fluid tangent to the surface of the body charges from zero inside the sheet to ( )sv  

outside the vortex sheet. From this one can verify that the coupling coefficient ( ) ( )π4);,(;, tssKtssk mm =  has the 

same value as the velocity parallel to the surface of the body and induced by an element of vorticity ( )dssγ . 

 One parametric representation of the contour C  can be ( )φxx =  and ( )φyy = , with πφ 20 ≤≤  as the parameter. 

Using the transformation  

 

 ( ) ( ) dssd γφφγ =  

 

one can obtain 
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where φddxx =′ , φddyy =′ . Hence Eq. (1) becomes  
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where ( )mm xx φφ =′=′  and ( )mm yy φφ =′=′ .  

 The coupling coefficient for infinite cascade becomes  
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and for isolated profile becomes  
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 One can observe that the coupling coefficient ( )tK mm ;,φφ  associated with the self induced velocity by the element 

m  is indeterminate, but can be treated by L’Hospital rule to be  
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 The contour integral is evaluated by a trapezoidal rule with N2  elements of vortex mγ  where N elements lie on the 

upper surface and another N  elements on the lower surface. The control points are located at the mid point of the 

elements ( ) NnNnn 2,,2,1,21 K=−= πφ . In this manner Eq. (4) becomes  
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where 
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 Applying Eq. (8) in each control point one can obtain a system of N2  simultaneous linear equations in mγ . After 

solving this system of equations the velocity ( )msv  can be determined from  
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 But, since the matrix is singular, the solution of the system of equations is possible by applying the boundary 

condition due to Kutta at the trailing edge. The static pressure is the same on the both surfaces near the trailing edge, 

then the vortex of the two elements adjacent to this point must have the same absolute value, that is ( ) ( )12 ss N γγ −= . 

 The circulation generated by the airfoil is equal to the total strength of the contour vortex Γ  obtained as  
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 Based upon the circulation around the airfoil ( )12 VVt −=Γ , the continuity equation ∞== UUU 21  and the velocity 

triangles of Fig.1, one can write 

 
 ( )12 tantancos βββ −=Γ ∞∞Wt  (11) 

 

 In the case of isolated profile, if 1WW =∞ , 1ββ =∞ , given the geometry of the airfoil ( )yx,  and the conditions of 

the free stream at entry 1W  and 1β , and from Eq. (8), one can obtain the vortex distribution mγ ; from Eq. (10) the total 

circulation Γ  and finally from Eq. (11) one can determine the exit  angle of the flow 2β . 

 For a cascade, the surface distribution of vortex and the total circulation around each foil of the cascade are obtained 

in a similar manner if the cascade geometry is known and the average flow conditions equivalent to ∞W  and ∞β  are 

initially established. The entry angle 1β  and exit angle 2β  are calculated from Eq. (11) and the fact that 

( ) 2tantantan 21 βββ +=∞  are used to obtain  

 

 ( )[ ]∞∞∞ Γ−= βββ cos2tanarctan1 Wt  (12) 

 

 In practice, the design problem is different, the designer needs to know the exit conditions, that is, 2β  and 2W  for a 

range of entry conditions 1β  and 1W  for a given cascade geometry. This can be done following the general lines 

suggested by Lewis (1991). 

 Knowing the RHS of the system of equations, according to Eq. (8), one can divide the two independent parts in two 

systems and solve for unit flow velocities. The respective solutions uγ  and vγ  of the non dimensional strength of 

vortex gives the corresponding unit contour circulations uΓ  and vΓ  as below 
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 The expression for the exit angle 2β  in terms of the unit circulation uΓ  and vΓ  is 
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 From the equation of momentum and the relations obtained from the velocity triangles one can conclude that the lift 

force is normal to the direction of the mean velocity ∞W . In this case the pressure coefficient is given by 
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 The pressure coefficient can be given alternatively by 
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3. CALCULATION PROCEDURE 

 
 The method used in this paper to design an isolated foil or a cascade of airfoils uses iteratively the method of surface 

vortex following the general lines of Murugesan and Railly (1969) and Lewis (1991). The general procedure steps 

adopted here are as follows. 

(i) Specify initially a velocity distribution or vortex on the surface ( )svR . 

(ii) Choose as a first approximation a profile which can be ellipse or a standard airfoil. 

(iii) Discretize this profile in N2  elements. 

(iv) The velocity distribution on the contour is calculated. 

(v) The frontal stagnation point is localized; calculate the contour length between the frontal stagnation point 

and the control point of each element and the velocity of this point is interpolated from the specified velocity 

distribution. 

(vi) The calculated and the specified velocities are compared and the criterion of convergence is verified. 

(vii) Assume an additional velocity distribution equal to the difference between the calculated and specified 

velocities. 

(viii) Calculate the normal velocity distribution over the contour induced by the additional vortex sheet. 

(ix) Determine the local tangent to the contour. The integration of the new inclination from the frontal stagnation 

point results in a new contour for each of the suction and pressure surfaces. 

(x) If the trailing edge points calculated at the suction and pressure surfaces are not coincident, adopt a 

procedure to close the profile.  

 For this last profile repeat the calculations (iv) to (x) until the convergence limit (vi) is achieved. 

 

4. APPLICATIONS 
 

 As an application of the proposed method of calculation four study cases will be presented. Initially two cases of the 

symmetric Joukowski airfoils will be used one without and other with angle of attack. In the third study case a NACA 

foil will be designed.  The last application is for the analysis of a NACA cascade. 

 

 

4.1. Design of the symmetric Joukowski airfoil 
 

 The Kutta-Joukowski transformation zbz 2+=ζ  is used. This transformation makes a circle of radius 0r  and 

center at the origin of the plane z  to a symmetric airfoil in the transformed plane ζ . In this case the ratio 0rb  is taken 

as 9333,0  and the angle of attack is o0 . The foil velocity distribution determined analytically is used to compare with 

the numerical predictions. 

 

 Figure 2 shows the evolution of the calculated foil shapes during the calculation of a Joukowski symmetric airfoil 

with 1602 =N  control points. As was commented before the initial adopted geometry is an ellipse. Figure 2 shows the 

numerical development of the profile during the calculations and the final profile obtained after 1977 iterations is the 
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inner geometry in the figure. Figure 3 shows the final geometries of the leading and trailing edges, respectively. As can 

be seen the resulting geometries are smooth. 
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Figure 2. Evolution of the calculated foil shapes of a Joukowski symmetric airfoil ( 1602 =N ) 
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Figure 3. Final geometries of the leading and trailing edges of the symmetric Joukowski airfoil 

 

4.2. Design of the symmetric Joukowski airfoil with angle of attack 
 

 In the study case of the Joukowski airfoil with angle of attack the ratio 0rb  is taken as 9333,0  and the angle of 

attack is o10 . The details of this airfoil are shown in Fig. 4 which shows the original and final results predicted by the 

vortex distribution model and the original airfoil calculated by the Joukowski transformation. 
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Figure 4. Design of a Joukowski symmetric airfoil ( 1602 =N ) 
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Figure 5. Final geometries of the leading and trailing edges of the symmetric Joukowski airfoil ( o10=∞β ) 

 

 Figure 5 shows the geometries of the leading and trailing edges of the original airfoil and the numerical prediction 

from the vortex distribution analysis. As can be seen the agreement is quite good, the difference between the original 

and final geometries of the airfoil is less than %2,0  of the airfoil chord. 

 

4.3. Design of the NACA 65-1210 airfoil 
 

 The NACA 65-1210 is used for the third study case. Its data was obtained from Abbott and Von Doenhoff (1959). 

Figure 6 shows the original airfoil NACA 65-1210 and the numerical predictions, showing good agreement, while Fig.7 

shows the final numerical result of the leading and trailing edge geometries after 2000  iterations. Again the agreement 

between the original airfoil and the numerical predictions is quite good, as can be judged from the ratio of the thickness 

difference between the predicted value and the original one divided by chord length calculated at the trailing edge 

which is found to be less than %3,0 . 
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Figure 6. Design of the NACA 65-1210 airfoil ( 1602 =N ) 
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Figure 7. Final geometries of the leading and trailing edges of the non symmetric airfoil NACA 65-1210 

 

4.4. Analysis of the NACA 65-1210 cascade 
 
 As an application of the computational code based upon the method of vortex distribution over the foil surface, it 

was used to design a NACA 65-1210 cascade. This cascade is used because there is available data to compare with the 

numerical predictions from the present code. 

 Figure 8 shows the numerical predictions from the present code as compared with experimental results and the 

Ackeret’s method (Horlock, 1973). As can be seen the comparison is reasonably good. 
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Figure 8. Pressure coefficient distribution over the surfaces of the airfoil NACA 65-1210 in cascade (stagger o30=χ , 

pitch chord ratio 0,1=lt ) for o451 =β ; the present code results o5,232 =β  with 1602 =N  control points 

 

5. CONCLUSIONS 
 

 The method of vortex distribution over the foil surface is used in the reverse sense, in this case initially a velocity 

distribution is specified over the foil and specially at the front stagnation point. The formulated model is set up into a 

numerical code which was extensively tested and optimized. The code was then used to design isolated airfoils, three of 

which are presented here, two analytical airfoils (Joukowski) and one experimental (NACA 65-1210). The Joukowski 

airfoils were calculated by using the Joukowski transformation while the NACA data was used for the NACA airfoil. 

The predicted results using the numerical code were compared with available results and good agreement was found. 

Finally the method and code were used to calculate a cascade and the results were compared with Horlock’s results 

showing reasonably good agreement. 
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