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Abstract. The present paper advances a numerical model of a homogeneous two-phase flow in a shock tube. As the 
frictionless flow of a homogeneous two-phase mixture in a shock tube is amenable to analytical treatment, it represents 
an interesting benchmark for the evaluation of numerical schemes for two-phase transient problems. The hyperbolic 
nature of the mass, momentum and energy conservation equations for the two-phase flow gives rise to discontinuities 
in the solution domain, such as shocks and void waves. Finite differences solution algorithms based on the split 
coefficient matrix (SCM) method have been developed and validated for two different modeling approaches: the 
equilibrium homogeneous two-phase flow and the thermal non-equilibrium homogeneous two-phase flow models. 
Results obtained with both approaches are explored and compared with the analytical solution for a specific set of 
initial conditions in a two-phase shock tube. 
  
Keywords: Shock-Tube, hyperbolic equations, homogeneous two-phase flow model, split coefficient matrix method. 

 
1. INTRODUCTION 
 

Transient gas-liquid two-phase flows occur in several industrial and engineering applications and natural 
phenomena, such as nuclear reactors, heat exchangers, geothermal and oil-gas wells etc. As it is widely known, there 
are several modeling approaches to a two-phase flow problem, the most simple being the homogeneous formulation 
which assumes local hydrodynamic equilibrium (i.e., equal in-situ velocities) between the phases. It is also well 
established that the homogeneous model is more suitable for describing flows with very high volumetric fractions of the 
continuous phase due to the low relative velocity (i.e., slip) between the phases (Collier and Thome, 1994).  

The shock-tube is a classical problem in gas dynamics which has been widely explored in the context of high 
velocity compressible flows. Under certain assumptions, the behavior of the flow properties (pressure, temperature, 
velocity etc.) in a single-phase shock tube problem can be described by simple algebraic relationships (Anderson, 
1982), which can be used as a benchmark for numerical solution schemes (Gessner and Barbosa, 2008). With further 
assumptions, the analytical algebraic solution of the single-phase shock-tube problem can be extended in order to 
describe the flow of a homogeneous two-phase mixture (Städtke, 2006) in a shock-tube under severe transient 
conditions. For this reason, the two-phase shock tube can also be used as a standard problem for evaluating the ability 
of numerical schemes for two-phase transient flows.  

This paper presents the development and application of a numerical procedure for solving two-phase homogeneous 
transient flows based on existing solution methods for hyperbolic systems of equations (Städtke, 2006). The Split 
Coefficient Matrix Method (SCM), proposed by Chakravarthy et al. (1980), is a variation of the Method of 
Characteristics. Both are upwind schemes based on an algebraic manipulation of the eigenvalues and eigenvectors of 
the governing system of hyperbolic PDEs which enables the evaluation of the influence of the different mechanisms by 
which perturbations are propagated in the flow field (shock and rarefaction waves, advection, etc.). The technique has 
been developed initially for compressible single-phase flows, but was subsequently extended to two-phase flow 
problems (Romstedt, 1987). It can be formulated as a function of conservative and non-conservative variables, 
implicitly or explicitly. At the present stage, the primary objective is to develop SCM-based routines for two variants of 
the two-phase flow homogenous model, namely the equilibrium and the non-equilibrium formulation. While the 
equilibrium model assumes thermal and hydrodynamic equilibrium between the phases, the non-equilibrium model 
allows for different temperatures between the phases. Both formulations are described in detail and compared with the 
analytical solution of a two-phase shock-tube. 
 
2. MODELLING 
 

The two-phase shock-tube is composed of two horizontal chambers (1 and 2), separated by a diaphragm, as shown 
in Fig. 1. The working fluids are air (subscript g) and water (subscript l), which are initially at rest and have different 
homogeneous volumetric fractions as well as uniform temperatures and pressures in each chamber. As the diaphragm is 
instantaneously removed, a transient two-phase flow is initiated in the direction of the low pressure end of the shock-
tube. 
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Figure 1. Problem geometry and initial conditions. 
 
The flow is one-dimensional, frictionless and adiabatic. The gas and liquid phases are assumed to have the same 

velocity in every point of the domain (no slip) and no phase change takes place. The same hypotheses have been 
adopted in the analytical treatment of the two-phase shock tube reported by Städtke (2006). The hyperbolic system of 
equations which results from the application of the above hypotheses in a differential control volumes for each phase 
and for the two-phase mixture are presented next. The mass conservation equation for the gas and liquid phases are 
given by,   
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where αk is the volumetric fraction of phase k, ρk is the mass density of phase k and U is the homogeneous two-phase 
velocity. The momentum conservation equation for the two-phase mixture is given by, 
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where P is the thermodynamic pressure and ρ is the mixture density. The entropy balances in each phase are given by,  
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where sk is the specific entropy of phase k and Tk is the temperature of phase k. The terms on the right hand side of 
equations (4) and (5) are the interfacial entropy transfer due to a finite temperature difference across the two-phase 
interface. The following definitions hold at every point of the domain,  
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With the help of fundamental thermodynamic relations (Gyftopoulos and Beretta, 2005) for ρk as a function of P and 

sk, equations (1) to (5) can be re-written in non-conservative form as follows,  
 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

02 =
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+

∂

∂
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+

∂

∂
+⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

x
U

x
s

U
t

s
cp

T
x

U
tx

PU
t
P

a gg
gg

g

ggg
g

gg
g

g

g ρα
βρ

α
αα

ρ
α

 (9) 

 

02 =
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+

∂

∂
−⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

x
U

x
sU

t
s

cp
T

x
U

tx
PU

t
P

a ll
ll

l

lll
l

gg
l

l

l ρα
βρ

α
αα

ρ
α  (10) 

 

xg
x
P

x
UU

t
U ρρ −=

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂  (11) 

 

g

ggg
gg T

Q
x
s

U
t

s int

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+

∂

∂
ρα  (12) 

 

l

lll
ll T

Q
x
sU

t
s int

=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂ρα  (13) 

 
Equations (9) to (13) correspond to the homogeneous thermal non-equilibrium model, since they naturally allow for 

different temperatures in the two phases. When the local thermal equilibrium condition is satisfied (homogeneous 
thermal equilibrium model), equation (13) is no longer needed, as ls  could be calculated from a thermodynamic 
relationship involving sg and the homogeneous mixture temperature, which is determined from equation (12). The 
interfacial heat transfer rate per unit volume is given by,  
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where hint and aint are the interfacial heat transfer coefficient and interfacial area density, respectively. Considering that 
the gas is in the form of mono-dispersed spherical bubbles (a reasonable assumption in flowing systems given the low 
gas volume fraction on both sides of the diaphragm), the interfacial area density can be written as,  
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where db is a bubble diameter. Thus, equation (14) becomes, 
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where CT is the so-called thermal constant (which is easier to specify in our model than the bubble diameter or the heat 
transfer coefficient). Equation (16) will be used in the thermal non-equilibrium formulation. In the homogeneous 
equilibrium model, it is more convenient to write the ls  derivatives in terms of the variations of P  and gs using 
thermodynamic (Maxwell) relationships. Thus, the interfacial heat transfer rate per unit volume is given by (Gessner, 
2009), 
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The interfacial heat transfer rate per unit volume in the above equation is such that it guarantees the thermodynamic 

equilibrium between the phases, i.e.,    
 

lg TTT ==  (18) 
 
The mixture specific heat capacity is given by, 
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3. SYSTEMS OF CONSERVATION EQUATIONS 

 
In terms of the thermal non-equilibrium model, it is possible to arrange Eqs. (9) to (13) in a compact format as 

follows,  
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where the unknown vector U

r
 is given by, 
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the matrices E  and F are defined as, 
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and the source-term vector B

r
is given by, 
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The system of equations given by Eq. (20) can also be written in the form, 
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where the coefficient matrix G  is given by, 
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and the source-term vector C

r
 is given by, 
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The mixture sound velocity, a , introduced in Eqs. (26) and (27) is defined as, 
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The coefficient matrix G  can be written in terms of its eigenvalue matrix Λ and of T  and 1−T , which are the 

matrix of eigenvectors and its inverse, by using the following relationship, 
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and 
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It should be noted that for subsonic flows (such as the present case) the eingenvalue 1λ  will always be positive, 

while the eigenvalue 2λ  will always be negative. The remaining eigenvalues, 3λ , 4λ  and 5λ  will be either positive or 
negative, depending on the local value of the flow velocity. By decomposing the matrix Λ  into parts which correspond 
to each eigenvalue, one has, 
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Next, a matrix +G  is constructed based on the coefficients involved in the propagation of a given quantity in the 
positive direction x . Similarly, a matrix −G  is constructed in order to account for the propagation of a given quantity 
in the negative x direction. Thus,  
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Therefore, it is possible to recast Eq. (25) in the form,  
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For the equilibrium model, as can be easily verified, the system of equations is identical to that for the non-

equilibrium model, except for the absence of terms associated with the derivatives of the liquid entropy. 
 

4. NUMERICAL IMPLEMENTATION 
 

4.1. Discretization of the system of governing equations 
 

Since the coefficient matrix is divided into two parts, +G  and −G , which influence the propagation of the quantities 
in the positive and negative x directions, it is natural that a backward differentiation scheme (BDS) and a forward 
differentiation scheme (FDS) are employed in the evaluation of the spatial derivative associated with +G and −G , 
respectively. Thus, by adopting a second-order discretization scheme in space and an implicit formulation, Eq. (35) can 
be aproximated by  
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The system of equations (36) can be more conveniently written in the form 
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and the vectors containing the unknowns X

r
 and the source-term K

r
 are defined by, 
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4.2. Boundary conditions 
 

Firstly, it is assumed that the properties (pressure, entropy and void fraction) at the left end are influenced only by 
the propagation associated with the negative eigenvalues. Likewise, the same properties at the right end are assumed to 
be influenced only by the propagation associated with the positive eigenvalues. At these points, the flow velocity is set 
to zero, which results in a modification of the coefficients associated with the momentum conservation equation.  
 
4.3. Computational grid and solution procedure 

 
The computational grid is composed of 4001 equally spaced (1 mm) nodes. The time step was set at 1μs. The 

solution procedure, at each time step, consists of the following stages: 
1. All fields are set equal to the converged values obtained at the previous time step. 
2. The vector K

r
is calculated. 

3. The coefficients of the matrix A  are calculated. 
4. The system of equations given by Eq. (40) is solved using the GBAND algorithm (Aziz e Settari, 1979; Ouyang, 

1998), and new values of P , gα , U , gs  are obtained. In the case of the homogeneous non-equilibrium 
formulation, ls is also computed. 

5. Based on the latest fields of P , gs  and, in the case of the homogeneous non-equilibrium model, ls , the 
thermodynamic properties of each phase are calculated at each node using the equation of state physical 
properties subroutines available in the Fortran source code of the REFPROP 7.0 package (Lemmon et al., 2002). 

6. The mixture properties ρ , cp  and a  are updated. 
7. If the convergence criterion is not met, return to stage 2. The convergence criterion has been established based 

on the absolute difference between the values of each variable at two successive iterations (see Table 1 for the 
tolerances applied to each variable). 

 
 

Table 1. Tolerances associated with each variable 
 

Variable Tolerance 
P  ][kPa  1x10-3 

gα  ][−  1x10-6 
U  ]/[ sm  1x10-6 

gs ]/[ kgKkJ  1x10-4 
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5. RESULTS 

 
By assuming that the gas phase behaves as an ideal gas, the liquid is incompressible and local hydrodynamic and 

thermal equilibrium exist between the phases, the two-phase shock-tube problem can be solved analytically (Anderson, 
1982; Städtke, 2006). The analytical solution can be used to validate the numerical solution of the homogeneous 
equilibrium model and of the non-equilibrium model, if a high value is assigned to TC . 
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Figure 2. Pressure and void fraction fields at mst 15= . Homogeneous equilibrium model. 
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Figure 3. Velocity and gas entropy fields at mst 15= . Homogeneous equilibrium model 
 

 
Figures 2-5 illustrate the fields obtained for both models. As can be verified, both formulations were able to describe 

the analytical results satisfactorily. Evidently, the utilization of the homogeneous equilibrium model is more 
advantageous since it yields a simpler system of equations, thus requiring a lower computational effort. On the other 
hand, the homogeneous non-equilibrium model provides greater flexibility, since the thermal constant can reproduce the 
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unrealistic condition of absence of interfacial heat transfer ( 0=TC ), the local thermal equilibrium condition ( ∞=TC ) 
and every other intermediate condition. Figure 6 shows the gas temperature profiles obtained for different values of TC . 
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Figure 4. Pressure and void fraction fields at mst 15= . Homogeneous non-equilibrium model. 
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Figure 5. Velocity and gas entropy fields at mst 15= . Homogeneous non-equilibrium model 
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Figure 6. Gas temperature fields at mst 15= . Homogeneous non-equilibrium model 
 

 
6. CONCLUSIONS 

 
In the present work, numerical routines based on the split coefficient matrix (SCM) method were proposed for two 

distinct gas-liquid two-phase flow models: the homogeneous equilibrium and the homogeneous non-equilibrium. The 
routines were evaluated and validated by a comparison with the analytical solution of a two-phase shock-tube. Both 
models gave similar and consistent results. The influence of the interfacial energy coupling in the non-equilibrium 
model was also investigated.  
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