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Abstract. In this paper we describe the solution of an inverse heat conduction problem dealing with the estimation of a 

boundary heat flux. Such heat flux is imposed on the surface of a thin metal plate and temperature measurements are 

considered to be taken over the non-heated surface. For the direct problem, a lumped formulation is used across the 

plate, so that the three-dimensional problem is formulated in two dimensions and in terms of an average transversal 

temperature. The inverse problem is solved with a function estimation approach based on the conjugate gradient 

method with adjoint problem. Simulated temperature measurements are used in the inverse analysis in order to show 

the capabilities of the proposed approach.  
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1. INTRODUCTION  
 

Inverse problems became a powerful and practical tool for analysis and design in engineering. In fact, inverse 

problems enable a much closer collaboration between experimental and theoretical researchers, in order to obtain the 

maximum of information regarding the physical problem under study.  

In heat transfer, the classical inverse problem of estimating a boundary heat flux with temperature measurements 

taken inside a heat-conducting medium (Beck et al, 1985)  has many practical applications. For example, the heat loads 

that the surface of space vehicles re-entering the atmosphere are subjected to, can be estimated through inverse analysis, 

by using temperature measurements taken within the thermal protection shield (Kanevce  et al  1999, Oliveira and 

Orlande 2002, Oliveira and Orlande 2004, Mota et al  2004). If a technique that sequentially estimates such boundary 

heat flux is used, inverse analysis may allow for on-line trajectory corrections in order to reduce the heat load. An 

application of sequential inverse analysis of state estimation and control in relation with process tomography can be 

found in Ruuskanen et al (2006).  

Inverse problems are ill-posed, that is, their solutions do not satisfy either one of the requirements of existence, 

uniqueness or stability (Hadamard, 1923). Therefore, the classical approach is to reformulate the problem as an 

approximate well-posed problem. A variety of techniques is nowadays available for the solution of inverse problems 

and there are a number of books and book chapters that cover various aspects of inverse problems (Tikhonov and 

Arsenin 1977,  Beck and Arnold 1977, Alifanov 1994, Alifanov  et al  1995, Dulikravich and Martin 1996, Ozisik and 

Orlande 2000, Kurspisz and Nowak 1995, Woodbury 2002, Murio 1993, Trujillo and Busby 1997, Kaipio and 

Somersalo 2004, Zabaras 2204, Calvetti and Somersalo 2007). 

In this work we use the conjugate gradient method of function estimation with adjoint problem formulation 

(Alifanov 1994, Alifanov et al  1995, Ozisik and Orlande 2000), in order to solve the inverse problem of identifying a 

boundary heat flux in a heat conducting medium. The medium is a thin metallic plate, so that a partial lumped 

formulation is used in this work by neglecting temperature gradients across the plate. Simulated measured data is used 

in this analysis for functional forms containing discontinuities, which are the most difficult to be recovered with the 

solution of the inverse problem. 

 

 

2. PHYSICAL PROBLEM AND MATHEMATICAL FORMULATION 
 

The physical problem examined in this work is described in Fig. 2.1 and 2.2.  These figures show a thin plate with 

area LxLy and thickness Lz which is heated on its surface with a circular electrical resistance. Such heater provides a 

uniform heat flux ˆˆ ˆ( , , )q x y t . The lateral surfaces were considered to be insulated, while the top boundary looses heat by 
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convection and radiation to its surroundings. The simulated experimental temperature was supposed to be taken on the 

non-heated surface with a infrared camera. 

 

 

 

 

 

 

Figure 2.1 – Top view of the heated plate Figure 2.2 – Lateral view of the heated plate 

 

The mathematical model describing the temperature distribution on the heated plate showed in Fig 2.1 and 2.2 can 

be expressed as: 
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Where     is the thermal conductivity,      is the thermal diffusivity,     convective coefficient, ε is the thermal 

emissivity and  σ Stefan-Boltzmann constant.  

 

 

In a well-posed direct problem all physical properties, boundary and initial conditions are known. Thus, the 

temperature distribution at the plate can be obtained as a time and space function.  Since we are dealing with a very thin 

plate, an accurate approximate formulation can be obtained by neglecting the temperature gradients along the ẑ  

direction. Therefore we can solve the heat conduction problem in terms of an average temperature defined as 

 

 

                                                                                                                                                                                   (2.2) 

 

 

Hence, the three-dimensional PDE describing the physical problem defined above can be reduced to a two-

dimensional problem. Such lumped system will be explored in dimensionless form in order to simplify the heat 

equation analysis.  By assuming L=Lx=Ly the following dimensionless groups were defined, as 
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to obtain the following dimensionless Lumped - 2D formulation for our heat conduction problem: 
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where h(θ) is the linearized source term that takes into account the contributions of the boundary conditions at   ˆ 0,z =  

and, zLz =ˆ  that is, 
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and reference values of thermal conductivity, kR, thermal diffusivity, αR, and heat flux, qR, are also required. 

The numerical method used to solve the problem given by Eqs. (2.4.a-f) is based on the finite element method 

(FEM).  Triangular elements were used for the plate discretization, as presented by Fig. 2.  The mesh surface plotted in 

this figure is composed of 1658 elements and 858 nodes. The time step used in time discretization was one second. 

Such number of elements and time steps were selected based on a grid convergence analysis. The weighted residuals 

approach, which provides a powerful approximate solution procedure, was used to formulate the problem in order to 

apply the finite element method. 

 

 
Figure 2. Mesh with triangular elements used for the FEM. 

 

 

3. INVERSE PROBLEM AND SOLUTION METHODOLOGY 
 

    For the inverse problem considered in this work, the source-term in Eq. (2.4.a) resulting from the hat flux imposed by 

the electrical resistance, is regarded as unknown. For the estimation of such function we assume available temperature 

measurements at each of the finite elements over the non-heated surface. Such measurements can be taken with an 

infrared camera.  

    For the solution of such inverse problem, we use the conjugate gradient method of function estimation (Alifanov 

1994, Alifanov et al 1995, Ozisik and Orlande 2000) and consider the minimization of the following functional:  
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There is no prior information about g(x,y,t), except that the function belongs to the domain called Hilbert’s integrable 

quarter, denoted as L2 in the domain of interest. The iterative procedure of the conjugate gradient method for the source 

term estimation is given by: 
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Note that
kβ in Eq. (5) depends on the function ( , , ; )k

m mx y t dθ∆ . This function is obtained by solving the sensitivity 

problem, as described below. 

 

3.1. Sensitivity problem  
 

The sensitivity problem is solved substituting ( , , )g x y t for ( , , ) ( , , )g x y t g x y t+ ∆ in the direct problem, resulting 

on a temperature perturbation ( , , )x y tθ∆ . The resulting equation is subtracted from the direct problem and, by 

neglecting second order terms, the following problem is obtained: 
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3.2. Adjoint problem  
 

In order to derive an expression for the gradient of the functional, we make use of another auxiliary problem which 

satisfies adjoint properties with respect to the sensitivity problem and is denoted as the adjoint problem. The adjoint 

problem is solved for the Lagrange multiplier ( , , )x y tλ . 

The adjoint problem is obtained by first writing the following extended functional: 
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The directional derivative of the extended functional in the direction of the gradient or the source term is obtained 

by substituting in Eq. (3.9) ( , , )g x y t for ( , , ) ( , , )g x y t g x y t+ ∆ , ( , , )x y tθ for ( , , ) ( , , )x y t x y tθ θ+ ∆ and 

[ ( , , )]S g x y t for [ ( , , )] [ ( , , )]S g x y t S g x y t+ ∆ . By subtracting Eq. (3.9) from the resulting equation, we obtain: 
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By assuming that the temperature perturbation ( , , )x y tθ∆ tends to zero, the terms of Eq. (3.12) may be rearranged 

for the formulation of the adjoint problem as: 
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In Eqs. (3.13a-f) we have a final value problem, once the function ( , , )x y tλ is known at t = tf. A new time variable 

is defined as ft tτ = − , so that 
t τ
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 and the adjoint problem becomes an initial value problem.  

 

3.3. Gradient equation 

 
     In the derivation of the adjoint problem, the last term of Eq. (3.12) left over. Such term is used to find the functional 

gradient [ ( , , )]S g x y t∇ , that is, 
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From the hypothesis that ( , , )g x y t belongs to L2 space in the spatial and time domains, the directional derivative 

of [ ( , , )]S g x y t∆ in the direction of ( , , )g x y t∆ may be written as (Alifanov 1994, Alifanov et al 1995, Ozisik and 

Orlande 2000): 
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Comparing Eq. (3.14) and (3.15) we obtain: 

 

[ ( , , )] ( , , )S g x y t x y tλ∇ = −                                                        (3.16) 

 

Knowing [ ( , , )]S g x y t∇ , 
kγ is obtained from Eq. (3.4) and the search direction can be obtained by Eq. (3.3). 

Thus, the iterative process given by Eq. (3.1) may be applied. The iterative procedure of the conjugate gradient method 

is stopped by using the Discrepancy Principle (Alifanov 1994, Alifanov et al 1995, Ozisik and Orlande 2000). 
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4. RESULTS AND DISCUSSIONS 
 

In this section we present the estimated heat flux function ),,( tyxφ  obtained from the inverse problem approach 

with the Conjugate Gradient method which was described in the previous section.  In such inverse process the estimated 

heat flux function is obtained from temperature measurements over the non-heated surface of the thin plate.  Such 

measurements can be taken, for example, with an infrared camera. In this work the temperature measurements are 

simulated from the expression: 

 

                                                                                                            (4.1) 

 

 where ω is a random number with normal distribution and unitary standard deviation and 
max01.0 mT=υ  that is 1% of 

the maximum exact temperature obtained from the solution of the direct problem  (2.4.a-f) with qR.  

The total time of heat flux application was  considered as 120 s and the measurements are taken in one second 

interval over 800 points on the plate surface. The heat flux function ),,( tyxφ  is estimated for a brass thin plate, with  

L=0.16m, Lz = 0.001m, α̂  = 3.41 x 10
-5

 m
2
/s, k̂  = 111 W/(m K) , an effective thermal convective coefficient  ĥ  = 10 

W/(m
2
 K), T0=T∞= 291 K and =ε 0.97. The circular electrical resistance with a diameter D = 0.0254m provided a 

uniform heat flux, taken as the reference value qR, =)ˆ,ˆ,ˆ( tyxq 18255 W/( m
2
 K). The reference parameters are defined 

such as  kkR
ˆ= , αα ˆ=R , and qR = 18255 W/m

2
K. 

 

Figure 3 shows the objective function S[g(xi,yi,ti)] with respect to the number of iterations.  This figure present the 

minimization process of the objective function expressed in Eq. (3.1) for several values of initial guess q0 for the 

unknown flux, for the case involving errorless measurements.  Note that for low values of q0 (0 to 0.2) the conjugate 

gradient method does not converge and the function S[g(xi,yi,ti)] reach constant high values.  However, for q0 between 

0.3 and 1.0 the method converges and the objective function tends to zero in most cases with around 25 iterations.  It is 

clear from Fig 3 that the minimization process is dependent of the choice of q0. However the conjugate gradient with 

adjoint problem method is effective and converges for a wide range of q0. 

 

 
 

Figure 3.  Objective function minimization for several values of q0 

 

In Fig. 4 we show the estimated heat flux Riiii qtyxqtyx /)ˆ,ˆ,ˆ(),,( =φ   for different values of start guess q0. The 

estimated heat flux plotted in Fig. 4 represents the temporal evolution of  ),,( tyx iiφ  in the middle point of the 

plate 2/ˆˆ Lyx ii == .  This figure shows the important role of the start guess q0 in the convergence of the estimation 

method.  In this case, the heat flux is almost perfectly estimated for q0 = 0.6. 
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Figure 4. Estimated heat flux for three values of q0 as a function of dimensionless time. 

 

Figure 5 illustrate a qualitative representation of the estimated heat flux over the plate surface at t̂  = 60 s.   This 

figure shows the spatial variation of the dimensionless heat flux over the plate area with q0 = 0.6.  The estimated heat 

flux ),,( tyxφ  takes unity values on the electrical resistance area (red circle).  The heat flux is negligible in most of the 

plate surface, as represented by the white and yellow colors in Fig. 5.  

 

 

Figure 5. Illustration of the estimated heat flux over the plate surface with q0=0.6, t̂  = 60s. 

 
 

5. CONCLUSIONS 

 
In this work we applied the conjugate gradient method of function estimation for the identification of a boundary 

heat flux applied on a thin plate. The formulation of the physical problem is given in terms of a partial lumping 

approach, by neglecting temperature gradients across the thickness of the plate. 
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Simulated temperature measurements containing random errors, supposedly taken with an infrared camera over the 

non-heated surface, were used in the inverse analysis. The results obtained in this paper reveals that the present solution 

methodology is capable of providing accurate estimates for the spatial and time variation of the unknown heat flux. 
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