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Abstract. A new definition is proposed for assessing the equivalent shear stress amplitude. This method generalised to 

the three-dimensional complex loadings the minimum ellipse method in a 5 dimensional space. Sinusoidal loadings 

examples are presented in order to illustrated the definition. 
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1. INTRODUCTION  

 
The estimation of the amplitude of the second invariant of the stress deviator (or equivalent shear stress) 

aJ ,2  is a 

recurrent problem when dealing with multiaxial fatigue. This problem is particularly important for evaluating the 
fatigue behaviour of mechanical structures, frequently submitted to complex random loads.  

Many methods have been developed in recent years to get a good measure of this amplitude. In order to simplify the 
calculation, a change of variables is commonly introduced on the stress deviator to consider in a five dimensions 
Euclidean space 5E . In this space, the amplitude can be defined by various methods such as the smallest circumscribed 

hypersphere (Papadopoulos et al., 1997, Bernasconi, 2002) or the minimum circumscribed ellipse (Li and De Freitas, 
2002, Cristofori et al., 2008). Recently, the Mamiya’s research team have introduced the concept of the smallest 
ellipsoid (Gonçalves et al., 2004; Gonçalves et al., 2005; Zouain et al., 2006; Balthazar et al., 2007) and of the 
prismatic hull to generalize the method proposed in Li and De Freitas (2002). 

The method proposed in this work fits into this logic. It generalizes the method proposed in the work of Li and De 
Freitas (2002) by investigating the principal axes of the load path to obtain the prismatic hull circumscribed to this path. 
The originality of the method is that we obtain the semi-axis of this hull by a search of the principal directions in 5E . 

The first part presents a state of the art methods from the literature cited above. In a second part we develop our 
definition, then, in a third party, we illustrate the method with examples involving sinusoidal loads. 
 
2. STATE OF THE ART OF DEFINITIONS OF 

aJ ,2  ESTIMATED IN 5E  

 
Many authors, as for example Sines or Crossland, consider 

aJ ,2  as a major parameter to control the initiation of 

cracks by assuming proportional loading paths, the octahedral plane being the plane of fatigue crack initiation (or 
maximum shear plane). In recent years, several methods have been proposed to give a definition of 

aJ ,2  suitable for 

more complex loadings. For example, the method of the minimum circumscribed circle, introduced by Dang Van and 
Papadopoulos (Papadopoulos et al., 1997), allows to overcome the problem of non-uniqueness inherent in the method 
of the longest chord by the introduction of a single circle circumscribing the loading path Ψ . 

However, to facilitate the calculation of 
aJ ,2 , it is convenient to define a change of variable over the stress 

deviator considering in a 5-dimensions space 5E  (Lambert, 2007): 
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where )(t•σ  stand for the stress tensor components. The amplitude 

aJ ,2  can be obtained in that space by calculating 

the minimum hypersphere circumscribed to the loading path (Papadopoulos et al., 1997). For a periodic load, the tip of 
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the vector )(tS  then describes in 5E  a closed curve Φ . The length of the vector mS  (containing the mean of each 

component) that points to the center of this hypersphere, is obtained by 
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It is easy to see that the proportional and non-proportional loading paths are circumscribed by the same sphere. This 

definition is therefore questionable, especially as the experiments carried out by some authors as Kueppers et al. (2006) 
showing that for ductile materials, the discrepancy between the solicitations of non-proportional loading induces a 
reduction in fatigue resistance. 

It therefore seems necessary to take into account the evolution of the principal directions of the stress at the time for 
assessment of 

aJ ,2 . Thus Deperrois (1991) proposes the following definition of 
aJ ,2 : 
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In this expression, the components ia  are evaluated by determining first the longest chord 5a  between two distinct 

points in the load. This procedure is repeated for the following ia  searching again the longest chord in a reduced and 

orthogonal sub space to the sub-space generated by the previous chord.  
However, the definition (3) suffers from non-uniqueness of the longest chord in some cases (Papadopoulos et al., 

1997). Alternatively Li and De Freitas (2002) then formalize the method of the minimum circumscribed ellipse. In this 
case, 

aJ ,2  is obtained through the semi-axes of this method as: 

 

2
2

2
1,2 RRJ a +=  (4) 

 
where 1R  and 2R  are the minimum and maximum semi-axis of the ellipse formed by a load path in a plane. This method 

offers a better definition that the minimum circumscribed circle method as it allows to take into account the effects of 
phase shift. But this method only deals with biaxial loadings.  

Gonçalves et al. (2004) then generalize the method proposed by Li and De Freitas (2002), suggesting to define the 
path of loading in a jacket elliptical minimum standard and as: 
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In this expression, ia  become semi-axes of the ellipsoid circumscribing the loading path in 5E . The authors show that 

for multiaxial loading, synchronous and out-of-phases, the ia  correspond to the maximum amplitudes of the 

components aiS ,  of the stress deviator in 5E . 

They also propose a variant of this extension with the notion of prismatic hull (Gonçalves et al., 2005). In this case, 
the rectangular hull tangent to the loading, defines the semi-axis ia  directly in 5E .  

An overview and more complete revision of these methods are proposed in the article by Balthazar and Malcher 
(2007). 

 
3. A NEW METHOD BASED ON THE PRISMATIC HULL  

 
In order to obtain a general measure of 

aJ ,2 , we propose to generalize the method proposed by Li and De Freitas 

(2002) to cases involving complex three-dimensional loads. We have therefore decided to retain the amplitudes 
evaluated along the principal axes of the loading path in 5E  and retain the norm in the assessment of 

aJ ,2 .  
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For these axes, we propose to make an analysis of the eigenvectors of the matrix of "mean squares” SV  of )(tS : 
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Denoting [ ]T54321 ,,,, RRRRR=R , the amplitudes reached by the stresses along these axes, we obtain an 

unique measure of 
aJ ,2 : 
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The complete methodology can be then described as follows:  
 

1. Transformation in 5E  of the stress history )(tσ  : )(.)( tt σPS = ;  

2. Evaluation of the matrix SV  (which can be easily evaluated for complex signals using the Fourier Transform);  

3. Evaluation of ( ) ( ) ( ) ( ) ( )[ ]T54321 S,S,S,S,S)()( ttttttt ′′′′′=⋅=′ STS , the vector associated to )(tS  from an 

orthogonal transformation, such that ITT =T  ( I being the identity matrix);  

4. Assessment of R  from the maxima and minima of )(tS′ : ( ) ( )

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5. Calculation of the norm of the vector R  to produce the measure of 
aJ ,2  from the eq. (6) 

 
In the transformation of the third step, T  is a matrix containing the five eigenvectors of SV . These five vectors are in 

fact the principal axes of the load. In addition, T can also be interpreted as a rotation matrix if for a suitable choice of 
signs of these vectors, ( ) 1det =T . We further note that the proposed methodology is direct and does not need to 

perform iterations. 
To illustrate simply the method, let consider two current two-dimensional examples of the literature: a test of tensile 

shear (7) and a biaxial test (8) such as: 
 

( ) ( )xyaxymxyxyaxxmxxxx tttt δωσσσωσσσ −+=+= sin)(,sin)( ,,,,  (7) 

( ) ( )yyayymyyyyaxxmxxxx tttt δωσσσωσσσ −+=+= sin)(,sin)( ,,,,  (8) 

 
Under these loads, •δ  are the phase shift between the two signals, while the quantities ( a,•σ , a,•τ ) and ( m,•σ , m,•τ ) 

correspond to the amplitudes and mean over time of )(tσ .  

For the loading (7), we can write: 
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and finally obtain 2
,

2
,3

1
,2 axyaxxaJ σσ += . Then we notice that the phase is not involved in this result. This is a 

finding that can be confirmed experimentally for mild steel or for a material such as 34Cr4 (Liu, 1991).  
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Following a development similar for the load (8), we have: 
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,2 −+=  . In this case, the expression is function of the phase as 

showed by Papadopoulos in [12] with a maximum amplitude for °= 180yyδ .  

We can verify that the proposed method allows us to obtain the same results as those in plane stress presented by Li 
and De Freitas (2002) for sinusoidal, triangular or square loads type. But it also produces the general result proposed by 
Papadopoulos (1995) for 3D problems: 
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(10) 

 
Geometrically, this method generalizes therefore the elliptical hull of Li and De Freitas (2002) by an ellipsoid in 

5E . However, this interpretation is correct only for sinusoidal and synchronous loads. Indeed, looking after the 

amplitudes of the principal axes of complex load paths (for example, an asynchronous loading as represented in the Fig. 
1), it is more general to consider that this path is circumscribed by a prismatic hull. We can call this method "the 
method of Prismatic Hull in the Principal Repair". 

 
4. ILLUSTRATIVE EXAMPLES  

 
Let consider as a first illustrative example a load such as: 
 

( )tt axxxx ωσσ sin)( ,= ,  

( )xyxyaxyxy tt δωλσσ −= sin)( ,   

 
with MPa 263, =axxσ , MPa 132, =axyσ  and 4=xyλ . The projections in 5E  of the vector )(tS′ are represented in 

the Fig. 1.(a), (b) and (c) for °= 0xyδ , °= 45xyδ  and °= 90xyδ  respectively. In this case, the matrix SV  is diagonal 

and similar to the one of (9) for this part. The values given on these figures are the measure of the semi-axes and the 
associated norms. We have then: 
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We can therefore conclude with this numerical result and its geometrical interpretation on the various figures that 

aJ ,2
 

is independent of the phase in this load case. This behavior may be typical of a ductile material such as GGG60 for 
example (Liu, 1991).  

Let consider now as second example, a more complex loading with the following form: 
 

( )tt axxxx ωσσ sin)( ,= , 

( ) ( )[ ]ttt axyxy ωωσσ 4sinsin)( , +=   
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with MPa 200, =axxσ  and MPa 100, =axyσ . The projections in 5E  of the vectors )(tS  and )(tS′ are described in 

the Fig. 2.(a) and 2.(b). The values given on these figures are once again the measure of the semi-axes and the 
associated norms, and for this example, we have: 
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Thus, we see on this more complex situation of multiaxial and asynchronous loading, that the norm given by the 

maxima in the principal direction is greater than that given in 5E . 
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Fig. 1. Projections in 5E  of )(tS′  for (a) °= 0xyδ  (b) °= 45xyδ  (c) °= 90xyδ   
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Fig. 2. Projection in the five dimensions space of the vectors (a) )(tS  and (b) )(tS′   
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5. CONCLUSION 

 
We have proposed in this work a new definition of the equivalent shear stress amplitude. This definition allows 

generalizing the method of Li and De Freitas (2002) in 3D. It allows to retrieve the results presented by Li and De 
Freitas for plane loads (sinusoidal or not) and also the general expression proposed by Papadopoulos (1995) for 3D 
problems. The operation of this method is illustrated by simple examples of tensile shear and biaxial tension. 
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