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Abstract. This work analyzes the discrete representation method to compute the acoustic wave generated by ultrasonic 

transducers, its interaction with a concave circular defect on a plane surface, and the echoes received by the 

transducer. The method is divided into three computational parts. As first step, the velocity potential impulse response 

is determined at the interface using the Rayleigh integral. In a second step, the reflected field is calculated considering 

that every elementary portion of the interface radiates a hemispherical wave (Huygens principle). Finally, the acoustic 

pressure over the surface of the receiver is determined by a temporal convolution between the excitation signal and the 

spatial reflected velocity potential impulse response. The accuracy and the temporal computational cost depend on the 

spatial sampling of the aperture and interface, and on the time sampling of the transmitted signals. The aim of the work 

is to determine a compromise between the accuracy and the computational time, having the temporal sampling of the 

transmitted signal and the spatial sampling of the aperture and interface with the defect as variables. 
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1. INTRODUCTION  

 

Modeling of the echo responses caused by circular type defects is an important tool for nondestructive testing using 

broadband ultrasonic transducer. For instance, the preventive maintenance of pipelines requires finding pitting corrosion 

defects, which can be done by using pulse-eco mode. It tries to get as much information as possible from the existing 

defect. However, identifying the defect geometry is not an easy task in realistic situation. Modeling of echo responses 

from circular concavity defects allows both recognizing the variability of echoes as corrosion grows and selecting the 

optimal broadband ultrasonic transducer, such that the axial and lateral resolutions are improved. In this work the 

discrete representation method is described. 

The discrete representation method (Piwakowski et al, 1989 and 1999) computationally predicts the echo response 

of arbitrary geometry defects. It uses a model that calculates the longitudinal wave evolution caused by interfaces 

(Buiochi et al, 2004), based on the impulse response method (Stepanishen, 1971). Both methods are suitable for all field 

regions and can be performed for any excitation wavelength. 

The validation of the wave propagation models implemented in the ongoing paper requires experimental 

corroboration, which is done by using broadband ultrasonic transducers operating in pulse-echo mode, and a circular 

concavity defect embedded in planar reflector. A 19-mm-diam 2.25-MHz transducer and a 6.3-mm-diam, a 10-mm-

diam and 19-mm-diam 5-MHz transducers were used. The errors between experimental and theoretical curves were 

analyzed by varying the aperture and the reflector surface discretization, and the processing times were studied.  

 

2. DISCRETE REPRESENTATION METHOD 

 

The computational method solution proposed by Buiochi et al. (Buiochi et al, 2004), which calculates the acoustic 

field through interfaces, is easily used to calculate the pulse-echo responses using the same theoretical concepts. The 

proposed solution is an approximated method that operates by dividing the aperture and the interface with a defect into 

elementary areas, as shown in Fig. 1. The radiated and reflected acoustic fields result from the superposition of the 

hemispherical waves generated, respectively (Harris, 1981, Robinson et al, 1974 and Weight, 1971), from each emitter 

and interface elementary areas. In this work, as the defect is slightly concave, and the emitter/receiver aperture and the 

planar interface are parallels, the mode conversion at the reflector surfaces was not considered.  

Considering an aperture with arbitrary radiating surface SA embedded in an infinite rigid baffle, the velocity 

potential impulse response on each point Pi at the interface due to the aperture radiation is given by: 
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where rai is the distance from each radiating elementary area dSa to the point Pi. 
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Figure1. Arbitrary geometry used to determine the pulse-echo mode response using discrete representation method. 

 

Assume that the interface with defect is embedded in an infinite soft baffle and that it is large enough to intercept 

the main incident energy of the acoustic beam. The whole-extended interface and the defect are approximated by 

elementary areas dSi. In each of the receptor aperture elementary areas dSb, the velocity potential impulse response is 

calculated from the impulse response obtained at the interface by: 
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where SI is the surface of the interface with the defect, rib is the distance from the elementary area dSi located at ir
r
 to the 

point located at br
r

 in the aperture, and θib is the angle between the normal vector at Pi and the vector ibr
r
. 

Finally, the spatial acoustic pressure ),( trp b

r

 over the surface of the finite receiver is calculated by the following 

temporal convolution: 
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where )(tv  is the excitation signal, ρ is the density of the propagation medium, and ),( trh b
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 is defined by: 
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3. RESULTS 

Echo responses were obtained from a circular concavity defect to test the validity of the discrete representation 
method. Fig. 2 shows the geometry of such defect, which was produced on the plane surface of an aluminum solid 
sample. It also shows the seven positions used to simulate the transducers displacements. Setting the center of the defect 
as zero (position 1), the positions 1 through 7 are displaced xoff = 0, 5, 10, 15, 20, 25 and 30 mm, respectively. The 
transducers were placed 10 mm from the plane surface of the sample and were excited with short pulses by a 
pulser/receiver Panametrics 5072PR, Oscilloscope DSO6052-A of 500MHz (Agilent Technologies). All measurements 
were carried out in water (ρ=1000 kg/m3, c=1480 m/s), using four transducers: 19-mm-diam 2.25-MHz transducer 
25MHz (V305-512968, Panametrics, USA), 6.3-mm-diam 5-MHz transducer (0043V3 alpha, Aeroteck, USA), a 10-mm-
diam 5-MHz transducer (USP-EPUSP, Brazil), and 19-mm-diam 5-MHz transducer (008700 alpha, Aeroteck, USA). 

Simulations were performed in Matlab using the same parameters described above for the experiments in order to 

allow the comparison of echo responses arising from the defect. The excitation signals used in the simulations were 

acquired by a 0.6-mm-diameter needle hydrophone placed approximately 3 mm from the transducer faces, considering 

only the plane waves. For the discrete representation method, the emitter aperture, the interface with the defect, and the 

receiver aperture discretizations (∆x=∆y) were, respectively, 0.15 mm, 0.2mm and 0.2 mm. For all cases, the sampling 

period was 16 ns. 

To give an indication of the approach accuracy, the error respect to the experimental echo response has been 

calculated for every simulated echo signal in the time domain as: 
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Where sE(i) is the experimental signal, sC(i) is the signal computed by the discrete representation method and N the 

number of samples. 

 

 

 



 

 

 

Figure2. Experimental geometry. (a) Positions 1, 2, 3, 4, 5, 6 and 7 represent, respectively, the transducers displaced 0, 
5, 10, 15, 20, 25 and 30 mm from the defect axis; (b) position 7 represented by the 3D model. 

 

 

The theoretical and experimental results shown in Fig. 3 until 7 were obtained from a 5-MHz transducer with 

diameter 6.3 mm at positions 7, 4, 3, 2 and 1, respectively. All signals were normalized by the maximum simulated and 

experimental amplitudes obtained at position 7. For this transducer, the relative errors between the experimental and 

theoretical echo responses for positions 1, 2, 3, 4 and 7 are, respectively, 12.6%, 3.8%, 1.4%, 11.1% and 16.0%. 

 

 

 
Figure3. Discrete representation method (dash-dotted line) 

and experimental (solid line) signals obtained by using the 

6.3-mm-diam 5-MHz transducer displaced off the defect 

axis: (Position 7) 30mm. 

 
Figure 4. Discrete representation method (dash-dotted 

line) and experimental (solid line) signals obtained by 

using the 6.3-mm-diam 5-MHz transducer displaced off 

the defect axis: (Position 4) 15mm.

 



 

 

 
Figure 5. Discrete representation method (dash-dotted line) and experimental (solid line) signals obtained by using the 

6.3-mm-diam 5-MHz transducer displaced off the defect axis: (Position 3) 10mm. 

 

 
Figure 6. Discrete representation method (dash-dotted line) 

and experimental (solid line) signals obtained by using the 

6.3-mm-diam 5-MHz transducer displaced off the defect axis: 

(Position 2) 5mm. 

 
Figure 7. Discrete representation method (dash-dotted 

line) and experimental (solid line) signals obtained by 

using the 6.3-mm-diam 5-MHz transducer displaced on 

the defect axis: (Position 1) 0 mm.

 

Figures 8, 9 and 10 show comparisons between theoretical and experimental echo responses obtained, from a 19-

mm-diam 2.25-MHz transducer, a 10-mm-diam 5-MHz transducer, and a 19-mm-diam 5-MHz transducer, at four 

different positions. 

These transducers were displaced off the defect axis: 0mm (Fig. 8(a), Fig. 9(a), Fig. 12(a)), 5mm (Fig. 8(b), Fig. 

9(b), Fig. 10(b)), 10mm (Fig. 8(c), Fig. 9(c), Fig. 10(c)), and 15mm (Fig. 8(d), Fig. 9(d), Fig. 10(d)). All echoes were 

normalized by the maximum simulated and experimental amplitudes, using the 6.3-mm-diam 5-MHz transducer at 

position 7 (Fig. 2).  

In all cases, the relative errors between the experimental and theoretical echo responses for positions 1, 2, 3 and 4 

are, respectively: 18.8%, 3.8%, 1.4% and 11.1% for figure 8; 7.4%, 3.0%, 2.4% and 7.6% for figure 9; and 2.7%, 3.6%, 

12.9% and 12.5% for figure 10.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Figure 8. Discrete representation method (dash-dotted lines) and experimental (solid lines) signals obtained by using the 

19-mm-diam 2.25-MHz transducer displaced off the defect axis: (a) position 1 = 0mm, (b) position 2 = 5mm, (c) 

position 3 = 10mm, and (d) position 4 = 15mm. 

 

 

 



 

 

 
Figure 9. Discrete representation method (dash-dot line) and experimental (solid lines) signals obtained by using the 10-

mm-diam 5-MHz transducer displaced off the defect axis: (a) position 1 = 0mm, (b) position 2 = 5mm, (c) position 3 = 

10mm, and (d) position 4 = 15mm. 

 

 

 

 
Figure10. Discrete representation method (dash-dot line) and experimental (solid lines) signals obtained by using the 

19-mm-diam 5-MHz transducer displaced off the defect axis: (a) position 1 = 0mm, (b) position 2 = 5mm, (c) position 3 

= 10mm, and (d) position 4 = 15mm. 

 

For instance, using a 2.4-GHz Intel Core 2 Duo computer, the processing time for the discrete representation method 

takes some hours (2-12h, depending on the discretization). Table 1 shows processing times for positions 1, 2, 3 and 4, 

using four different transducers, considering discretization ∆x= 0.2mm. Table 2 shows the computational times in 

position 1 (center of the defect) for four discretization 0.4mm, 0.6mm, 0.8mm, and 1.0mm, using the same transducers 

shown in table 1.  

 

 

 

 

 



 

 

Table 1: Computational time for each transducer in positions 1 to 4. 

Transducers Computational time (minute) 

Frequency  Diameter Position 1 Position 2 Position 3 Position 4 

2.25MHz 19mm 145.1  210.3 264.4 317.6 

5MHz 19mm 142.5  202.6 313.1 331.5 

5MHz 10mm 32.9  44.1 53.0 72.4 

5MHz 6.3mm  13.7  15.9  26.3 34.2 

 

 

Table 2: Computational time for each transducer varying the discretization ∆x. 

Transducers Computational time (minute) 

Frequency  Diameter ∆x=0.4mm ∆x=0.6mm ∆x=0.8mm ∆x=1.0mm 

2.25MHz 19mm 34.0 min  14.5 min 9.0 min  5.9 min  

5MHz 19mm 35.5 min 15.6 min 9.6 min 6.5 min 

5MHz 10mm 8.4 min 3.8 min 2.7 min 1.6 min 

5MHz 6.3mm 3.6 min  1.6 min 1.0 min 0.7 min 

 

 

 

3.1. Discretization 

 

The accuracy of the discrete representation method depends on spatial and temporal samplings (Buiochi et al, 2004). 

The greater the spatial discretization ∆x, the more the simulation approaches the exact impulse response method 

solution (Piwakowski and Sbai, 1999). Moreover, greater temporal discretization leads to better resolution. In this work 

the temporal discretization was kept at 16ns. Since the computational time increases with the discretizations, a balance 

between the best samplings and the computational time should be found.  

Figure 11 shows the relative errors obtained with the ratio ∆x/λ of 0.30, 0.68, 0.91, 1.22 and 1.35, using the same 

four transducers placed in position 1 (center of the defect). It indicates that the relative error increases as the 

discretization of both the transducer and the defect surface decreases. Figure 12 shows the discrete representation 

method and experimental echoes obtained by using the 2.25-MHz transducer placed in position 7, where in (a) ∆x / λ = 

0.68, (b) ∆x / λ = 0.91, (c) ∆x / λ = 1.22, and (d) ∆x / λ = 1.52. There is a large deviation between the simulated and 

experimental results for ∆x / λ greater than 0.91. The small phase difference between simulated and experimental 

waveforms is due to the imprecision in the propagation velocity obtained from the water temperature measurement and 

used in the simulation, and the difficulty to experimentally adjust the parallelism between the plane interface and the 

transducer.  

  

 

 



 

 

 

Figure 11: Relative errors with ratio ∆x/λ of 0.30, 0.68, 0.91, 1.22, 1.35. 

 

 

 

 

Figure12: Discrete representation method (dash-dotted lines) and experimental (solid lines) signals obtained by 

using the 2.25 MHz transducer in position 7: (a) ∆x / λ = 0.68, (b) ∆x / λ = 0.91, (c) ∆x / λ = 1.22, and (d) ∆x / λ = 1.52. 

 

 

 



 

 

4. CONCLUSION 

 

By using three 5-MHz transducers with diameters of 6.3, 10 and 19 mm and a 19mm-diam 2.25MHz transducer, and 

considering a ∆x of 0.2mm and a slightly curved surface of the defect, a good correlation between experimental and 

theoretical pressure responses from a concave circular defect was shown. The difference of the experimental and 

theoretical results can be minimized by means of an adequate choice of the ratio between the discretization and 

wavelength (∆x /λ). An acceptable relative error value is a 15% for ∆x /λ = 0.68.  

The discrete representation method can be easily extended to arbitrary reflectors with complex geometry defects to 

predict the echo responses. The knowledge of the pressure response simulated for a given geometry allows accurate 

interpretations of the echoes generated from corrosions in a realistic pipeline inspection. It provides good understanding 

of the spatial points where the transducers start and end traveling across the defect.   

 

 

5. ACKNOWLEDGEMENTS 

  

The authors thank the Brazilian government institutions Petrobras / ANP, FAPESP, and CNPq for the financial 

support that made this work possible. 

  

6. REFERENCES 

Buiochi, F., Martínez, O., Ullate, L. G. and Espinosa, F. M. de, “A computational method to calculate the longitudinal 

wave evolution caused by interfaces between isotropic media”, IEEE Trans. Ultrason., Ferroelect., and Freq. Contr. 

Vol. 51, n . 2, pp. 181-192, 2004.  

Harris, G. R., “Transient field of a baffled planar piston having an arbitrary vibration amplitude distribution,” J. 

Acoust.Soc.Am.,vol.70,pp.186-204, 1981.  

McLaren, S., Weight, J. P., “Transmit-receive mode response from finite-sized targets in fluid media”, J. Acoust. Soc. 

Am., vol. 82, n. 6, pp. 2102-2112, 1987.  

Piwakowski, B. and Delannoy, B., “Method for computing spatial pulse response: Time-domain approach”, J. Acoust. 

Soc. Am., vol. 86, n. 6, pp. 2422-2432, 1989.  

Piwakowski, B. and Sbai,  K., “A new approach to calculate the field radiated from arbitrarily structured transducer 

arrays”, IEEE Trans. Ultrason., Ferroelect., and Freq. Contr., vol. 46, n. 2, pp. 422-440, 1999. 

Robinson, D. E., Lees, S. and Bess, L., “Near field transient radiation patterns for circular pistons,” IEEE Trans. 

Acoust., Speech and Signal Processing, vol. 22, n. 6, pp. 395-403, 1974.   

Stepanishen, P. R., “Transient radiation from piston in an infinite planar baffle”, J. Acoust. Soc. Am., vol. 49, pp.1629-

1638, 1971. 

Weight, J.P., “Ultrasonic beam structures in fluid media”, J. Acoust. Soc. Am., vol. 76, pp. 1184-1191, 1984.  

  

 

7. RESPONSIBILITY NOTICE 

 

The authors are the only responsible for the printed material included in this paper. 

 

 


