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Abstract. Inverse problems related to the interaction of radiation with participating media have been attracting the 

attention of various researchers for many years due to the relevant applications not only in engineering, but also in 

astrophysics, physical oceanography (hydrologic optics), remote sensing and atmosphere/hydrosphere optics among 

many others. In this work the determination the single scattering albedo, optical thickness and diffuse reflectivities in 

one-dimensional homogeneous participating media is investigated using neuro-fuzzy networks, and a hybrid solution of 

neuro-fuzzy networks with artificial neural networks. Such neural networks are massively distributed and  parallel 

structures, inspired upon the functioning of the human brain, able to implemented in software and hardware, and they 

try to reproduce the dynamics of biological networks. As they are developed through algorithmic numerals, the 

knowledge which is symbolic remains represented by the network in numerical form. Inverse problems are very 

susceptible to the error which is always present in experimental data, being therefore an essential part of its 

formulations and solutions. The fuzzy logic, which is based upon the ability of human beings to deal with inexact, 

imprecise and vague information, gives us a tool that may be helpful to handle with the experimental uncertainty. Here 

we use hybrid neuro-fuzzy systems for the solution of inverse problems in radiative transfer.  
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1. INTRODUCTION  

 

The solution of direct and inverse problems of radiative transfer is an efficient tool for the estimation of optical 

properties in different ways. The analysis of inverse problems involving the interaction of different types of particles 

and radiation such as neutrons, gamma rays and photons, with a participating medium, i.e., an absorbing, emitting and 

scattering media, it has been widely used in the development of techniques for applications in engineering, medicine, 

geophysics, astrophysics, and in other areas (Alvarez Acevedo et al., 2002). 

A classic example of participating medium is the earth's atmosphere which exerts a mitigating effect of solar 

radiation. Other examples of participating medium are the products of combustion engine - rockets and thermal 

protection for spacecraft (Pessoa Filho, 1998) and others. 

In mathematical modeling of the direct problem of radiative transfer in a participating medium is the use of linear 

equation or Boltzmann equation of radiative transfer (Radiative Transfer Equation - RTE) which results from the 

application of the principle of conservation of energy in a way. The inverse problems can be expressed mathematically 

so explicit or implicit (Silva Neto, 2002), and several techniques have been developed to solve them (Silva Neto e 

Becceneri, 2009; Campos Velho, 2008; Silva Neto e Moura Neto, 2005; Beck et al., 1985). 

In the present work is proposed to determine the estimate of the optical thickness, single scattering albedo and 

diffuse reflectivity coefficients at the inner side of the one-dimensional participant boundary surfaces a using for the 

solution of the inverse problem of radiative transfer with neuro-fuzzy networks and a method of neuro-fuzzy networks 

combined with an artificial neural network. 

 

2. MATHEMATICAL FORMULATION AND SOLUTION OF THE DIRECT PROBLEM 

 

The direct problem in radiative transfer in participating medium is to calculate the values of radiation intensity at 

any position of the medium and turn in any direction, when the properties of the medium and boundary conditions are 

known. 

Consider the problem of transport of radiation in a participating medium one-dimensional, homogeneous (the 

coefficients of absorption and scattering do not depend on the position), without internal sources (the term emission is 

considered negligible in comparison external radiation incident in the medium), isotropic scattering, gray (the radiative 

properties of the medium independent of the wavelength of radiation) and is subject to the effect of isotropic radiation. 
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The physical situation is represented schematically in Fig. 1, where a one-dimensional homogeneous medium of 

optical thickness (no spectral dependence), isotropic scattering with diffuse reflecting surfaces, is subject to the 

impact of external radiation in their boundary surfaces. 

When the boundary conditions and the material properties are know, the direct problem of radiative transfer can be 

solved by providing the values of the radiation intensity for every point in the spatial and angular domains. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 – Schematical representation of one-dimensional homogeneous participating, with inner diffusely reflecting boundary 

surfaces, subjected to isotropic external radiation 

 

In the case of azymuthal symmetry and neglecting the term of issue, the linearized Boltzmann equation is written as 

 

 

with the following boundary conditions 

  

 

  

 

where is the function of the phase of anisotropic scattering,  the intensity of electromagnetic radiation, the 

optical variable,  the optical thickness of the medium,  the cosine of the polar angle, i.e., the cosine of the angle of 

the beam of radiation with the axis the single scattering albedo, and the diffuse reflectivity of the inner side of 

the medium and the intensities of isotropic radiation sources are represented by e  on the boundary surfaces 

 and . 

When the geometry, the radiative properties and the boundary  conditions are know, problem as in Eq. (1), may be 

solved yielding the values of the radiation intensity  for  and . 

The problem modeled by Eq. (1) is solved using the method of discrete ordinates for Chandrasekhar, in which the 

field of polar angle is discretized as shown in Fig. 2 and the integral on the right side of Eq. (1) is replaced by a Gauss 

quadrature. 

 

 

 

 

 

 

 

 

Figura 2 - Discretização do domínio do ângulo polar. 

 

For the terms on the left side of Eq. (1) is used an approximation by finite differences, and making steps forward and 

backward, from  to  and to , respectively, obtained is the value of the intensity of radiation 

  for all  and all  of discretized computational domain. 
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3. MATHEMATICAL FORMULATION AND SOLUTION OF THE INVERSE PROBLEM WITH NEURO-

FUZZY NETWORK AND NEURO-FUZZY COMMITTEE 

 

The Russian researcher in the field of inverse problems Oleg Mikailivitch Alifanov, "the solution of an inverse 

problem is to determine causes based on observation of its effects" (Campos Velho, 2008). Silva Neto and Moura Neto 

(2005) classify the inverse problems on the nature and extent of the problem: 

Type I: Estimation of a finite number of parameters in a model of finite size; 

Type II: Estimation of a finite number of parameters in a model of infinite dimension; 

Type III: Estimation of an infinite number of parameters or a function in a model of infinite dimension. 

 

This work has been a problem of type II related to the estimation of two parameters (constants) in a problem 

modeled by a differential- integration equation. 

Knowing it measures the intensity of radiation leaving the participant medium for the various polar angles , i.e., 

, where  is the total number of experimental data available, and the radiative properties of the 

medium   are unknown, seeks to solve the inverse problem from the values of intensities of radiation 

leaving the medium under study. 

For convenience in the formulation of the inverse problem considered here is that the number of experimental data 

coincides with the number of directions used in the discretization of the angular domain, and furthermore,  is 

measured in the polar angle corresponding to , where  as Fig. 2. 

Several formulations can be used to solve the inverse problem in radiative transfer, but have been the object of much 

interests those that an optimization problem in which a cost functions is minimized. For this reason, deterministic 

methods, stochastic and hybrid have been used to minimize the function of Least-Mean-Square between intensities 

calculated and measures the radiation intensity that leaves the medium, and then determined with this procedure the 

radiative properties required. 

As experimental data are not available, it built a set of summary data through a computational solution based on the 

direct problem. 

Thus, the vector of unknowns , where 

  
 

is determined from the intensities of radiation 

  

where  represents the values of radiation intensity by using the exact values of the parameters that a real 

application are not available, which are seeking to determine the solution of the inverse problem,  the standard 

deviation of simulated errors of experimental data, and  is a pseudo-random number generated in the interval [-1,1]. 

Using the experimental data synthetic , will be presented in the next section the estimates for the diffuse 

reflectivities coefficients, optical thickness and scattering albedo, as a solution to the inverse problem of radiative 

transfer through neuro-fuzzy networks and neuro-fuzzy committee machines. 

 

 

 

 

 

 

 

 

 

 
 

Figure 3 - Schematic representation of experimental data 

 

3.1. Neuro-fuzzy network 

 

The development of systems with ability to use knowledge to perform tasks or solve complex problems, which are 

similar to real problems is the key to developing intelligent systems. Some techniques in the development of 

computational systems have particular features that address only a specific set of problems. The artificial neural 

networks and fuzzy systems, for example, do not flee to this feature. While neural networks are optimal for detecting 

patterns, they are not efficient to explain how these standards are achieved. But the fuzzy systems that work with the 

imprecision and explain well its decision-making cannot automatically generate the rules that have taken that decision. 
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So many hybrid intelligent systems have been developed, where two or more techniques are combined to meet their 

individual limitations. 

The neural networks and fuzzy systems provide the integration of this technology, called neuro-fuzzy systems. With 

the main objective of combining fuzzy systems to represent and process knowledge in a clear and easy to interpret, and 

use that learning ability in neural networks. 

The neural networks are a good way to adjust the knowledge experts and automatically generate new fuzzy rules and 

new functions of relevance. Furthermore, fuzzy logic enhances the generalization ability of the systems of neural 

networks, promoting a more realistic output when extrapolation is needed beyond the limits of the training data. 

A neuro-fuzzy system consists of various components of traditional fuzzy systems, except for the fact that each 

stage is composed of a layer of neurons and the learning capability of the neural network is used to obtain knowledge of 

the system. 

Figure 5 represents the phase of training the neuro-fuzzy network, seeking to increase the performance of the system 

you can use a hybrid learning, combining the method of least squares with the method of gradient descending. To do 

this you must perform two steps: one direct and one reverse (Jang, 1997). 

In phase direct the input signal will spread layer by layer until the layer where the consequent parameters of the rule 

are identified by the of least squares method. 

In the reverse phase error signal is back propagated and the parameters of the background are updated by the 

gradient descending method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5 - Block diagram of the Neuro-fuzzy network training algorithm 
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As the neuro-fuzzy network developed for this work only allows the processing of an output, try to overcome this 

limit with the use of machinery committee. In this case, using neuro-fuzzy committees. 

 

3.2. Neuro-fuzzy committees 

 

The committee machine is a model based on a combination of techniques for recognition, based on a weighted mix 

of staff expertise (Haykin, 2001). A mixture of experts is composed of agents J and one neural network (called the 

combined system) which provides the weighting factors of the output of J agents. The J individual agents are trained in 

neuro-fuzzy networks and setting the weights of the neural network is performed based on backpropagation error of the 

committee, through an artificial neural network according to Fig 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6: Schematic representation of the committee neuro-fuzzy 

 

3.4. Inverse problem solution 

 

To solve the inverse problem with the determination of optical thickness, the single scattering albedo and diffuse 

reflectivity coefficients of the boundary inner side of a participant one-dimensional homogeneous medium, using the 

measures of intensity of radiation leaving the medium participant. The modeling of the problem (direct and inverse) and 

the mathematical formulations in this section also described in section 2, as represented in Fig 7. 

So in summary form, the direct problem is known and the geometry of the medium, the radiative properties and 

boundary conditions to determine the intensity of radiation that leaves the medium , where  represents the 

variable optics (limits  and ) at , and  polar angle between the direction of the beam and the 

axis In this case,  are the reflectivities in the limits  and ,  respectively.  
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Figure 7: Schematic diagram - Problem with Direct and Inverse Problems 

 

 

  

Artificial Neural Network  
 

 

 
 

 

 

 

Neuro-fuzzy 1 

 
Neuro-fuzzy 1 

Neuro-fuzzy N 

 

 
Neuro-fuzzy N 

 

 

 

 

 

 

 

Neuro-fuzzy 1 

 
Neuro-fuzzy 1 

Neuro-fuzzy N 

 

 
Neuro-fuzzy N 

 

 

 

 

 

 

 

Neuro-fuzzy 1 

 
Neuro-fuzzy 1 

Neuro-fuzzy N 

 

 
Neuro-fuzzy N 

 

 

 

 

 

 

 

Neuro-fuzzy 1 

 
Neuro-fuzzy 1 

Neuro-fuzzy N 

 

 
Neuro-fuzzy N 

 

 

 

 

 

 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

 

Assuming that the radiative properties of the environment are unknown, which is a severe restriction for the 

application of  direct problem, but there are available experimental data of intensities of radiation leaving the participant 

medium at limits   and , and that the number of experimental data is equal to the number of directions used 

in the discretization the field of polar angle , using the method described in section 2 through sorted with discrete 

Gauss-Legendre quadrature and approximation by finite differences for discretization of the domain space, so that the 

intensities are measured for each corresponding value of  

Suppose further that the experimental data can be generated by simulation and thus created many pairs as are 

necessary for use in any technique for determining these parameters, the format is appropriate for their application to 

that is made possible in inverse form the determination of radiative properties. 

 

4. RESULTS AND DISCUSSION 

 

To validate the solution of the inverse problem of radiative transfer through neuro-fuzzy network, and the committee 

of the neuro-fuzzy network, the results of these solutions will be compared with results obtained with the direct solution 

of the problem. Please note that it is necessary to solve the direct problem several times, which requires a high 

computational effort. 

From experimental data of intensities of radiation in this case obtained by simulation, which means leave the 

participant  medium in the limits  and , and that the number of experimental data is equal to the number of 

directions  used in discretization of the field angle polar , so that the intensities are measured for each corresponding 

value of .  May be certain values optical thickness single scattering albedo  and diffuse reflectivity 

coefficients of the inner side in the participating medium and .  

Due to restrictions imposed by the neuro-fuzzy system used, as its ability to produce an output only in the 

architecture of the neuro-fuzzy network, and the need to determine together the diffuse reflectivity ( and ), was 

chosen to use the combination a hybrid method of neuro-fuzzy networks for each of the two radiative properties to be 

determined, and a method that will act as the combiner of the machine results of committee. 

We constructed four sets of different neuro-fuzzy networks for the determination of each variable radiative, single 

scattering albedo , optical thickness and the diffuse reflectivity ( and ) according to the characteristics 

described in Tab. 1 and represented in Fig. 8. 
 

Table 1: Neuro-fuzzy networks committee parameters. 
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Maximum number of epochs 100 

Tolerance of mean square error 310  

Number of membership functions  by NF network  3 

Number of experimental data  by neuro-fuzzy network  6 per sample 

Number of samples of data 100 

Number of rules  729 

Number of neuro-fuzzy networks 4 for each variable 

Type of membership function bell shape and 

triangular 

Training method hybrid and 
backpropagation 

 
 

The results of neuro-fuzzy networks have been used on a machine with a combined committee of Artificial Neural 

Network (ANN), i.e., the results obtained using neuro-fuzzy networks are submitted to the ANN previously trained, 

constructed according to the characteristics described in Tab . 2. 
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Table 2: Combiner ANN parameters. 

 

 

N
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Type of artificial neural network MLP (Cascade Multi-layer Perceptron) 

Number of hidden layers 2 

Number of neurons in hidden layers 40 e 30 

Number of neurons in output layer 20 

Activation function Sigmoid 

Training method Levenberg-Marquardt 

Maximum number of epochs 5000 

Minimum error 310  

Learning rate 0,05 

 
For the committee training of neuro-fuzzy networks are used the same 100 samples of data for all networks.  

At the end of this phase of neuro-fuzzy networks training, the same data used during this phase are presented to 

input layer of neural network, producing a second phase of training for the artificial neural network. 

Table 3 shows the values of the radiative properties: calculated by the direct method, determined by the neuro-fuzzy 

networks and the committee and their respective percentage errors for values calculated by the direct method. 

 
Table 3: Results of direct method, of neuro-fuzzy networks and neuro-fuzzy committee from the input data without noise. 

 
 Direct method  

value 

Neuro-fuzzy  Committee 

output 
 

%error output 
 

%error 

 0,1713 0,1789 4,38 0,1647 3,88 

 0,8157 0,6676 18,16 0,8128 0,36 

 0,9469 0,8393 11,36 0,9481 0,13 

 0,9354 0,4704 49,72 0,9095 2,77 

 

Looking to evaluate the generalization ability of neuro-fuzzy network, were included in the random noise values of 

radiative intensities of the data generated according to Tab. 2, with variations between ± 3%, ± 5% and ± 7% and these 

data were submitted to the network. 

The results of the values of the radiative properties: the scattering albedo, optical thickness and coefficient of diffuse 

reflectivity of the participating medium determined by the neuro-fuzzy networks and also the committee of neuro-fuzzy 

networks, from the data of the radiative intensities that leave medium with the additive noise of ± 3%, ± 5% ± 7% are 

presented in Table 4, 5 and 6, respectively. As well, the error percentage of each of these data compared to results 

calculated by the direct method. 

 
 
 

 

 

 
 

Figure 8: Schematic diagram - Solution of Inverse Problems with Network NF Committees 
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Table 5: Results of: direct method, neuro-fuzzy networks and neuro-fuzzy committee from the input data with noise of ± 3%. 

 
 Direct method  

value 

Neuro-fuzzy  Committee 

output 
 

%error output 
 

%error 

 0,1713 0,1945 13,51 0,1690 1,38 

 0,8157 0,6568 19,49 0,8105 0,64 

 0,9469 0,8478 10,47 0,9499 0,33 

 0,9354 0,4699 49,76 0,9104 2,68 

 
 

Table 6: Results of: direct method, neuro-fuzzy networks and neuro-fuzzy committee from the input data with noise of ± 5%. 

 

 Direct method  

value 

Neuro-fuzzy  Committee 

output 
 

%error output 
 

%error 

 0,1713 0,1888 10,17 0,1703 0,63 

 0,8157 0,7724 5,32 0,8138 0,24 

 0,9469 0,9998 5,52 0,9623 1,63 

 0,9354 0,9519 1,77 0,9195 1,70 

 
Table 7: Results of: direct method, neuro-fuzzy networks and neuro-fuzzy committee from the input data with noise of ± 7%. 

 

 

 Direct method  

value 

Neuro-fuzzy  Committee 

output 
 

%error output 
 

%error 

 0,1713 0,1582 7,68 0,1652 3,59 

 0,8157 0,6253 23,35 0,8521 4,46 

 0,9469 0,8663 8,51 0,9369 1,05 

 0,9354 0,4757 49,15 0,9044 3,32 

 

Tables 4 to 7 are presented some comparisons of the results obtained by the neuro-fuzzy networks committee for 

known values of the radiative properties. Noting that in some cases the values determined by the NF committee 

combiner with ANN as present values very close to expected values, indicating a good ability to generalize from the 

host committee of the neuro-fuzzy networks combined with the ANN. 

 

5. CONCLUSIONS 

 

The results of the neuro-fuzzy networks and the committee machines, regardless of their limitations were 

satisfactory, a goal achieved is the holding of an important characteristic that is the speed of response, because once 

done the training of the NF committees, results for a new sample is a simple product of the weights of the networks. 

Unlike other methods for the solution of inverse problems in which a new sample carries a large amount of direct 

assessments of the problem and a large computational effort. 
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