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Abstract. This paper deals with modal parameters identification using output-only data. A linear, time-invariant, finite
dimensional mechanical system is considered, which is described by a stochastic state-space model excited by
unknown operating forces. In this approach, the stochastic state-space model considers the errors due to state-variable
and measurements, as integrant parts of the modeling, through a zero-mean white noise process. Subspace model
identification consists in the approximation of a structured subspace described in terms of an extended observability
matrix defined from a rank reduction process of a block Toeplitz matrix constructed from output-only data. This rank
reduction procedure is calculated by using singular value decomposition. System matrices are evaluated using the
shift-invariant property of the extended observability matrix. The natural frequencies, damping factors and modal
shapes are identified by means of eigenvalues and eigenvectors of the state matrix, respectively. The performance of
the presented approach is shown through simulation examples.

Keywords: modal parameters identification, output-only data, subspace-based algorithm, singular value
decomposition

1. INTRODUCTION

Mathematical modeling is an analytical approach used to describe the dynamic behavior of a phenomenon based on
physical laws. System identification is an approach, where experiments are performed on the system, and a parametric
model is subsequently fitted to the measured data by assigning a set of suitable numerical values to its parameters
(S6derstrom and Stoica, 1987). Both approaches are important in system analysis, design and control problems. In the
control community jargon, the process of fitting a state-space model to a multivariable linear time-invariant dynamic
system from experimental data is called state-space realization (Viberg, 1995). A state-space is minimal if there exists
no other realization of a lower degree to represent the system. The problem addressed in this paper deals with the
application of a minimum order state-space realization technique in modal parameter identification using output-only
data. More specifically, a time domain multivariable subspace-based parametric technique is used to identify the modal
parameters of a structural system by fitting a suitable observable part of a minimal state-space model for a finite number
of output-only data.

Modal parameter identification techniques are, classically, based on the input-output relationships (Maia and Silva,
1997). In general terms, a modal identification experiment is performed by fixing the structure to a test bench and
actuators are used to produce controlled types of input forces, which are required to match a theoretical linear dynamic
model, covering a frequency range which is compatible with both the experimental setup and desired region of
analytical interest. On the other hand, a very interesting problem can be formulated when the objective is to analyze the
dynamical behavior of a structure under operating conditions, where reality differs from the ideal laboratory
environment and the input forces are not known, or just impossible to be measured. Examples that can be included in
this situation consist in automotive structures excited by engine forces, offshore structures subjected to the turbulent
action of the swell, aircraft structures subjected to unmeasurable ambient excitation, or civil structures like a bridge
subjected to wind and traffic conditions (Abdelghani et al., 1999).

According to Peeters and Roeck (1999), there are many methods used to identify systems excited by unknown
inputs. Formally, for a completely unknown input, it can be assumed that the system is excited by a white Gaussian
process. A linear time-invariant autoregressive with moving average (ARMAYV) model is then fitted to the data, using a
prediction method (Soderstrom and Stoica, 1987). The MA characteristic of such an approach, leads to a highly non-
linear minimization problem in order to calculate the parameters of the model. The solution of such a problem has a
very large computational cost, especially for the multivariable parameters case. If the MA terms are omitted, in order to
reduce the computational coast, an ARV model can then be used and simple least squares optimization solution method
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can be applied. The problem with the least squares approach is the overparametrization of the model that is needed
resulting in a number of spurious numerical modes that must be separated from the true modes of the system.

Alternatively, subspace-based system identification methods have been used to overcome the drawbacks of the
traditional system identification techniques. In the present approach, a subspace method offers a reliable way to fit the
extended observation part of a multivariable stochastic state-space model realization, by means of a rank reduction
operation upon a block Toeplitz matrix formed from output-only data using singular values decomposition (SVD).
Stochastic state-space model considers the errors due to state-variable and measurements as integrant part of modeling
through a zero-mean white noise process. The computational effort in such a method is relatively small. No non-linear
optimization scheme is used and the system order can be estimated in a simple way. The state matrix is evaluated
using the shift-invariant property of an extended observability matrix. The natural frequencies, damping factors and
modal shapes are identified by means of eigenvalues and eigenvectors of the state matrix.

In this paper, a subspace technique is implemented for the identification of mechanical systems using output-only
data. The paper is organized as follows. Section 2 describes the basic model of mechanical systems, section 3 discusses
stochastic state-space models, to be used in output-only systems identification, section 4 focuses on the state-space
realization for output-only. The modal parameters estimation procedure is described in section 5. An example, based on
numerical simulations, is presented in section 6. Section 7 draws the main conclusions to the paper.

2. MATHEMATICAL MODELING OF MECHANICAL SYSTEMS

This section presents the basics of mathematical models of finite-dimensional, linear and time-invariant (LTI)
mechanical systems.

The equation of motion of a f degrees of freedom LTI mechanical system is represented by the following second
order matrix differential equation,

MZ(t)+Cz(t)+K z(t) =f(t) 1)

where M, C, K are, respectively, the mass, damping and stiffness matrices, all of dimension f x f . Vectors z(t)
and f(t), of dimension f x1 represent, respectively, the generalized displacement and external forces acting on the

system.
Equation (1) can be expressed in an equivalent continuous time state-space form (Gountier et al., 1993) as,

X(t) = A x(t)+B u(t) (2

with matrices A and B of dimension nxn, given by

y o ' d 5| 0 3
“I_MTK -MC o TS ©

where n=2 f is the the state-space system model order, x(t) = {z(t) Z(t)}T is the generalized state vector of
dimension nx1. Vector u(t) of dimension mx1 represents the non-null elements of the input vector f(t). Matrix U

of dimension f xm is the input selection matrix, such that f(t)=U; u(t), 1 is the identity matrix of dimension

f x f, and 0 denotes null matrices of appropriate dimensions.

Equation (2) constitutes the continuous-time state-space model for a finite dimensional LTI mechanical system.
Solution for the state vector x(t) at time t with an input u(t) and initial conditions x(to) is given by,

— t —
x(t) = eA0)x(t,) +feA<‘-f)§ u(e) dr @)
t

Experimental input-output data in modal analysis is obtained at equally spaced discrete time intervals. The
continuous-time state-space model therefore needs to be rewritten in terms of a discrete-time representation. Let At be

a constant time sampling interval. Substitution of t = (k +1)At and t, = kAt into Eq. (4) yields,

B (k+1)At
X[(k + DAt = eA Mx(kAt) + jeA[(k“)A‘-f] Bu(r)dr ©)
kAt
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Assuming that term u(z), of Eq. (5), has the constant value u(r) = u(kAt) over the interval kAt <7 < (k +1)At,
and performing a change of variable ¢ by 7 = (k + 1)At — 7, leads to,

At
xuk+nAq:eAmx«A0+!IeAfdfﬁlu«Ao (6)

0

Definition of the discrete quantities X[(k + 1)At] = x(k +1), u(k) = u(kAt) and matrices,

and Q)

allows for the description of a state-space form of the mechanical system in discrete-time through the following
expression,

x(k+2) = A x(k) + B u(k). (8)
The set of observation variables measured during the modal testing of a structure is written in the following form,

y(k) =C x(k) (9)
where the term y(k) is an output vector of dimension |x1, associated with | response measurements. Matrices A, B

and C, with appropriate dimensions, are, respectively, the state matrix, the input and output influence matrices.
Matrix A of Eq. (8) can be expressed in terms of its n eigenvalues and eigenvectors,

A=¥YAY! (10)

where matrix A =diag(z;) of dimension nxn, contains the eigenvalues z;, j=1,--,n of A. The columns of the

modal matrix W of dimension nx n are the corresponding eigenvectors.
The first line of Eq. (7) can be used, in order to calculate the modal parameters of a flexible structure, yielding also

a relationship between the state matrices A and A of the continuous and discrete formulations. The eigenvalues in the
two representations are related as.
Aj =log(z;)/At (11

The natural frequencies «;and damping factors &; are calculated as (Maia and Silva, 1997),
oj=|a;| and & =-Realln; /|1, (12)

where symbol | |denotes absolute value. The mode shape ¢ ;, associated to the j-th eigenvalue z;,which is the
observable part of the eigenvector ¥ ; , is then trivially calculated through Eq. (9) as,
3. STOCHASTIC STATE-SPACE MODEL FOR OUTPUT-ONLY SYSTEMS

This section deals with stochastic state-space model to be used in output-only parameter identification. Stochastic
components are included in the dynamic model, yielding the following deterministic-stochastic state-space model,

x(k +1) = A x(k) + B u(k) + w(k) (14)
y(k) =C x(k) + v(k) (15)



VI Congresso Nacional de Engenharia Mecéanica, 18 a 21 de Agosto 2010, Campina Grande - Paraiba

where vector w(k) of dimension nxZland vector v(k) of dimension Ix1are the system and observation noises,
respectively. The noise terms are assumed to be stationary white Gaussian processes with zero-mean and covariance
matrices given by,

(k) : : Q S
EKVVV(k)J(me vTu))}:[ST R}ékj, (16)

where E[] denotes the statistical expectation and Jy4 is the Dirac delta function.
When only output signals are considered, Egs. (14) and (15) assume the following form,

x(k +1) = A x(k) + w(k) 17)
y(k) = C x(k) + v(k) (18)

where, the unknown input term is implicitly incorporated to the noise terms w(k) and v(k).
In order to simplify the developments in the identification algorithm, the state vector of the system, x(k) is assumed
to be a stochastic process with covariance matrix X of dimension nxn (Peeters and Roek, 1999), defined as,

Ex(k)-x" (k)| == (19)
and which is independent of w(k) and v(Kk), i.e.,

E[x(k)-w" (k)|]=0
(20)

Ex(k)-v' (k)]=0

Post-multiplying Eq. (17) by x" (k +1), taking the mean value and considering Eqgs. (16) and (19), leads to the
following,

£ = E{ [Ax(k)+ w(k)]- X" (AT +wT (k)] | (21.a)
’ L=AXAT+Q (21.b)

The auto-covariance matrix of the output process y(k) and the cross-covariance matrix of the output process are
defined as,

A =Ely(k+i)-yT (k)] (22)
and
G =Ex(k +1)-y" (k)] (23)

where matrix A;, valid for an arbitrary lag i, and G, have respective dimensions, |xIand nxI . Developing Egs.(22)

and (23), and using the assumptions made by Egs. (19) and (20), allows to show that matrix A; assumes the following
form, foralag i >1:

A, =CA'G. (24)
Equation (24) provides a relation between the system matrices (A, C) and the output auto-covariance matrix A; .

This relation is important in establishing the state-space realization algorithm for output-only systems which is
discussed in the next section.



VI Congresso Nacional de Engenharia Mecéanica, 18 a 21 de Agosto 2010, Campina Grande - Paraiba

4. STATE-SPACE REALIZATION FOR OUTPUT-ONLY SYSTEMS

This section presents an algorithm for modal parameters identification from a subspace-based state-space
realization using output-only data. The present method consists in the estimation of matrices A and C of equations (17)
and (18).

It is important to define coordinates of reference to calculate the mode shapes of the system, when dealing with
modal parameters identification using only output data. The output vector of dimension | x1is defined as,

Y (k)
k) = 25
y(k) {ys(k)} (25)

where y, (k) is the reference output vector of dimension rx1. Vector y (k) of dimension (I—-r)x1represents the
non referenced outputs. The relation between y (k) and y(k).given by y, (k)=Ly(k) with L:[Ir O] of

dimension rxI .
Covariance matrices between the complete output and state vector processes, and the reference vector, are defined
as

Al = Elyk+iyyT ()| A LT (26)
and
G" =Ejk+1yl ()|=GLT. @7

Matrices Ajand G" have the respective dimensions Ixr and nxr. Matrices A] and G'are related,
analogously to Eq. (24), through the following relation,

Al =CA"G". (28)

A block Toeplitz matrix of dimension il xir, formed by matrices A{, is defined as,

Al AL o A
r r r

o A AL Ay T (29)
Ay Ab, - Af

where the block Hankel matrices Y, and Y, of dimensions rix j and lix j, respectively, are defined as,

yr(o) yr(l) yr(j_l)

yr(l) yr(2) yr(])
(LJ: A yeG-D) vy @) ye(i+i-2) (30)
Yo i) YO yi+D o yi+j-D

Y+l y(i+2) - y(i+])

y@-1 y@) - y@i+j-2)

Equality (29) can be easily verified substituting Egs. (28) and (30) into Eq. (29). Moreover, it is also simple to
verify, by substituting Eq. (28) in Eq. (29) that,

C
CA

TN = AFlGT AFZGT ... AGT Gr]:FiA{ (31)

CAIL
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where A isa matrix of dimension nxriand T; isthe observability matrix of dimension il xn, formed by the state
matrix A and the output influence matrix C as,

C
CA
I, =| CA? |. (32)

CAi‘l
An important shift-invariant feature can be extracted from the observability matrix I'; of Eq. (32), as,
r®=r®a, (33)

where sub-matrices T'® and T'{? are defined as,

® C
)

Assuming the realization to be of minimal order n, it follows that the observability matrix T'; is of full rank n. The
state matrix A can be then derived from Eq. (33) as,

A=T®T® (35)

where the symbol “+ “denotes the Moore-Penrose pseudo-inverse. Matrix C is obtained from the first block row matrix
r

i .
5. MODAL PARAMETERS ESTIMATION USING THE SUB-SPACE METHOD

The column space from the product of matrices T" =T'; A[, given by Eq. (31), is contained in the column space of
T';. The row space of T" isalso contained in the row space of A| .

The rank of both matrices T; and A[ is n, which is also the system order for the ideal case of noise-free output
data, and assuming that (li, ri) > n. This makes the product T" =T; A] of Eq. (31) to be also order of n. Moreover, the
n columns of matrix '; and the n rows of A{ span, respectively, the column and row spaces of T, so that the
column space of T" has the same shift-invariant structure as that of I';, as expressed in Eq. (33).

In a more realistic case, where data is contaminated by noise, T is full rank. However, a rank n column space of
T" can be calculated from the following SVD partition as,

V080T 408,07 36
s |=Q. S,V +Q,S, VI, (36)

where matrices QS, és and \A/S have dimensions ilxn, nxn and irxn, respectively. The condition én =0 can be
also verified in the absence of noise.

The n columns of matrix stpan the column space of the n-order rank-reduced matrix T" = Qsés\A/ST , recovered
from a truncated SVD of T" as described in Eq. (36). Such columns contain also the n principal left singular vectors

corresponding to the n principal singular values of the diagonal matrixés.
In practice, the order n of the dynamical system can be selected via inspection of the number of the most significant
singular values of T" . An estimate of the extended observability matrix, denoted by fi , is thus taken as,
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r A r A al/2
T :Qs or T :sts . (37)

The theoretical observability matrix I'; and the extended observability matrix fi :QS (or fi = Qséls’z) span the

column space of the data matrix T"and T', respectively, for the ideal free-noise and noise contaminated cases, in an n-
order state-space realization.

The extended observability matrix can be determined also as fi = Qséi’z . Note that the product of the columns of

matrix Q, by the diagonal elements of matrix Sﬁ’z do not change the system poles, identified through Eq. (34).

Implementation of the present sub-space algorithm for modal parameters identification, based on output-only data,
can be summarized in the following steps:

i) Estimation of the system order n via inspection of the number of the most significant singular values of matrix

T" =Y, Y, , according to Eq. (29), for an appropriated choice of the number of columns data (é} , cf. Eq. (30).

S

ii) Extraction of the extended observability matrix fi from Eq. (36), using one of the two forms of Eq. (37) and the
state matrix A described in Eq. (35).

iii) Estimation of the eigenvalues z; and eigenvectors ¥ ; of the state matrix A, for j =1,---,n (see Eq. 10).

iv) The n system's poles A; are calculated by Eq. (11). The natural frequencies w;and damping factors &; are
identified by Eq. (12).

v) Matrix C is finally obtained from the first block row of matrix fi, cf. Eq. (34), and the mode shapes ¢; are
estimated by Eq. (13).

6. EXAMPLE OF APPLICATION

In order to show the capabilities of the porposed subspace technique of modal parameters estimation, an example
using simulated data is shown. The output set of data is obtained through numerical simulation of a seven degrees of

freedom mass-spring-damper oscillator, as shown in Figure (1), using the following parameters: m; =---=m; =1Kg,
¢, =--=C, =5 Ns/mand k; =--- =k, =2000 N/m. Matrices M, C and K assume the following form,
m 0 0 0
0 m O 0
M={0 0 my - (38)
. . 0

C,+Cy, —Cy 0 0
-C, Cy+Cy —C4
C=| 0 —C3  Ca+Cq (39)
. . : S
0 0 0 -C; Cy
ki +k, -k, 0 0
-k, ky+ky  —kj :
K=l 0 kg  kytk, - 0 (40)
. . . : _k7
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Figure 1. Seven degree of freedom oscillator system

Table 1 shows the exact natural frequencies and viscous damping factors for each mode of the system.

Table 1. Exact natural frequencies and damping factors.

Mode Natural Frequency Damping Factor

Number (Hz)
1 2.1048 0.0052
2 4.9182 0.0155
3 7.9577 0.0250
4 10.6495 0.0335
5 12.8759 0.0405
6 14.5395 0.0457
7 15.5677 0.0489

The impulse response function (IRF) h;; (k) = h;; (kAt) is the response in output i at time kAt , due to a unit impulse

applied to input j at time 0. The mathematical expression for the IRF is easily derived from the parameters of the system
as,

n *
hij (k) = Z|:rij(|) el|kAt + ri;(l) el,kAt:| (41)
1=1

where the term 1) = ¢ ¢ is the modal residue associated to eigenvalue A, (or z;) and the terms ¢; ’s are elements
of the mode shapes matrix ® wich is obtained from modal matrix ¥ as,

\r:{q’ ‘I’} (42)
DPA D A

Superscript * denotes complex conjugation and the eigenvalues A;’s and modal matrix @ are calculated from matrices

M, C and K as pointed out in Section 2.
A SIMO experiment is simulated, in order to obtain the output signals. A zero mean, white Gaussian noise signal
with amplitude equal to 5 N is adopted as the input uy(k), actuating on mass 1 of the vibrating system shown in Fig. 1,

the response y (k) is obtained through the following convolution operation,

N,-L

Vi) =D () uy (k=) i=1-7 (43)

j=0

A parameters identification example is shown, in order to exemplify the performance of present method,
considering only one reference (r =1) and seven outputs (1 =7 ). The reference output in the present test corresponds

to the output of mass 7 of the physical system shown in Fig. 1. A number of 400 data samples is adopted for the y(k)
processes, available in a i =190 rows and j=20 columns data block, forming the Hankel matrices Y, and Y, of
dimensions 190x 20 and 1330x20, respectively, cf, Eq. (30), resulting in matrix T'=Y_ Y/ of dimension
1330x190. The discretization interval At is 0.027 second.

It is important to remark that the rank of matrix T" obtained in the identification process is 20 (equal the number j
of columns of matrices Y, andY,), is different from the expected value of 7 (the system order n), according to the
analysis made on Eq. (31). The reason for such a difference is attributed to the lack of an explicit input-output
relationship present in the realization theory for parameters identification using output-only data and the simplified
assumptions on the stochastic processes involving the state and output vectors made in sections 3 and 4.
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The system order n is identified through inspection of the most significant singular values of matrix T'as
discussed in the section 5. Figure 1 shows a quantity of 20 important singular values of T' from a total of 190 ones,

agreeing with the rank of matrix T" of the identification process. A careful inspection of Fig. 1, allows the observation
of a gap between the first 6 singular values and the remaining ones. Such a fact suggests the adoption of the identified
system order 6.

The system order adopted in this example is then 6. Appling the presented subspace method, it results in the
identification of three first modes of the mechanical system. The identified natural frequencies and damping factors are
shown in Tab. 2. Figures (2), (3) and (4) show the three identified mode shapes associated with the three first natural
frequencies and damping factors as compared to exact modes derived from numerical simulation. The blue lines
represents the exact modes and the red are the identified ones.

Taking into account the experience gained with running the identification code, it can be noted that higher order
modes can also be identified by adopting a process based on repeatability of natural frequencies, damping factors and
mode shapes. This can be done using successive values for system orders greater than 6 (as, for
example, n =8,10,12,14 and 16).

10% T
s ,% |
ol =3 .
5 -
g -10 | B
%; 15 | g
= 20 | -
25 | |
30 | -
-35 0 2‘0 4‘0 E-ICI 8‘0 1 [IJO ‘IéO ‘IAILCI 1 Eli-Cl 1 EIEO 200
Order
Figure 1. Singular values of matrix T'
Table 2. Exact and identified modal parameters.
Exact Identified Error (%) Exact Identified Error (%)
Mode Natural Natural Dampin Damping
Number Frequency  Frequency Fac?org Factor
(Hz) (Hz)
1.6636 1.6631 0.0301 0.0052 0.0144 176.2308
2 4.9182 4.9501 0.6486 0.0155 0.0132 14.8387
3 7.9577 7.8315 1.5859 0.0250 0.0124 50.4000
a5
4.5 —
4 - .
3.5 -
3 -
258 —
2 -
1.5 E
L L i
0.5 -
“o E = 3 “ 5 & 7

Figure 2. First mode shape (blue line: exact mode shape and red line: identified mode)
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Figure 3. Second mode shape (blue line: exact mode shape and red line: identified mode)

_ 1 1 1 1 1 1
0 l 2 3 4 =] & 7

Figure 4. Third mode shape (blue line: exact mode shape and red line: identified mode)

7. CONCLUSION

The paper presents a subspace-based modal parameters identification algorithm valid for output-only data. The two
main advantages of this approach are the compact formulation (only linear algebra is used) and relatively cheap
computation (no optimization scheme is needed). Despite the fact that only output data is used, the results obtained
through simulation are good. The success of the fit is attributed to the Gausian input data used in the computational
simulation. These arguments encourage for the application of present method in practical situations as, for example,
fault detection, modal analysis of civil structures or machines during operation condition, where the immeasurable
ambient excitation agrees with a Gaussian process as suggested in the modeling of the present scheme. The references
cited in this paper provides some examples of practical applications of present method.
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