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Abstract. This paper deals with modal parameters identification using output-only data. A linear, time-invariant, finite 
dimensional mechanical system is considered, which is described by a stochastic state-space model excited by 
unknown operating forces. In this approach, the stochastic state-space model considers the errors due to state-variable 
and measurements, as integrant parts of the modeling, through a zero-mean white noise process. Subspace model 
identification consists in the approximation of a structured subspace described in terms of an extended observability 
matrix defined from a rank reduction process of a block Toeplitz matrix constructed from output-only data. This rank 
reduction procedure is calculated by using singular value decomposition. System matrices are evaluated using the 
shift-invariant property of the extended observability matrix. The natural frequencies, damping factors and modal 
shapes are identified by means of eigenvalues and eigenvectors of the state matrix, respectively. The performance of 
the presented approach is shown through simulation examples. 

 
Keywords: modal parameters identification, output-only data, subspace-based algorithm, singular value 
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1. INTRODUCTION  
 
Mathematical modeling is an analytical approach used to describe the dynamic behavior of a phenomenon based on 

physical laws. System identification is an approach, where experiments are performed on the system, and a parametric 
model is subsequently fitted to the measured data by assigning a set of suitable numerical values to its parameters 
(Söderström and Stoica, 1987). Both approaches are important in system analysis, design and control problems. In the 
control community jargon, the process of fitting a state-space model to a multivariable linear time-invariant dynamic 
system from experimental data is called state-space realization (Viberg, 1995). A state-space is minimal if there exists 
no other realization of a lower degree to represent the system. The problem addressed in this paper deals with the 
application of a minimum order state-space realization technique in modal parameter identification using output-only 
data. More specifically, a time domain multivariable subspace-based parametric technique is used to identify the modal 
parameters of a structural system by fitting a suitable observable part of a minimal state-space model for a finite number 
of output-only data. 

Modal parameter identification techniques are, classically, based on the input-output relationships (Maia and Silva, 
1997). In general terms, a modal identification experiment is performed by fixing the structure to a test bench and 
actuators are used to produce controlled types of input forces, which are required to match a theoretical linear dynamic 
model, covering a frequency range which is compatible with both the experimental setup and desired region of 
analytical interest. On the other hand, a very interesting problem can be formulated when the objective is to analyze the 
dynamical behavior of a structure under operating conditions, where reality differs from the ideal laboratory 
environment and the input forces are not known, or just impossible to be measured. Examples that can be included in 
this situation consist in automotive structures excited by engine forces, offshore structures subjected to the turbulent 
action of the swell, aircraft structures subjected to unmeasurable ambient excitation, or civil structures like a bridge 
subjected to wind and traffic conditions (Abdelghani et al., 1999). 

According to Peeters and Roeck (1999), there are many methods used to identify systems excited by unknown 
inputs. Formally, for a completely unknown input, it can be assumed that the system is excited by a white Gaussian 
process. A linear time-invariant autoregressive with moving average (ARMAV) model is then fitted to the data, using a 
prediction method (Soderstrom and Stoica, 1987). The MA characteristic of such an approach, leads to a highly non-
linear minimization problem in order to calculate the parameters of the model. The solution of such a problem has a  
very large computational cost, especially for the multivariable parameters case. If the MA terms are omitted, in order  to 
reduce the computational coast, an ARV model can then be used and simple least squares optimization solution method 
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can be applied. The problem with the least squares approach is the overparametrization of the model that is needed 
resulting in a number of spurious numerical modes that must be separated from the true modes of the system. 

Alternatively, subspace-based system identification methods have been used to overcome the drawbacks of the 
traditional system identification techniques. In the present approach, a subspace method offers a reliable way to fit the 
extended observation part of a multivariable stochastic state-space model realization, by means of a rank reduction 
operation upon a block Toeplitz matrix formed from output-only data using singular values decomposition (SVD). 
Stochastic state-space model considers the errors due to state-variable and measurements as integrant part of modeling 
through a zero-mean white noise process. The computational effort in such a method is relatively small. No non-linear 
optimization scheme is used and the system order can be estimated in a simple way.  The state matrix is evaluated  
using the shift-invariant property of an extended observability matrix. The natural frequencies, damping factors and 
modal shapes are identified by means of eigenvalues and eigenvectors of the state matrix. 

In this paper, a subspace technique is implemented for the identification of mechanical systems using output-only 
data. The paper is organized as follows. Section 2 describes the basic model of mechanical systems, section 3 discusses 
stochastic state-space models, to be used in output-only systems identification, section 4 focuses on the state-space 
realization for output-only. The modal parameters estimation procedure is described in section 5. An example, based on 
numerical simulations, is presented in section 6. Section 7 draws the main conclusions to the paper. 

 
2. MATHEMATICAL MODELING OF MECHANICAL SYSTEMS 

 
This section presents the basics of mathematical models of finite-dimensional, linear and time-invariant (LTI) 

mechanical systems.  
The equation of motion of a f degrees of freedom LTI mechanical system is represented by the following second 

order matrix differential equation, 
 

  )()()( tttt fzKzCzM                 (1) 
 
where M , C , K are, respectively, the mass, damping and stiffness matrices, all of dimension ff  . Vectors z(t) 
and f(t), of dimension 1f  represent, respectively, the generalized displacement and external forces acting on the 
system. 

Equation (1) can be expressed in an equivalent continuous time state-space form (Gountier et al., 1993) as, 
 

)()()( ttt uBxAx               (2) 
 
with   matrices A  and B  of dimension nn , given by 
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where  n = 2 f  is the the state-space system model order,  Tttt )()()( zzx  is the  generalized state vector of 
dimension 1n . Vector u(t) of dimension  1m  represents the non-null elements of the input vector f(t).  Matrix fU  

of dimension mf   is the input selection matrix, such that )()( tt f uUf  , fI  is the  identity matrix of dimension 
ff  , and 0 denotes  null matrices of appropriate dimensions. 

Equation (2) constitutes the continuous-time state-space model for a finite dimensional LTI mechanical system. 
Solution for the state vector )(tx at time t with an input )(tu  and initial conditions  0tx  is given by, 
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Experimental input-output data in modal analysis is obtained at equally spaced discrete time intervals. The 

continuous-time state-space model therefore needs to be rewritten  in terms of a discrete-time representation. Let t  be 
a constant time sampling interval. Substitution of tkt  )1(  and tkt 0  into Eq. (4) yields, 
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Assuming that term )(u , of Eq. (5), has the constant value )()( tk uu   over the interval tktk  )1( , 

and performing a change of variable   by   tk )1( , leads to, 
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Definition of the discrete quantities )1(])1[(  ktk xx , )()( tkk  uu  and matrices, 
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allows for the description of a state-space form of the mechanical system in discrete-time through the following 
expression, 

 
)()()1( kkk uBxAx  .             (8) 

 
The set of observation variables measured during the modal testing of a structure is written in the following form, 
 

)()( kk xCy                  (9) 
 

where the term )(ky  is an  output vector of dimension 1l , associated with l response measurements. Matrices A, B 
and C, with appropriate dimensions, are, respectively, the state matrix, the input and output influence matrices.  

Matrix A of Eq. (8) can be expressed in terms of its n eigenvalues and eigenvectors, 
 

1 ΨΛΨA             (10) 
 

where  matrix )( jzdiagΛ  of dimension nn , contains the eigenvalues jz , nj ,,1   of A.  The columns of the   
modal  matrix Ψ  of dimension nn are the corresponding eigenvectors. 

The first line of Eq. (7) can be used, in order to calculate the modal parameters of a flexible structure, yielding also 
a relationship between the state matrices A  and A of the continuous and discrete formulations. The eigenvalues in the 
two representations are related as. 

 
tz jj  )log(             (11) 

 
The natural frequencies j and damping factors j  are calculated as (Maia and Silva, 1997), 
 

jj     and     jjj al  Re ,                  (12) 

 

where symbol denotes absolute value. The mode shape jφ , associated to the j-th eigenvalue jz ,which is the 

observable part of the eigenvector jΨ , is then trivially calculated through Eq. (9) as, 
 

jj ΨCφ               (13) 
 
3. STOCHASTIC STATE-SPACE MODEL FOR OUTPUT-ONLY SYSTEMS 

 
This section deals with stochastic state-space model to be used in output-only parameter identification. Stochastic 

components are included in the dynamic model, yielding the following deterministic-stochastic state-space model, 
 

)()()()1( kkkk wuBxAx            (14) 
)()()( kkk vxCy               (15) 
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where vector w(k) of dimension  1n and vector v(k) of dimension 1l are the system and observation noises, 
respectively. The noise terms are assumed to be stationary white Gaussian processes with zero-mean and covariance 
matrices given by, 
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where .E  denotes the statistical expectation and kj is the Dirac delta function. 

When only output signals are considered, Eqs. (14) and (15) assume the following form, 
 

)()()1( kkk wxAx             (17) 
)()()( kkk vxCy              (18) 

 
where,  the unknown input term is implicitly incorporated to the noise terms w(k) and v(k).  

In order to simplify the developments in the identification algorithm, the state vector of the system, x(k) is  assumed 
to be a stochastic process with covariance matrix Σ  of dimension nn  (Peeters and Roek, 1999), defined as, 

 
     Σxx  kkE T

             (19) 
 
and which is independent of w(k) and v(k), i.e., 
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Post-multiplying Eq. (17) by )1( kTx , taking the mean value and considering Eqs. (16) and (19), leads to the 

following, 
 

          kkkkE TTT wAxwAxΣ                      (21.a) 
or , 

QAΣAΣ  T                       (21.b) 
 
The auto-covariance matrix of the output process y(k) and the cross-covariance matrix of the output process are 

defined as, 
 

    kikE T
i yyΛ             (22) 

 
and 
 

    kkE TyxG  1 ,           (23) 
 

where matrix iΛ , valid for an arbitrary lag i, and G , have respective dimensions, ll  and ln . Developing Eqs.(22) 
and (23), and using the assumptions made by Eqs. (19) and (20), allows to show that matrix iΛ  assumes the following 
form, for a lag 1i : 

 
GCAΛ 1 i

i .            (24) 
 
Equation (24) provides a relation between the system matrices (A, C) and the output auto-covariance matrix iΛ . 

This relation is important in establishing the state-space realization algorithm for output-only systems which is 
discussed in the next section. 
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4. STATE-SPACE REALIZATION FOR OUTPUT-ONLY SYSTEMS 

 
This section presents an algorithm for modal parameters identification from a subspace-based state-space 

realization using output-only data. The present method consists in the estimation of matrices A and C of equations (17) 
and (18). 

It is important to define coordinates of reference to calculate the mode shapes of the system, when dealing with 
modal parameters identification using only output data. The output  vector of dimension 1l is defined as, 
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where )(kry  is the  reference output vector of dimension 1r . Vector )(ksy  of dimension 1)(  rl represents the 
non referenced outputs. The relation between )(kry  and )(ksy ,given by )()( kkr yLy   with  0IL r  of 
dimension lr  . 

Covariance matrices between the complete output and state vector processes, and the reference vector, are defined 
as 
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and 
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Matrices r

iΛ and rG  have the respective dimensions rl   and rn . Matrices r
iΛ  and rG are related, 

analogously to Eq. (24), through the following relation, 
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A block Toeplitz matrix of dimension iril  ,  formed by matrices r

iΛ , is defined as,  
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where the block Hankel matrices rY  and sY  of dimensions jri  and jli , respectively, are defined as, 
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Equality (29) can be easily verified substituting Eqs. (28) and (30) into Eq. (29). Moreover, it is also simple to 

verify, by substituting Eq. (28) in Eq. (29) that, 
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where r

iΛ  is a  matrix of dimension rin  and iΓ  is the  observability matrix of dimension nil  , formed by the state 
matrix A and the output influence matrix C as, 
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An important shift-invariant feature can be extracted from the observability matrix iΓ  of Eq. (32), as, 
 

AΓΓ )1()2(
ii  ,            (33) 

 
where sub-matrices )1(

iΓ  and )2(
iΓ  are defined as, 
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Assuming the realization to be of minimal order n, it follows that the observability matrix iΓ  is of full rank n. The 

state matrix A can be then derived from Eq. (33) as, 
 

)2()1(
ii ΓΓA  .            (35) 

 
where the symbol “+ “denotes the Moore-Penrose pseudo-inverse. Matrix C is obtained from the first block row matrix 

iΓ  . 
 
5. MODAL PARAMETERS ESTIMATION USING THE SUB-SPACE METHOD 

 
The column space from the product of matrices r

ii
r ΛΓT  , given by Eq. (31), is contained in the column space of 

iΓ . The row space of  rT  is also contained in the row space of r
iΛ . 

The rank of both matrices iΓ  and r
iΛ  is n, which is also the system order for the ideal case of noise-free output 

data, and assuming that nrili ),( . This makes the product r
ii

r ΛΓT   of Eq. (31) to be also order of n. Moreover, the 

n columns  of matrix iΓ  and the n rows of r
iΛ  span, respectively, the column and row spaces of rT , so that the 

column space of rT  has the same shift-invariant structure as that of iΓ , as expressed in Eq. (33). 

In a more realistic case, where data is contaminated by noise, rT  is full rank. However, a rank n column space of 
rT  can be calculated from the following SVD partition as, 

 

  T
nnn

T
sssT

n

T
s

n

s
ns

r VSQVSQ
V
V

S0
0SQQT ˆˆˆˆˆˆ

ˆ
ˆ

ˆ
ˆˆˆ 
























  ,       (36) 

 

where matrices sQ̂ , sŜ  and sV̂  have dimensions nil  , nn  and nir  , respectively. The condition 0ˆ nS  can be 
also verified in the absence of noise. 

The n columns of matrix sQ̂ span the column space of the n-order rank-reduced matrix T
sss

r VSQT ˆˆˆˆ  , recovered 
from a truncated SVD of rT  as described in Eq. (36). Such columns contain also the n principal left singular vectors 
corresponding to the n principal singular values of the diagonal matrix sŜ . 

In practice, the order n of the dynamical system can be selected via inspection of the number of the most significant 
singular values of rT . An estimate of the extended observability matrix, denoted by iΓ̂ , is thus taken as, 
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si QΓ ˆˆ   or  2/1ˆˆˆ

ssi SQΓ  .          (37) 
 
The theoretical observability matrix iΓ  and the extended observability matrix si QΓ ˆˆ   (or 2/1ˆˆˆ

ssi SQΓ  ) span the 

column space of the data matrix rT and rT̂ , respectively, for the ideal free-noise and noise contaminated cases, in an n-
order state-space realization. 

The extended observability matrix can be determined also as 2/1ˆˆˆ
ssi SQΓ  . Note that the product of the columns of 

matrix sQ̂  by the diagonal elements of matrix 2/1ˆ
sS do not change the system poles, identified through Eq. (34).   

Implementation of the present sub-space algorithm for modal parameters identification, based on output-only data, 
can be summarized in the following steps: 

 
i) Estimation of the system order n via inspection of the number of the most significant singular values of matrix 

T
rs
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s

r

Y
Y

,  cf. Eq. (30). 

ii) Extraction of the extended observability matrix iΓ̂  from Eq. (36), using one of the two forms of Eq. (37) and  the 
state matrix A described in Eq. (35). 
 
iii) Estimation of the eigenvalues jz  and eigenvectors jΨ  of the state matrix A, for nj ,,1  (see Eq. 10). 
 
 iv) The n system's poles j  are calculated by Eq. (11). The natural frequencies j and damping factors j  are 
identified  by Eq. (12). 
 
v)  Matrix C is finally obtained from the first block row of matrix iΓ̂ , cf. Eq. (34), and the mode shapes jφ  are 
estimated by Eq. (13). 
 
6. EXAMPLE OF APPLICATION 

 
In order to show the capabilities of the porposed subspace technique of modal parameters estimation, an example 

using simulated data is shown. The output set of data is obtained through numerical simulation of a seven degrees of 
freedom mass-spring-damper oscillator, as shown in Figure (1), using the following parameters: 171  mm  Kg, 

571  cc   Ns/m and 200071  kk   N/m. Matrices M , C and K assume the following form, 
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Figure 1. Seven degree of freedom oscillator system 

 
Table 1 shows the exact natural frequencies and viscous damping factors for each mode of the system. 
 

Table 1. Exact natural frequencies and damping factors. 
 

Mode 
Number 

Natural Frequency 
(Hz) Damping Factor  

1 2.1048 0.0052 
2 4.9182 0.0155 
3 7.9577 0.0250 
4 10.6495 0.0335 
5 12.8759 0.0405 
6 14.5395 0.0457 
7 15.5677 0.0489 

 
 
The impulse response function (IRF) )()( tkhkh ijij  is the response in output i at time tk , due to a unit impulse 

applied to input j at time 0. The mathematical expression for the IRF is easily derived from the parameters of the system 
as, 

 









 

n

l

tk
lij

tk
lijij

ll ererkh
1

*
)()(

*
)(            (41) 

 
where the term jlillijr )(  is the modal residue associated to eigenvalue l (or lz ) and the terms ij ’s are elements 
of the mode shapes matrixΦ  wich is obtained from modal matrix Ψ  as, 
 












 **

*

ΛΦΦΛ
ΦΦΨ .           (42) 

 
Superscript * denotes complex conjugation and the eigenvalues j ’s and modal matrix Φ  are calculated from matrices 

M , C and K as pointed out in Section 2. 
A SIMO experiment is simulated,  in order to obtain the output signals. A zero mean, white Gaussian noise signal 

with amplitude equal to 5 N is adopted as the input u1(k),  actuating on mass 1 of the vibrating system shown in Fig. 1, 
the response )(ky is obtained through the following convolution operation, 

 

7,,1)()()(
1

0
11  





ijkujhky
pN

j
ii         (43) 

 
A parameters identification example is shown, in order to exemplify the performance of present method, 

considering only one reference ( 1r ) and  seven outputs ( 7l ). The reference output in the present test corresponds 
to the output of mass 7 of the physical system shown in Fig. 1. A number of 400 data samples is adopted for the )(ky  
processes, available in a 190i  rows and 20j  columns data block, forming the Hankel matrices rY  and sY  of 
dimensions 20190  and 201330 , respectively, cf, Eq. (30), resulting in matrix T

rs
r YYT  of dimension 

1901330 . The discretization interval t  is 0.027 second.  
It is important to remark that the rank of matrix rT obtained in the identification process is 20 (equal the number j 

of columns of matrices rY  and sY ), is different from the expected value of 7 (the system order n), according to the 
analysis made on Eq. (31). The reason for such a difference is attributed to the lack of an explicit input-output 
relationship present in the realization theory for parameters identification using output-only data and the simplified 
assumptions on the stochastic processes involving the state and output vectors made in sections 3 and 4. 
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The system order n is identified through inspection of the most significant singular values of matrix rT as 

discussed in the section 5. Figure 1 shows a quantity of 20 important singular values of rT from a total of 190 ones, 
agreeing with the rank of matrix rT of the identification process. A careful inspection of Fig. 1, allows the  observation 
of a gap between the first 6 singular values and the remaining ones. Such a fact suggests the adoption of the identified 
system order 6. 

The system order adopted in this example is then 6. Appling the presented subspace method, it results in the 
identification of three first modes of the mechanical system. The identified natural frequencies and damping factors are 
shown in Tab. 2. Figures (2), (3) and (4) show the three identified mode shapes associated with the three first natural 
frequencies and damping factors as compared to exact modes derived from numerical simulation. The blue lines 
represents the exact modes and the red are the identified ones.  

Taking into account the experience gained with running the identification code, it can be noted that higher order 
modes can also be identified by adopting a process based on repeatability of natural frequencies, damping factors and 
mode shapes. This can be done using successive values for system orders greater than 6 (as, for 
example, 1614,12,10,8 andn  ). 

 

 
Figure 1. Singular values of matrix rT  

 
 

Table 2. Exact and identified modal parameters. 
 

Mode 
Number 

Exact 
Natural 

Frequency 
(Hz) 

Identified 
Natural 

Frequency 
(Hz) 

Error (%) Exact 
Damping 

Factor 

Identified 
Damping 

Factor 

Error (%) 

1 1.6636 1.6631 0.0301 0.0052 0.0144 176.2308 
2 4.9182 4.9501 0.6486 0.0155 0.0132 14.8387 
3 7.9577 7.8315 1.5859 0.0250 0.0124 50.4000 

 

 
Figure 2. First mode shape (blue line: exact mode shape and red line: identified mode) 
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Figure 3. Second mode shape (blue line: exact mode shape and red line: identified mode) 

 

 
Figure 4. Third mode shape (blue line: exact mode shape and red line: identified mode) 

 
 
7. CONCLUSION 
 

The paper presents a subspace-based modal parameters identification algorithm valid for output-only data. The two 
main advantages of this approach are the compact formulation (only linear algebra is used) and relatively cheap 
computation (no optimization scheme is needed). Despite the fact that only output data is used, the results obtained 
through simulation are good. The success of the fit is attributed to the Gausian input data used in the computational 
simulation. These arguments encourage for the application of present method in practical situations as, for example, 
fault detection, modal analysis of civil structures or machines during operation condition, where the immeasurable 
ambient excitation agrees with a Gaussian process as suggested in the modeling of the present scheme. The references 
cited in this paper provides some examples of practical applications of present method. 
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