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Abstract. This article presents an alternative approach of the supplement I to the “Guide to the expression of 

uncertainty in measurement” - Propagation of distributions using a Monte Carlo method (BIPM et.al, 2008). The 

propagation of distributions is generated by a Markov chain that compares transition probabilities for subsequent 

states, generated by two different procedures. The first one uses, for all probability distributions, small displacements 

generated by rectangular distribution, while the second one uses random numbers from specific (uniform or non-

uniform) probability distributions, allowing greater displacements, and hence larger variations from one state to 

another. Both procedures generate a Markov chain with non-uniform transition probabilities that can be analyzed at 

each step. Two specific calibration examples presented in BIPM et.al, (2008) were tested for validation purposes: one 

regarding a mass calibration and another regarding a gauge block calibration. The simulations carried out 10
7
 trials, 

on which both procedures were in good agreement with the reference for the mass calibration problem, but only the 

first procedure achieved good results for the gauge block calibration. 
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1. INTRODUCTION 

 

According to Kessel (1997) and Mathiesen (1997), the measure of a physical quantity is only complete when 

accompanied by its correspondent uncertainty value, usually constituted by several elements, which are identified and 

assembled to get its numerical value. The Guide to the Expression of Uncertainty in Measurement – GUM, quoted by 

ISO/GUM, (1995) and  INMETRO/ABNT (2003), presents a general procedure called GUM Uncertainty Framework - 

GUF, that proposes a “law of propagation of uncertainties”, using analytic methods. It evaluates the standard 

uncertainty associated with an estimate of the output quantity, given by: 

 Best estimates of the elements that generate the physical quantity; 

 Standard uncertainties associated with these estimates; 

 Degrees of freedom associated with these standard uncertainties; 

 Any non-zero covariance associated with each pair of these estimates. 

 Despite the GUF usefulness and potential, there are some limitations that justify the analysis of alternative 

approaches for the problem of the propagation of distributions in complex systems (BIPM et.al, 2008).  In conventional 

GUF, the partial derivatives of the stage of propagation of uncertainties concerns the linear terms of a Taylor series. 

Higher precision models could be evaluated, by performing higher order derivatives (ISO/GUM, 1995). However, this 

step is sometimes too complex and even impossible to be performed analytically, requiring a more practical procedure. 

 The Monte Carlo method – MCM, as stated by Jain (1995), is a numerical procedure for the solution of 

mathematical problems by the simulation of random variables. It generates a complete Probability Distribution Function 

- PDF, allowing a discrete representation, while GUF makes the propagation of the input quantities. In fact, according 

to Al-Hujaj and Harney (2006), Monte Carlo is a “Bayesian statistics” method, since prior observation is required in 

order to make theoretical predictions before observing the phenomenon itself. After empirical observations, prior 

predictions can be at last compared to the final results, showing the discrepancies between them. This condition allows 

subsequent experiments to make better predictions of the phenomenon through time. 

 As quoted by BIPM et.al (2008), a Monte Carlo method is a good alternative to the GUF when: 

 The linearization of the model provides an inadequate representation for the problem; 

 The PDF of the output quantity differs appreciably from a Gaussian distribution or a scaled and shifted t-

distribution. 

In fact, several model representations used in metrology result in non-symmetrical PDF’s, like a log-normal 

distribution. In this case, it is not possible to assume an equal multiplication of the standard deviation to both sides of 
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the final probability distribution. With the application of a Monte Carlo method, it is possible to determine the 

characteristics of the final PDF, and even its nature, using tests of Goodness-of-fit. The expectation and standard 

deviation can be obtained and, according to the coverage probability, it is possible to evaluate the desired coverage 

interval, after an adequate number of iterations, as described by Cox and Harris (2001). 

.  

  

2. OBJECTIVES 
 

The main objective of this article is to perform an alternative method to the Supplement 1 for the GUM (S1) 

using a Monte Carlo simulation according to two different procedures and validate it. This validation procedure applies 

to the two examples presented in S1 and takes into account the statistical parameters, the number of iterations and the 

numeric stability of the process to indicate which procedure is more effective and reliable. 

 

3. THE METHOD 
 

 According to Degroot (1989), a Markov chain is a stochastic process based on conditional probabilities, where 

each state depends only on the previous state.  

The product of a Monte Carlo simulation is a Markov chain composed by states of the system under 

consideration. Hence, for a given state, random modifications generate a new state. Then the comparison of the 

probability transitions between these states and a random number generated by the algorithm indicates if the new state 

substitutes the previous one in the chain. Then, after large number of iterations the system converges to a limiting 

distribution and the states of the chain are the input data for the Metropolis-Hastings algorithm, as presented by 

Hastings (1970). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Main steps of a Monte Carlo simulation 

 

Figure 1 presents the main concepts of a Monte Carlo simulation. It is divided in four main steps: (a) Input 

data, where each probability distribution is assigned; (b) Propagation of the distributions, where the random numbers 

are evaluated; (c) Output data, where a discrete representation of the final PDF is obtained; (d) and summarization, 

where a coverage interval is obtained according to the coverage probability selected at the first procedure. 
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3.1 Input data 

 

 At this step, information regarding the variables is set: expectation values, standard deviations, width, 

depending of the PDF. The number of iterations is set depending on the desired coverage interval. A good estimate is 

presented by BIPM et.al (2008): 

 

4 1
10

1
M

p
                                                                                                                                               (1) 

 

Where: 

 M = Number of iterations; 

 P = Coverage probability; 

 

3.2 Propagation of distributions 

 

 At this step, random numbers are generated, regarding the PDF assigned at the previous step, in order to 

produce each configuration of the Markov chain. However, after this evaluation, using the mathematical model, the 

elements of the final PDF are obtained. Depending on the different stochastic nature of the distributions, uniform or 

non-uniform, different ways of generation are required.  

  

3.2.1 Uniform distributions 

 

 For these distributions, each sample was taken with a probability selection of 50%, in order to eliminate 

tendentious elements. Hence, to establish a new configuration xi(n), a random number from the rectangular distribution, 

ranging from 0 to 1 is generated. If the axiom r(0,1) > 0.5 is true, the new configuration is accepted. Case sensitive, the 

previous configuration xi(n-1) is taken. 

 

3.2.2 Non-uniform distributions 

 

 A different procedure is required for non-uniform distributions, once the shape of these curves may differ, with 

or without greater probabilities at the central limit. Hence, it is important to assure that the configurations do not 

converge completely for low or high probability zones. The Metropolis-Hastings algorithm is used for this propose, and 

performs a comparison between probability densities for subsequent states of a Markov chain.  

Two procedures for the generation of configurations in non-uniform distributions were formulated, 

conveniently called A and B. At procedure A, the random numbers are generated from rectangular distributions, in spite 

of the stochastic nature of the phenomenon. Otherwise, at procedure B the random numbers are generated from the 

specific probability distributions that characterize the system. Both procedures generate a Markov chain with non-

uniform transition probabilities, by comparing the values of probability distribution functions.  

 Procedure A was formulated to simplify the random number generation, as well as to reduce the average 

computing time, allowing good results with greater performance in applications with more complex mathematical 

models. Xi corresponds to a hypothetical input quantity, and could be of any non-uniform probability nature: 

 

( ) ( -1) (0,1) - 0.5i n i nX X r                                                                                                     (2) 

  

Where: 

X i(n) = Current configuration; 

Xi(n-1) = Previous configuration; 

r(0,1) = Random number generated from a rectangular distribution; 

σ = Standard deviation of the distribution; 

α = Constant number that divides the standard deviation. 

 

 The constant α and a 0.5 maximum displacement from the rectangular distribution allow small displacements 

between each configuration. It is expected that the probability density functions, along with the Metropolis-Hastings 

algorithm, would achieve the desired results by assembling a Markov chain with non-stationary probabilities. 

 Procedure B was formulated after the premise that random numbers ought to be generated by specific non-

uniform distributions, and along with the Metropolis-Hastings algorithm, build a Markov chain with non-stationary 

probabilities, and possibly achieve better results than procedure A: 
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( ) ( -1)i n i nX X                                                                                                               (3) 

 

Where: 

X i(n) = Current configuration; 

Xi(n-1) = Previous configuration; 

γ = Random number generated from a specific distribution; 

σ = Standard deviation of the distribution; 

α = Constant number that divides the standard deviation 

 

 This procedure allows greater displacements between the configurations, depending of the random number 

generated from a specific distribution. 

 

3.3 Output data 

 

 This is the stage where a M-element vector is taken as a discrete representation of the final PDF. This PDF 

would be precisely defined with adherence tests, once in many practical situations, it would be a Gaussian or a scale and 

shifted t-distribution. Once the shape of the curve is known, the mean, standard uncertainty, ylow and yhigh can be 

obtained. If only the final parameters are of interest, the model values doesn’t need to be allocated. 

  

3.4 Summarization 

 

This is the final stage of the Monte Carlo simulation, and consists of the calculation of the desired parameters 

from the final PDF. These parameters are the expectation µ, standard deviation σ, and the components of the coverage 

interval, ylow and yhigh. The length of this coverage interval depends of the coverage factor defined in the step of input 

data. 

 

4. RESULTS 
 

              Two examples were used for validation purposes and, in both of them, the simulations carried out 10
7
 trials, 

and a sample was taken at every ten iterations to assemble the Markov chain, avoiding the strong correlations that 

characterize the Metropolis-Hastings algorithm. This selection totalizes a final array with 10
6
 elements, which 

guarantees a coverage probability of 99% and retains the statistical properties of the final PDF, according to equation 1.  

Ten simulations were performed with different values for α in equations (2) and (3) in order to compare the 

results with BIPM et.al (2008), and to evaluate the convergence with different displacements, as previously described in 

section 3.2.2. These tests were made for α equal to 1.15 and 1.00 for the mass calibration, and 7.5 and 3.5 for the gauge 

block calibration.  

 

4.1 Mass calibration 

 

 A mass calibration can be evaluated by the following equation, after the application of Arquimedes principle: 

 

                                                                             (4)                                                                        

 

 Where: 

 

 = Associated uncertainty of the mass calibration; 

 = Conventional mass of the reference weight; 

 = Uncertainty of the reference weight; 

 = Air density; 

 = Air density, without associated uncertainties; 

 = Density of the weight W; 

 = Density of the reference weight R; 

 

 

 

 

 

 

= nominal mass of both weights. 
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 Table 1 shows the input parameters for the mass calibration model: 

 

Table 1. Input parameters for the mass calibration problem, with gaussian and rectangular distributions. 

 

 

 Figure 2 presents the results for the expectation, with the y-axis in [mg] units, and the x-axis representing the 

procedure with the respective value of τ. The red dash-dotted line represents the reference value (BIPM et.al, 2008) for 

the MCM, and the blue dash-dotted line for the GUF (BIPM et.al, 2008). It is clear that procedure B presented more 

fluctuation along the simulations, and generally, the results were coherent with GUF. 

 

 
 

Figure 2. Expectations for the mass calibration. 

 

 The results for the standard uncertainty are shown in figure 3. Again, The red dash-dotted line represents the 

reference value for MCM, and the blue dash-dotted line for the GUF, obtained by BIPM et.al (2008). The results for 

both methods were slightly more conservative than the reference. 

Xi Distribution 

Parameters 

Expectation μ 
Standard Deviation 

σ 

Expectation 

x = ( a + b ) / 2 

Semi-width 

( b – a ) / 2 

mR,c N( μ , σ² ) 100000.000 mg 0.050 mg 
 

δmR,c N( μ , σ² ) 1.234 mg 0.020 mg 

ρa R( a , b ) 

 

1.20 kg/m³ 0.10 kg/m³ 

ρW R( a , b ) 8x10³ kg/m³ 1x10³ kg/m³ 

ρR R( a , b ) 8.00x10³ kg/m³ 0.05x10³ kg/m³ 
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Figure 3. Standard uncertainties for the mass calibration. 

 

4.2 Gauge block calibration 

 

The mathematical model of a gauge block calibration can be described by the following equation: 

 

                                                                              (5) 

 

Where: 

 

δL = Uncertainty of the gauge block; 

Ls = Length of the reference standard at 20°C; 

D = Quantity of which the average of the five indications is a realization; 

d1 = Random effects of the comparator; 

d2 = Systematic effects of the comparator; 

δα = Difference between thermal expansion coefficients; 

θo = Average temperature deviation of the gauge block from 20°C; 

Δ = Cyclic variation of the temperature deviation from θo; 

αs = Thermal expansion coefficient of the reference standard; 

δθ = Difference in temperature between the gauge block being calibrated and the reference standard; 

Lnom = Nominal length of the gauge block. 

 

Table 2. Input parameters for the gauge block calibration problem. 

 

Quantity PDF 
Parameters 

μ σ ν a b d 
Ls tν (μ,σ²) 50000623 nm 25 nm 18    

D tν (μ,σ²) 215 nm 6 nm 24    

d1 tν (μ,σ²) 0 nm 4 nm 5    

d2 tν (μ,σ²) 0 nm 7 nm 8    

αs R (a,b)    9.5 x 10-6 °C-1 13.5 x 10-6 °C-1  

θo N (μ,σ²) -0.1°C 0.2°C     

Δ U (a,b)    -0.5 °C 0.5 °C  

δα CTrap (a,b,d)    -1.0 x 10-6 °C-1 1.0 x 10-6 °C-1 0.1 x 10-6 °C-1 

δθ CTrap (a,b,d)    -0.050 °C 0.050 °C 0.025 °C 

 

Figure 4 presents the results obtained by the simulations for this calibration problem. The y-axis represents the 

expectation in [nm], and the x-axis, the procedures and correspondent values for τ. The results for procedure A are in 

good agreement with BIPM et.al (2008) for small fluctuations, different from procedure B, which is unstable. 
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Figure 4. Expectations for the gauge block calibration. 

 

For the standard uncertainty, as shown in figure 5, there is a good agreement with BIPM et.al (2008) for 

procedure A, and high instability for procedure B. The red line represents the results from BIPM et.al (2008) for MCM, 

and the blue and green lines the results for the GUF, also obtained by BIPM et.al (2008) with first and second order 

terms, respectively. 

 

 
 

Figure 5. Standard uncertainties for the gauge block calibration. 

 

5. CONCLUSIONS 

 

 There is little discrepancy between the results presented by BIPM et.al (2008) and the values obtained in this 

work. The simulation performed in this work is less conservative for the mass calibration but more conservative for the 

gauge block calibration. However, these differences don’t affect the final results, once they are rounded to the number 

of significant decimal digits. 
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 The gauge block calibration problem yields good results for procedure A, mainly when α = 3.5, which 

presented more stability. Procedure B doesn’t seem reliable, since its results are highly unstable. 

 Another point regards the samples that were taken at each ten iterations to generate the Markov chain. The 

results showed that this procedure achieved good estimates, but it is still necessary to do tests of goodness-of-fit and to 

analyse the results. 

 The next step for this work is to perform adaptive Monte Carlo tests, in order to do a sensibility analysis of the 

constant α and determine its optimal value. 
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