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Abstract. The airplane landing gear free-fall operation comprises a redundant, dissimilar and independent 

mechanically operated method of extending airplane landing gear due to a main hydraulic system failure or an 

electrical system malfunction. However, the emergency extension operation system design is not unique and spring-

assisted, auxiliary hydraulics-assisted or even pneumatics-assisted landing gear free-fall design can be found in 

different airplanes. This paper aims at describing the model simulation and the optimization of certain parameters 

related to the associated hydraulic system, for the emergency operation condition, in a system configuration 

comprising simple extension by gravity (non-assisted system). Since the free-fall modeling involves different subjects 

like landing gear extension dynamics, hydraulic actuator kinematics, fluid mechanics and even aerodynamic drag, 

which illustrates the complexity behind its simulation and optimization, a deep literature review was accomplished in 

order to support all the formulation necessary to make the modeling feasible. Afterwards, some parametric models 

were created in MATLAB Simulink, which, by means of an iterative process, allowed the determination of specific 

parameters values that optimized the system damping for that operation. Parameters like restrictor orifices were 

evaluated for a chosen landing gear configuration and system performance optimized through the assistance of 

MATLAB optimization tools. Finally, the purpose of the optimum damping comprised the attenuation of the impact 

effects suffered by aircraft structure when landing gear falls by gravity in an emergency operation, as well as the 

assurance of sufficient energy for landing gear locking at the end of its downward movement.  
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1. INTRODUCTION  

 

According to Currey (1998), the landing gear design comprises more engineering subjects than any other airplane 

design topic. Knowledge about materials, manufacturing processes, electrical and hydraulic systems, mechanisms and 

even runway strength is essential to make a good landing gear design. 

The landing gear extension and retraction system choice is also a trade-off issue. While the electrical and hydraulic 

types are among the most used technologies for the normal landing gear operation system, the emergency extension 

system design is not also unique and spring-assisted, auxiliary hydraulics-assisted or even pneumatics-assisted landing 

gear free-fall design can be found in different airplanes. Generally, the airplane free-fall operation consists in a 

redundant, dissimilar and independent mechanically operated method of extending airplane landing gear due to a main 

hydraulic system failure or an electrical system malfunction. Operated by means of a lever or a knob, the system 

mechanically unlocks the landing gear and associated doors up locks, allowing landing gear to fall by gravity. The 

importance of the alternative extension system is related to the fact that a wheels-up landing may lead to fatal tragedies 

on several occasions. 

The free-fall system to be modeled represents a simple configuration system, in which the landing gear down 

locking, normally accomplished by mechanical locks, will be guaranteed through the landing gear coming to its 

extended position with a satisfactory kinetic energy level, resultant from the combination of its falling by gravity into 

the aerodynamic flow and the existing resistance to its movement. Figure 1 presents the schematics of the system under 

analysis.  

 



V I  C o n gr es s o  N a c i o n a l  d e  E n g e n har i a  M e c â ni c a ,  18  a  2 1  de  A g o s t o  2 0 10 ,  C am pi n a  G r a n d e  -  P ar a í b a  

 

 
 

Figure 1. Free-fall system schematics considered for analysis 

 

2. FORMULATION 

 

The basic formulation that composes the free-fall system model will be introduced as divided into two separated 

topics: the hydraulic system modeling and the landing gear dynamics modeling.  

 

2.1. Hydraulic system modeling 

 

The landing gear associated hydraulic system is modeled applying a discrete element method, characterized by the 

segregation of system important behavior effects like compliance, inertance and pressure drop, as well as the isolated 

components presented in the system such as valves, restrictors and actuators, as discrete elements connected by means 

of the continuity law or specific pressure conditions. 

Along the whole hydraulic system, constant values based on a nominal flight environmental condition are applied 

to the fluid viscosity and density, since it is expected no significant temperature variations in the system during the 

emergency operation. However, the fluid density also exhibits a pressure-dependence variation, whose effect can be 

represented together with the tubing flexibility by a discrete element called “system compliance”. The ideal compliance 

(Cf) is related to the fluid flow (Q) and line pressure (P) through the Eq. (1) (Doebelin, 1998). 
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Equation (1) also illustrates how the system compliance can be expressed in terms of the tube internal sectional area 

(A) and length (L) and a parameter known as the “effective bulk modulus” (βe). In the absence of gas, the system 

effective bulk modulus is expressed by Eq. (2), where βL and βC represent the fluid and the tubing bulk modulus, 

respectively (Merritt, 1967).  
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While the fluid bulk modulus can be easily found in fluid catalogs, the tubing bulk modulus can be determined in 

terms of the tube inside diameter (D), the tube thickness (e) and the Modulus of Elasticity (E) and Poisson’s Ratio (ν) of 

the tubing material, as described in Eq. (3) (Merritt, 1967). 
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Due to its kinetic energy, the fluid flow exhibits another effect known as “fluid inertance”. Represented as another 

discrete element, the pressure drop (ΔP) through the fluid inertance element is associated with the fluid flow according 

to Eq. (4) (Doebelin, 1998). 
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The value of the inertance parameter (If) depends on the flow regime and, thus, on the Reynolds number. Being 

again the tube inside diameter denoted by D, the Reynolds number (Re) is related to the fluid density (ρ), fluid dynamic 

viscosity (μ) and fluid velocity (V) by the Eq. (5). 
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 For laminar flows, that is, Reynolds numbers less than 2000, the inertance value is given by Eq. (6). On the other 

hand, for Reynolds numbers greater than 4000, the flow regime can be considered turbulent and the inertance parameter 

assumes the value provided by Eq. (7). Since between these two Reynolds number limits the flow exhibits a transitional 

regime, a value interpolated from both of them may be applied to If. 
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The pressure drop suffered by the fluid flowing through the tube will be modeled as another discrete element. 

Considering horizontal straight tubing and completely developed flow, the pressure drop along the tube can be given by 

a semi-empirical equation as defined in Eq. (8). 
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In the right-hand side of Eq. (8), the first term is called the friction factor (f) and is dependent on tubing roughness 

and also on Reynolds number. For a new smooth tube, the friction factor becomes a function of just the Reynolds 

number, but calculated differently for laminar and turbulent flow regimes. Thus, for laminar regimes, again considered 

herein Reynolds numbers less than 2000 (Merritt, 1967), the friction factor is provided by Eq. (9), while for turbulent 

regimes the f value is calculated applying Eq. (10) (Munson et al, 2004; Merritt, 1967). In order to obtain values for 

transitional regimes, interpolation will be used. 
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Besides the pressure drop existent along the tube length, there can be locally situated pressure drops provided by 

means of restrictors. The relation between the fluid flow and the pressure drop through a restrictor can be expressed by 

a non-linear equation, as shown in Eq. (11) (Merritt, 1967). 
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In Eq. (11), the restrictor orifice area is denoted by the parameter Ao and the discharge coefficient by the term CD.  

If the restrictor length is very small in order to consider it as a sharp-edged orifice, then 0.60 is commonly applied to the 

discharge coefficient value. On the other hand, if the restrictor has a considerable length, the discharge coefficient can 

be obtained from orifice length (Lo), orifice diameter (Do) and the local Reynolds number (Reo) as depicted in Eq. (12) 

and Eq. (13). The local Reynolds number definition is shown in Eq. (14). 
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Concerning the hydraulic system valves, the same formulation presented in Eq. (11) is applied to define the relation 

between fluid flow and pressure drop through their ports under the assumption of no internal leakage. However, for the 

valve modeling, the parameter Ao represents the port area, meanwhile the discharge coefficient (CD) assumes the value 

0.60 due to the consideration of sharp-edged port (Merritt, 1967). 

Finally, the hydraulic actuators are the components that perform the connection between the hydraulic system and 

the landing gear mechanism. The actuators applied to the system of Fig. (1) are of double-acting, single-rod type. 

Considering Q1, P1 and V1 the fluid flow, pressure and volume, respectively, for one of the actuator’s chambers, and Q2, 

P2 and V2 the same variables related to the other chamber, the continuity equation applied to the actuator yields to the 

formulation presented in Eq. (15) and Eq. (16). As it can be seen, internal leakage is being taken into account as linearly 

dependent to the pressure difference between the chambers, whose proportionality constant is given by the internal 

leakage coefficient (Cip). In addition, the external leakage is also assumed proportional to chamber pressure by means of 

the external leakage coefficient (Cep) (Merritt, 1967). 
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2.2. Landing gear dynamics modeling 

 

The emergency landing gear extension is known as “free-fall” operation, since landing gear weight is the main 

responsible for the extension torque on that situation. Besides landing gear features like mass (m) and the distance (a) 

between its center of gravity and the landing gear-to-aircraft attachment (landing gear rotation axle), the weight torque 

is also a function of the aircraft roll angle (ø), aircraft pitch angle (θ) and the landing gear extension angles (αNLG and 

αMLG), even for a constant velocity vector flight. Since parameter g denotes the gravitational acceleration and the 

subscripts NLG and MLG are used to relate the terms to nose landing gear and main landing gear, respectively, the 

weight torque (T) becomes defined as in Eq. (17) and Eq. (18).  

 

  NLGNLGNLGNLG a cos cos g mT            (17) 

 

  MLGMLGMLGMLG a cos cos g mT            (18) 
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However, during the free-fall extension, the landing gear downward rotation suffers some resistant torques that end 

up decreasing the potential energy used by landing gear to extend. In order to simplify the model, the resistant torques 

will be grouped into two types: the viscous friction torque and the hydraulic actuator torque. 

The viscous friction existing in the landing gear-to-aircraft attachment bearings and, moreover, the resistance 

provided by the extension mechanism on the landing gear movement are summarized in a term called “viscous friction 

torque”. Proportional to the extension velocities ( NLG and  MLG) by a constant factor known as damping coefficient 

(B), the viscous friction torque (F) is given by Eq. (19) and Eq. (20), where the nose and main landing gear are again 

referred by the subscripts NLG and MLG.  

 

NLGNLGNLG  BF              (19) 

 

MLGMLGMLG  BF              (20) 

 

The hydraulic actuator resistant torque is a consequence of the actuator piston movement due to the landing gear 

extension. Considering the piston mass and friction as negligible, the actuator force is caused by the pressure difference 

existing between its chambers applied to the area of each side of the piston. Being Ap1 and Ap2 the piston areas on each 

actuator chamber, the actuator force (h) is defined as in Eq. (21). 
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Therefore, the hydraulic actuator torque (H) is defined as in Eq. (22) and Eq. (23). However, the torque arms (r), as 

well as the piston displacements, which by the way are directly related to the actuator chamber volume variation, are 

functions of the landing gear extension angles. In order to obtain the relations of these two variables to the extension 

angles, CATIA software was used to raise the data from nose and main landing gear CAD drawings for some extension 

angle values and, then, a cubic polynomial regression was applied to adjust the curves. 

 

NLGNLGNLG r hH              (22) 

 

MLGMLGMLG r hH              (23) 

 

Figure 2 illustrates the torques discussed above and applied to both nose and main landing gear. 

 

 
 

Figure 2. Weight torques, viscous friction torques and hydraulic actuator torques applied to landing gear 
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Finally, the aerodynamic drag can also play an important role in the landing gear emergency extension condition. 

Depending on the landing gear extension configuration, aerodynamic drag can offer resistance or even contribute to its 

movement, being this the situation for the backward extension configuration chosen for the nose landing gear of the 

present work. On the other hand, for a non-slip flight, no significant effect due to aerodynamic flow is noticed on the 

main landing gear extension, since an outboard extension configuration was selected for it. 

Aiming at determining the nose landing gear aerodynamic drag, Engineering Sciences Data Unit (1987) brings a 

methodology to estimate its value at not very high speeds on a symmetric flight condition. This method is applicable to 

retractable landing gear and the final drag value is obtained from the sum of each component drag portion, taking into 

consideration the interference effects between them. For the drag estimation, the nose landing gear was divided into the 

wheels part and the structural part, being the latter compound by a cylindrical element and a rectangular element.   

Figure 3 depicts the nose landing gear division for drag estimation. 

 

 
 

Figure 3. Nose landing gear elements division for drag estimation 

 

The total landing gear drag (DNLG) is the sum of the wheels drag (Dwheels), the cylindrical element drag (Dcylind) and 

the rectangular element drag (Drectang) contributions as given in Eq. (24). 

 

rectangcylindwheelsNLG DDDD            (24) 

 

Basically, the components drag portions are obtained from the product of air dynamic pressure, frontal area and a 

particular drag coefficient. While for the cylindrical element the drag coefficient assumes an independent constant 

value, for wheels and rectangular element their values depend on the item geometry, as well as on the aerodynamic flow 

Reynolds number for the wheels drag estimation. These coefficients are taken from graphics and can be found in the 

reference (Engineering Sciences Data Unit, 1987). 

Although the drag estimation methodology considers the landing gear stationary in the aerodynamic flow, it is 

being used to determine the aerodynamic drag during the landing gear extension, based on the assumption that this 

movement is relatively slow enough in order to allow the disregard of the non-stationary aerodynamic effects. However, 

the inclination of the structural components in relation to the aerodynamic flow direction must be taken into account by 

means of a multiplication factor. 

The methodology of drag estimation also considers the presence of doors and the influence of landing gear bay on 

the air flow, as well as the influence of the proximity of other components in determining the drag of each element. 

Still, in order to simplify the aerodynamic drag estimation, most of these considerations were left out. 

After defining the nose landing gear drag force, it is necessary to determine the torque this force applies during the 

process of landing gear extension. The landing gear exposure area and the aerodynamic drag profile on it change as the 

extension angle increases. Due to that, the drag torque arm has its value being constantly updated during the landing 

gear rotation. Thus, two different simplified drag profiles were considered for the landing gear extension process. The 

first profile assumes a rectangular one and it is valid for the period of time the wheels start getting outside the landing 

gear bay until the instant they are completely exposed to the air flow. The second one considers a triangle profile and it 

is applicable for the rest of the landing gear downward movement, until the time it is down and locked. Figure 4 

illustrates the second profile adopted, where yNLG is the distance along the landing gear of DNLG to the top end of drag 

profile at the aircraft boundary, dNLG is the drag profile length along landing gear and, finally, GNLG is the aerodynamic 

drag torque. 
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Figure 4. Aerodynamic drag profile considered for the longest landing gear extension phase 

 

Consequently, the nose landing gear aerodynamic drag torque assumes three distinct values depending on the 

extension angle. For nose landing gear extension angle less than αNLG1, where αNLG1 is the extension angle associated to 

the instant the landing gear wheels reach the aircraft boundary, there is no landing gear exposure to the air flow and thus 

drag torque is null. However, as the landing gear falls, the first components to be exposed to the aerodynamic flow 

comprise the wheels. For that reason, the drag force can be assumed as consisting of only the wheels drag portion, for 

the extension angle varying from αNLG1 to αNLG2, being the later the extension angle value when the wheels are 

completely outside the landing gear bay. Using trigonometric calculations, the aerodynamic drag torque can be 

approximated for this extension angle range according to Eq. (25), where lNLG is the landing gear length from the 

rotation axle to the wheels axle and dwheels is the wheel diameter. 
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For nose landing gear extension angle greater than αNLG2, the drag profile of Fig. 4 is considered and the 

aerodynamic drag torque can be approximated by Eq. (26), where α is the airplane angle of attack. The parameters dNLG 

and yNLG, whose definitions are shown in Fig. 4, are obtained from Eq. (27) and Eq. (28), respectively. In Eq. (27), the 

terms lcylind and lrectang represent the length of the cylindrical and rectangular elements of the landing gear structural part. 
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Once defined all the torques that act on the landing gear free-fall extension, they must be combined in order to 

satisfy the Newton’s second law for rotational movement. Being INLG and IMLG the moment of inertia of nose landing 

gear and main landing gear, respectively, thus Newton’s second law applied to them results in Eq. (29) and Eq. (30). 

 

NLGNLGNLGNLGNLGNLG  IHGFT           (29) 

 

MLGMLGMLGMLGMLG  IHFT           (30) 
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3. MODELING 

 

The block diagram of the free-fall system is presented in Fig. 5. As it can be seen, both right and left main landing 

gear were considered having the same hydraulic and landing gear physical parameters. 

 

 
 

Figure 5. Free-fall system block diagram 

 

The model external inputs comprise two flight conditions, which are the flight speed (Vair) and flight altitude (Hp), 

and some aircraft angles, like the roll (ø) and pitch (θ) angles, as well as the aircraft angle of attack (α). Hydraulic fluid 

reservoir pressure (PR) basically represents the unique model boundary condition. In addition, the fluid reservoir density 

(ρR), calculated at the reservoir temperature (TR), is the one applied throughout the hydraulic system. 

Regarding the landing gear down locking criterion, since the down lock mechanism was not modeled, it is assumed 

that, at an extension angle of 89
o
 (1.533 radians), the landing gear is instantaneously locked supposedly by means of a 

mechanical lock, which brings it immediately to the final extension angle of 90
o
 (π/2 radians). In practice, down locking 

angles even less than 89
o
 (1.533 radians) may be observed, which makes adopted criterion satisfactory. 

 

4. SIMULATION RESULTS 

 

In order to simulate the free-fall system presented in Fig. 5, a MATLAB Simulink model was created. Applying a 

variable-step algorithm based on a Runge-Kutta (4,5) explicit method known as “ode45”, the model was simulated 

using the parameters nominal values. After the simulation, variables like hydraulic pressure and fluid flow at the tubes, 

as well as the landing gear extension angles and velocities, were plotted and analyzed. 

Below, it is presented the development of the landing gear downward movement over the time. The landing gear 

extension angles are shown in Fig. 6, while landing gear extension velocities are presented in Fig. 7.  

 

 
 

Figure 6. Landing gear extension angles for nominal free-fall operation 
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Figure 7. Landing gear extension velocities for nominal free-fall operation 

 

As it can be seen, the nose landing gear takes 6.86 seconds to extend by free-fall, while the main landing gear takes 

a little more, that is, 8.65 seconds.  

 

5. MODEL OPTIMIZATION 

 

The landing gear extension behavior described in Fig. 6 and Fig. 7 represents a typical description of what can be 

found for many aircrafts in terms of free-fall operation. While the nose landing gear reaches the lowest point with a 

considerable amount of kinetic energy, the main landing gear hardly gets down and locked due to the small kinetic 

energy it has at the end of its movement. Because of that, an optimization process can be applied to the model in order 

to better adjust each landing gear kinetic energy level, so that any damage to airplane structure is avoided (damping 

optimization) meanwhile both landing gear certainly get down and locked. Since the landing gear final position is 

virtually the same for normal flight conditions, the potential energy was not taken into account.  

The Simulink Response Optimization library, by means of the “Signal Constraint Block”, allows the user to define 

some limits to the model outputs and optimize the variable response in order to better obey these bounds (The 

Mathworks Inc., 2007). Thus, the nose landing gear down locking kinetic energy adjustment was chosen with the 

purpose of demonstrating an optimization process. This way, the kinetic energy output (KNLG) as defined in Eq. (31) had 

its final value (close to the down position) limited by lower and upper bounds, as well as by a lateral bound that 

imposed a limiting time for the nose landing gear to extend. 
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2

1
NLGNLGNLG IK             (31) 

 

The parameters selected to have their values changed during the optimization process were restrictor 1 diameter 

(Do1) and restrictor 2 diameter (Do2). The restrictors are placed adjacent to the nose landing gear hydraulic actuator, in 

such a way that restrictor 1 is in the extending line and restrictor 2 is in the retraction line of the hydraulic system.  

Finally, applying the default optimization algorithm (gradient descent) and model size (medium scale) of the 

“Signal Constraint Block”, the optimum values of both diameters were achieved. Table 1 exhibits the limiting, initial 

guesses and optimized values of the two parameters evaluated. 

 

 

Table 1. Limiting values, initial guesses and final values of the parameters evaluated during the nose landing 

gear kinetic energy optimization. 

 
Parameter Description Initial  

Guess 

Minimum 

Value 

Maximum  

Value 

Optimized  

Value 

D01 Restrictor 1 Orifice Diameter 3.2 x 10
-3

 m 5.0 x 10
-4

 m 4.0 x 10
-3

 m 5.5275 x 10
-4

 m 

D02 Restrictor 2 Orifice Diameter 3.2 x 10
-3

 m 5.0 x 10
-4

 m 4.0 x 10
-3

 m 5.5275 x 10
-4

 m 

 

Figure 8 illustrates the kinetic energy level during the nose landing gear extension movement for the optimization 

process iterations. As it can be seen, the final output solution fits properly within the limits initially defined in order to 

assure an acceptable landing gear free-fall behavior. A reduction of 11.7% on down locking kinetic energy level was 

possible. 
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Figure 8. Nose landing gear kinetic energy optimization process  

 

6. CONCLUSIONS 

 

Involving a wide variety of engineering subjects, the landing gear free-fall operation modeling consisted in a 

challenging task. In spite of the assumptions considered, the formulation applied to construct the model seemed to be 

satisfactorily representative of an airplane landing gear common free-fall extension operation.  

In addition, the optimization process applied to nose landing gear kinetic energy demonstrated that the free-fall 

operation, notwithstanding the simplicity the system constructive configuration may exhibit, could be improved by 

means of a properly adjustment of the related system parameters values. Although more complex and laboring, an 

optimization process taking into account a greater quantity of system parameters might have led to a better extension-

by-gravity performance not only for the nose landing gear, but for the main landing gear too. However, it is important to 

mention that cost, weight and manufacturing issues should always be considered over the accomplishment of any 

system design optimization. 
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