‘ A A (i o g g e
( i N SRR RN B s A
%ggyfmaﬂjg VI CONGRESSO NACIONAL DE ENGENHARIA MECANICA

Engenniana Mocdniea VI NATIONAL CONGRESS OF MECHANICAL ENGINEERING

18 a 21 de agosto de 2010 — Campina Grande — Paraib a - Brasil
August 18 — 21, 2010 — Campina Grande — Paraiba — Brazil

THERMOELASTIC STRUCTURES IN TOPOLOGY
OPTIMIZATION PROCESS

Paulo Sérgio Ramos da Silvaeng.paulosrs@yahoo.com.Br
Jodo Carlos Arantes Costa Juniorarantes@ufrnet.br’
Marcelo Krajnc Alves, krajnc@emc.ufsc.br’

Rodrigo Rossi,rrossi@pg.cnpg.br’

YIFBA - Instituto Federal da Bahia, Campus de SalvaSalvador — BA, Brasil.

2UFRN - Universidade Federal do Rio Grande do NoBmpus Universitario, Lagoa Nova, Centro Tecnaidgi
Depto. de Eng. Mecénica, CEP 59072-790, Natal —BrBisil.

3UFSC - Universidade Federal de Santa Catarina, Gardpiversitario — Trindadé&entro Tecnolégico, Caixa Postal
476 -, CEP 88040-900, Florianépolis — SC, Brasil.

*UFRGS - Universidade Federal do Rio Grande do Batola de Engenharia, Depto. de Eng. Mecanica. Rua
Sarmento Leite, 425, Cidade Baixa, CEP 90050-1@fipFRAlegre — RS, Brasil.

Abstract: This work proposes a formulation for optimizatioh 2D-structure layouts submitted to mechanic and
thermal shipments and applied an h-adaptive fiffeocess which conduced to computational low spemd lsigh
definition structural layouts. The main goal of tf@mulation is to minimize the structure mass sitech to an
effective state of stress of von Mises's, withilifialand lateral restriction variants. A criterioof global measurement
was used for intents a parametric condition of sdréelds. To avoid singularity problems was coersite a release on
the stress constraint. On the optimization was wsethterial approach where the homogenized consteiequation
was function of the material relative density. Tihteermediary density effective properties were esgnted for a
SIMP-type artificial model. The problem was simetif by use of the method of finite elements of iGaleusing
triangles with linear Lagrangian basis. On the d@n of the optimization problem, was applied thegiented
Lagrangian Method, that consists on minimum probéequence solution with box-type constraints, resbby a 2nd
order projection method which uses the method efghasi-Newton without memory, during the problewcess
solution. This process reduces computational expesebwing be more effective and solid. The resublterialize
more refined layouts with accurate topologic andpsh of structure definitions. On the other handrfalation of mass
minimization with global stress criterion providés modeling "ready" structural layouts, with vidlat of the
criterion of homogeneous distributed stress.

Keywords: Topology optimization; Thermoelasticity; PlaneeSs; FEM; Augmented Lagrangian.

1. INTRODUCTION

The reduction of the cost of manufacturing a giwemponent or product may be obtained by applyingeso
optimization tool. In the particular case of compnts or products obtained by an injection procpsss{ic or metal
powder), the possibility to consider complex geametlow us to explore the flexibility of the praas by designing
optimized molds with an optimum topology for thentlin of the component.

One of the most difficult decisions in the designphase is to specify the layout of the geometrthefcomponent.
Once the layout or topology of the component isreéef we may concentrate in the definition of théirapm shape of
the domain, sizing of some additional geometricapsters used to define the model and some mateoakrties,
(Suzuki and Kikuchi, 1990; Suzuki and Kikuchi, 19®kndsoe and Kikuchi, 1998; Bendsoe, 1995).

In general, the appropriate choice of the layowtiengly dependent of the designer, what implethe necessity
of a designer with a large practical experiencee @lcision process associated with the definitibthe optimum
layout of component may be done automatically bypleging a topology optimization software, (Bendsaed
Sigmund, 2003; Bendsoe and Rodrigues, 1991; Beretsad. 1993).

In this work, the layout optimization is done bynsa@ering a Solid Isotropic Microstructure with Rénation
(SIMP). The material density functiop are the design parameters and varies continudrasty O to 1, taking the
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value of 1.0 for a solid material and 0.0 for advoiaterial, Costa Jr. and Alves (2003). To avoitherical singularity,
the lower bound of materialp_._, is introduced as

min 1
0< ppn < p<1. 1)
2. FORMULATION OF THE PROBLEM

2.1. Determination of the Thermo Mechanical Problem

The thermal problem considered in this work issilfated in Fig. 1.

Figure 1. Definition of the Thermal Problem.

Here oQ =TI, ul'; I'' [ =< . Denoting byl'; andI'; the part of the boundary where the temperature and
the heat flux are prescribed respectively. At flomt, we define the set of admissible temperatués and the set of
the temperature variation¥ar, , to be given asw\; ={T| Te H(Q) andT= T aFT} and Var, ={'I:"f'e H(Q) } We
consider the source/sink to be given by a convediat transfer from the body to a fluide., r =-h(T -T,) where
T, denotes the temperature of the fluid and h therection heat transfer coefficient. Notice thatTif> T, then heat is
removed from the body and T < T, heat is given to the body, (Alves and Alves, 198i®%a, 2007).

The weak formulation of the thermal problem maystated as: Lel =T’ +T,, wherel e W, is a known field.

The problem consists in the determinatioriTofe Var. such that,

a (T, T)=I(T), VTe Var (2)
where

a (T, T)=[K'VT .VId+[ hT T@ 3)
and

(1) = [h(T, ~T,) T+ [ gTd - [K"V T-V Ted (4)

Here, the conductivity matrixX " = k"l , wherek" is the homogenized thermal conductivity of the eriat that
is porous material dependent, such that

kM = p’k (5)

where k is the conductivity parameter for the fully depsitaterial, p the relative density material andis the SIMP
penalty parameter, (Cho and Choi, 2005; RodrigndsFernandes, 1993).

The mechanical problem considered in this worKustrated in Fig. 2.
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Figure 2. Definition of the Mechanical Problem.

Here 0Q=T',uT,; I',nT',=< . Here,I', and I', represent the part of the boundary where the atisphent
and the traction are prescribed respectively. it ploint we define the set of admissible displaca@\, , and the set

of the displacement variations,Var,, to be given as: W, ={U|U€ (HY(Q))*andu=0 aﬂ"u} and
Var, = {u| ue (H(Q))® } . Here, for simplicity we consider = 0. As a result\W, =Var, .

The weak formulation of the mechanical problem rbaystated as: LeT e W, be the solution of the problem.
Then, the problem consists in the determination e/, such that

a,(u,v)=1,(v), YveVar,. (6)
where

a,(u,v) = j o(u)-e(v)dQ, (M

l,(v)=[b-vdQ+ [t-vdr, (8)
and

o(u)=D"g(u)—(T-T,)B" )

Now, since we consider the material (matrix) tadmgropic, we have:

Ea
B, =B, B=12" (10)
Here,a is the linear thermal expansion coefficieﬁ[,—'l'o) B is the thermal stress tensor abdis the generalized
Hooke's law for a linear elastic body, (Brahim-Oasreet al.,1989; Francfort, 1983). Moreover,

Dijrs = ]’é‘u é;s + ﬂ(dlr é}s + é;s 5jr ) (11)
with
i=—YE =t (12)
1-v)(1- 2v) 2(1-v)

Where 1 and u are the Lame’s constants, is the Poisson’s ratio an is the Young modulus. The temperature
T, is the reference temperature of the body.

The constitutive matriXD" adapted to intermediary density material, propdse@ho and Choi (2005) is given

Dyl = P"Dy (13)
2.2. Formulation of the Problem

The objective of this work is to determine the pptim layout of the structure obtained as solutionato

optimization problem. The optimization problem dstsin the minimization of the mass of the stroetsubjected to
an effective von Mises equivalent stress and sigstcaints. The design variable is the relativesidgrof the material,
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represented byp , for dealing with the problem of stress critemiamass minimization was used SIMP exponential
penalty system to describe the constitutive refatibthe material, which is usegl= 3, with this choice, proposed by
Sigmund and Petersson (1998), we get a descripfifeasible microstructure material.

The problem may than be formulated as:

min i pdQ, (14)
such that

o-;q(p(x),u(p(x),x,T) ,T)—o-y <0 (15)

P —P <0 (16)

P—Pup<0,  VXxeQ a7)

where u(a) and T(a) are obtained as a solutiohdgtoblem:
a (T, T)=1(T), VTeVar (18)
a,(u,v)=1,(v), VveVar, (19)

andT=T +T,, for a givenT, e W,. The effective von Mises stress, for this micrasture is considered to be given
as:

O =—. (20)

The Karush-Kuhn-Tucker necessary optimality coondsi associated with this problem is given by: ILgs)
denote the lagrangian functional associated withptioblemj. e.,

L(p,u,T 77,4 ,@:jp dmjn(a;q(p,u X T)T yo,)d
Q Q (21)
+ [ A (s = P)dQ+ [ A (0= puyy) A

where , A, and A, are the Lagrange multipliers associated with teiiality constraints, Costa Jr. and Alves
(2003). Then, the optimality conditions are given b

nz0, A4>0, A= {( (22)
N0eq=0) =0, 4y —p)=0, A p=py ¥ O (23)
Oq—0,<0, py-p<0, p-p,,< ( and (24)
1+776;j‘—ﬂ1 +4 =0, VxeQ. (25)

2.3. Stress Singularity Problem

In order to open the degenerated parts of the degigce with the possibility of creating or remayviroles without
violating the effective stress constraint we apply « - relaxation technique (Duysinx, 1998; Duysinx &igmund,
1998; Duysinx and Bendsoe, 1998). In this work, implement an automatic and systematic strategyedoae the
initial perturbation parameter. The stress relaxation parameter is decrementeekaget closer to the solution. Now,
let p, =1-a% be the relative density associated with the fuliterial condition. Then, the relaxed admensiondlize

effective stress constraint may be written as:
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*

g(,,(x),u(p(x),x,T),T)zp(x)[%

(P0).8(p(0) x.7).T)

Oy

~11+ x(pup—p(x))<0. (26)

From this consideration, the relaxed minimizatiookpem may be formatted as:

min j pdQ (27)
Q
such that
O
P p -1|+x sup_p)so (28)
y
Pt~ P <0 (29)
P Psp <0, VXeQ (30)

3. DISCRETIZATION OF THE PROBLEM

In order to solve the thermo-mechanical problemapely the Galerkin Finite Element Method. Moreoweg
consider the material density associated with efambe element linearly distributed. Consequentlge material
properties related to given element are charae@rlzy a single microstructure. Thus, for each etermee have a
design variable “a” which represents the size @f wbid of the microstructure that fully represetits given finite
element material properties. From this considenatibe number of design variables is given by thmlper of finite
elements in the mesh.

Furthermore, we make use of the slope-constraineditons proposed by Petersson and Sigmund (19%®)se
conditions are employed in order to ensure thetexi® of a solution to the layout optimization pesb and to
eliminate the well-known checkerboard instabilitplplem (Bendsoe, 1995; Sigmund and Petersson, 1888)occur
in the Galerkin finite element discretization, whesing a low order interpolation base functionthie approximation
space. Thus,

(6_,0) <C? and (6_,0] <C? (31)
OX oy

Here, the constant€, and C, define the bounds for the components of the gradiéthe relative density. These

bounds are imposed component wise with the obgafproperly imposing a symmetry condition, whinhy be used
in some particular cases.

The discretized problem may be formulated as:

minJ'de (32)
L Q
such that
ol p(X),ulp(X),X,T),T
a(£(9:u(p(x).x.T).T) K(i——lj—lﬁo, VxeQ (33)
oy Po P
and
Put =P 0, (34)
P —Pup<0,  i=1..n (number of nodes irtimesh (35)

Notice that, the effective stress constraint isseametric constraint that must be satisfied ¥ore Q. In order to
handle this parametric constraint we relax the fpage criteria and consider a global integratedst@int. This can be
done by replacing a parametric constraint of tipe ty
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g(p(x).u(p(x).x,T), T (p))<0, ¥xeQ (36)
by the following associated global constraint:

Yo
g(p(x),u(p(x),x,T),T*(p)):{éﬁp(x) u(p(x) x,T) ,T(p)>p CQ} = 0. (37)

Q

Here, in order to enforce the point wise constrai@tmust consideip — +ow . However, for practical purposes we
considerp =2 where(g(e)) denotes the positive part of the functiom)gi. €., (g(s)) =max{ 0,g e} .

3.1. Formulation of the Discretized Problem

The discretized formulation of the relaxed problemay be stated as: Determing g, with

inf

o= {p eR"p" <p <p™i=1.. ,n} , Wheren is the total number of nodes, so that it is tHatgm of:

min [pdQ. (38)
such that

_ 1 P %

9(p(x).0(p().XT).T (9) = | [{90(x) w(p(x) .1 T (0))" 2f =0, (39)
Pt =P <0, (40)
P = Paup <0, i=1,..n. (41)

(oY)

92&1(/))_ ﬂ|:( GXJ Cx:|SO, (42)
gZe(p)=%|:(%j —c§]so, e=1..,n, (43)

denoting byn, is the total number of elements. The valuég) andT  p ) are the solution of:
a (T =pr(T), VTeVaf cVa and (44)
a,(u,v)=1,(v), VveVar cVar, (45)
4. ALGORITHM

We are using a bound constrained Truncated-Newtthaod. The Truncated-Newton method is preconditidme
a limited-memory Quasi-Newton method with a furtbergonal scaling.

5. NUMERICAL APPLICATIONS
5.1. Problem Case (1)

Here we consider the problem illustrated in FigwBich the material properties (stainless ste&1/304) to
be given as: Young Modulug =193GPa, Poisson's ratior =0.29. The distributed loadt =207,00(kN/ m. The

reference temperature of the body Ts =20°C, the temperature of the fluid i$; =25°C and the prescribed
temperature at the clamped edgd js=100°C . The yield stressS, = 207 MPa. The heat conductivity of the material,
k =16.6W/ P C. The coefficient =17x10° m/m° C. The convection heat transfer coefficieht: 5 W/ nf° C.
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Figure 3. Definition of the Problem Case (1).
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Figure 4. Symmetrical Model of the Problem Case (1tp be solved.
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Figure 6. Optimum mass distribution.
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Figure 7. Failure function.

5.2. Problem Case (2)

Here we consider the problem illustrated in Figwijch the material properties (stainless steell %) to be
given as: Young ModulusE =193GPa, Poisson's ratiov =0.29. The distributed load,t = 207,00(kN/ m. The
reference temperature of the body Ts =20°C, the temperature of the fluid i$; =25°C and the prescribed
temperature at the clamped edgd js=100°C . The yield stressS, = 207 MPa. The heat conductivity of the material,
k =16.6W/ n? C. The coefficient =17x10° m/m° C. The convection heat transfer coefficient: 5W/ nf° C.

Tyl

/
AN AN

0,00'm

(9] 010 m
/\
| [o10m
iE ; ;
G-
Bel '
7
L] : 080 m & |
010 m

TDienzidads Fungio de Falha

1 0.70306
l n.gaere I 0.62938
077855 0.55071

- D.6BY33 - 0.47204
L 0.55911 L 0.39336
- D.44338 - 031468
.- 033866 - 0.236M

0.22544
011821
0.008

Figure 10. Optimum mass distribution. Figure 11. Failure functio

0.16734
0.078667
1]

4



VI Congresso Nacional de Engenharia Mecanica, 18 a 21 de Agosto 2010, Campina Grande - Paraiba
5.3. Problem Case (3)

Here we consider the problem illustrated in Fig, WhRich the material properties (stainless stee€31/A304) to be
given as: Young ModulusE =193GPa, Poisson's ratiov =0.29. The distributed load,t = 207,00(kN/m. The

reference temperature of the body Ts =20°C, the temperature of the fluid i$; =25°C and the prescribed
temperature at the clamped edgd js=100°C . The yield stressS, = 207 MPa. The heat conductivity of the material,
k =16.6W/ n? C. The coefficient =17x10° m/m° C. The convection heat transfer coefficient: 5W/ nf° C.
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Figure 14. Mesh with 316 elements and 185 nodes tiojpum mass distribution and failure function.

6. CONCLUSION

The usage of a multigrid approach or remeshingqaore is important to increase the rate of convergedo the
optimum layout of the problem. With this approaulg are able to handle problem with a large numliedesign

variables.
The usage of a non-uniform refinement has showdetrease the number of design variables and tliease

becomes even more relevant if we refine the probiéima very large number of elements, Carey (1997)
The results were promising, given the stress camgtand tested in meshes with few elements, butfeharp

optimum layout require a very refined mesh, sugggshigh computational cost. Hence, the implemémtadf an
adaptive process of refinement would be very pruiden
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One of the disadvantages of the adopted approatttaisve need to determine the element matricesvantbrs
what increase the computational cost when compuaiitid the pixel type of strategy employed by manythars.
However, the pixel approach requires a refined niesinder to describe the material boundary withnegrecision.
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